CriticalAntiDepBreaker.cpp revision 397fc4874efe9c17e737d4c5c50bd19dc3bf27f5
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  RegClassInfo(RCI),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0),
39  KeepRegs(TRI->getNumRegs(), false) {}
40
41CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
42}
43
44void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
45  const unsigned BBSize = BB->size();
46  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
47    // Clear out the register class data.
48    Classes[i] = static_cast<const TargetRegisterClass *>(0);
49
50    // Initialize the indices to indicate that no registers are live.
51    KillIndices[i] = ~0u;
52    DefIndices[i] = BBSize;
53  }
54
55  // Clear "do not change" set.
56  KeepRegs.reset();
57
58  bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
59
60  // Determine the live-out physregs for this block.
61  if (IsReturnBlock) {
62    // In a return block, examine the function live-out regs.
63    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
64         E = MRI.liveout_end(); I != E; ++I) {
65      unsigned Reg = *I;
66      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
67      KillIndices[Reg] = BBSize;
68      DefIndices[Reg] = ~0u;
69
70      // Repeat, for all aliases.
71      for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
72        unsigned AliasReg = *Alias;
73        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
74        KillIndices[AliasReg] = BBSize;
75        DefIndices[AliasReg] = ~0u;
76      }
77    }
78  }
79
80  // In a non-return block, examine the live-in regs of all successors.
81  // Note a return block can have successors if the return instruction is
82  // predicated.
83  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
84         SE = BB->succ_end(); SI != SE; ++SI)
85    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
86           E = (*SI)->livein_end(); I != E; ++I) {
87      unsigned Reg = *I;
88      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
89      KillIndices[Reg] = BBSize;
90      DefIndices[Reg] = ~0u;
91
92      // Repeat, for all aliases.
93      for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
94        unsigned AliasReg = *Alias;
95        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
96        KillIndices[AliasReg] = BBSize;
97        DefIndices[AliasReg] = ~0u;
98      }
99    }
100
101  // Mark live-out callee-saved registers. In a return block this is
102  // all callee-saved registers. In non-return this is any
103  // callee-saved register that is not saved in the prolog.
104  const MachineFrameInfo *MFI = MF.getFrameInfo();
105  BitVector Pristine = MFI->getPristineRegs(BB);
106  for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
107    unsigned Reg = *I;
108    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
109    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
110    KillIndices[Reg] = BBSize;
111    DefIndices[Reg] = ~0u;
112
113    // Repeat, for all aliases.
114    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
115      unsigned AliasReg = *Alias;
116      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
117      KillIndices[AliasReg] = BBSize;
118      DefIndices[AliasReg] = ~0u;
119    }
120  }
121}
122
123void CriticalAntiDepBreaker::FinishBlock() {
124  RegRefs.clear();
125  KeepRegs.reset();
126}
127
128void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
129                                     unsigned InsertPosIndex) {
130  if (MI->isDebugValue())
131    return;
132  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
133
134  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
135    if (KillIndices[Reg] != ~0u) {
136      // If Reg is currently live, then mark that it can't be renamed as
137      // we don't know the extent of its live-range anymore (now that it
138      // has been scheduled).
139      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
140      KillIndices[Reg] = Count;
141    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
142      // Any register which was defined within the previous scheduling region
143      // may have been rescheduled and its lifetime may overlap with registers
144      // in ways not reflected in our current liveness state. For each such
145      // register, adjust the liveness state to be conservatively correct.
146      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
147
148      // Move the def index to the end of the previous region, to reflect
149      // that the def could theoretically have been scheduled at the end.
150      DefIndices[Reg] = InsertPosIndex;
151    }
152  }
153
154  PrescanInstruction(MI);
155  ScanInstruction(MI, Count);
156}
157
158/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
159/// critical path.
160static const SDep *CriticalPathStep(const SUnit *SU) {
161  const SDep *Next = 0;
162  unsigned NextDepth = 0;
163  // Find the predecessor edge with the greatest depth.
164  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
165       P != PE; ++P) {
166    const SUnit *PredSU = P->getSUnit();
167    unsigned PredLatency = P->getLatency();
168    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
169    // In the case of a latency tie, prefer an anti-dependency edge over
170    // other types of edges.
171    if (NextDepth < PredTotalLatency ||
172        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
173      NextDepth = PredTotalLatency;
174      Next = &*P;
175    }
176  }
177  return Next;
178}
179
180void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
181  // It's not safe to change register allocation for source operands of
182  // that have special allocation requirements. Also assume all registers
183  // used in a call must not be changed (ABI).
184  // FIXME: The issue with predicated instruction is more complex. We are being
185  // conservative here because the kill markers cannot be trusted after
186  // if-conversion:
187  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
188  // ...
189  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
190  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
191  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
192  //
193  // The first R6 kill is not really a kill since it's killed by a predicated
194  // instruction which may not be executed. The second R6 def may or may not
195  // re-define R6 so it's not safe to change it since the last R6 use cannot be
196  // changed.
197  bool Special = MI->isCall() ||
198    MI->hasExtraSrcRegAllocReq() ||
199    TII->isPredicated(MI);
200
201  // Scan the register operands for this instruction and update
202  // Classes and RegRefs.
203  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
204    MachineOperand &MO = MI->getOperand(i);
205    if (!MO.isReg()) continue;
206    unsigned Reg = MO.getReg();
207    if (Reg == 0) continue;
208    const TargetRegisterClass *NewRC = 0;
209
210    if (i < MI->getDesc().getNumOperands())
211      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
212
213    // For now, only allow the register to be changed if its register
214    // class is consistent across all uses.
215    if (!Classes[Reg] && NewRC)
216      Classes[Reg] = NewRC;
217    else if (!NewRC || Classes[Reg] != NewRC)
218      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
219
220    // Now check for aliases.
221    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
222      // If an alias of the reg is used during the live range, give up.
223      // Note that this allows us to skip checking if AntiDepReg
224      // overlaps with any of the aliases, among other things.
225      unsigned AliasReg = *Alias;
226      if (Classes[AliasReg]) {
227        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
228        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
229      }
230    }
231
232    // If we're still willing to consider this register, note the reference.
233    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
234      RegRefs.insert(std::make_pair(Reg, &MO));
235
236    if (MO.isUse() && Special) {
237      if (!KeepRegs.test(Reg)) {
238        KeepRegs.set(Reg);
239        for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
240             *Subreg; ++Subreg)
241          KeepRegs.set(*Subreg);
242      }
243    }
244  }
245}
246
247void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
248                                             unsigned Count) {
249  // Update liveness.
250  // Proceding upwards, registers that are defed but not used in this
251  // instruction are now dead.
252
253  if (!TII->isPredicated(MI)) {
254    // Predicated defs are modeled as read + write, i.e. similar to two
255    // address updates.
256    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
257      MachineOperand &MO = MI->getOperand(i);
258
259      if (MO.isRegMask())
260        for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
261          if (MO.clobbersPhysReg(i)) {
262            DefIndices[i] = Count;
263            KillIndices[i] = ~0u;
264            KeepRegs.reset(i);
265            Classes[i] = 0;
266            RegRefs.erase(i);
267          }
268
269      if (!MO.isReg()) continue;
270      unsigned Reg = MO.getReg();
271      if (Reg == 0) continue;
272      if (!MO.isDef()) continue;
273      // Ignore two-addr defs.
274      if (MI->isRegTiedToUseOperand(i)) continue;
275
276      DefIndices[Reg] = Count;
277      KillIndices[Reg] = ~0u;
278      assert(((KillIndices[Reg] == ~0u) !=
279              (DefIndices[Reg] == ~0u)) &&
280             "Kill and Def maps aren't consistent for Reg!");
281      KeepRegs.reset(Reg);
282      Classes[Reg] = 0;
283      RegRefs.erase(Reg);
284      // Repeat, for all subregs.
285      for (const uint16_t *Subreg = TRI->getSubRegisters(Reg);
286           *Subreg; ++Subreg) {
287        unsigned SubregReg = *Subreg;
288        DefIndices[SubregReg] = Count;
289        KillIndices[SubregReg] = ~0u;
290        KeepRegs.reset(SubregReg);
291        Classes[SubregReg] = 0;
292        RegRefs.erase(SubregReg);
293      }
294      // Conservatively mark super-registers as unusable.
295      for (const uint16_t *Super = TRI->getSuperRegisters(Reg);
296           *Super; ++Super) {
297        unsigned SuperReg = *Super;
298        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
299      }
300    }
301  }
302  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
303    MachineOperand &MO = MI->getOperand(i);
304    if (!MO.isReg()) continue;
305    unsigned Reg = MO.getReg();
306    if (Reg == 0) continue;
307    if (!MO.isUse()) continue;
308
309    const TargetRegisterClass *NewRC = 0;
310    if (i < MI->getDesc().getNumOperands())
311      NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
312
313    // For now, only allow the register to be changed if its register
314    // class is consistent across all uses.
315    if (!Classes[Reg] && NewRC)
316      Classes[Reg] = NewRC;
317    else if (!NewRC || Classes[Reg] != NewRC)
318      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
319
320    RegRefs.insert(std::make_pair(Reg, &MO));
321
322    // It wasn't previously live but now it is, this is a kill.
323    if (KillIndices[Reg] == ~0u) {
324      KillIndices[Reg] = Count;
325      DefIndices[Reg] = ~0u;
326          assert(((KillIndices[Reg] == ~0u) !=
327                  (DefIndices[Reg] == ~0u)) &&
328               "Kill and Def maps aren't consistent for Reg!");
329    }
330    // Repeat, for all aliases.
331    for (const uint16_t *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
332      unsigned AliasReg = *Alias;
333      if (KillIndices[AliasReg] == ~0u) {
334        KillIndices[AliasReg] = Count;
335        DefIndices[AliasReg] = ~0u;
336      }
337    }
338  }
339}
340
341// Check all machine operands that reference the antidependent register and must
342// be replaced by NewReg. Return true if any of their parent instructions may
343// clobber the new register.
344//
345// Note: AntiDepReg may be referenced by a two-address instruction such that
346// it's use operand is tied to a def operand. We guard against the case in which
347// the two-address instruction also defines NewReg, as may happen with
348// pre/postincrement loads. In this case, both the use and def operands are in
349// RegRefs because the def is inserted by PrescanInstruction and not erased
350// during ScanInstruction. So checking for an instructions with definitions of
351// both NewReg and AntiDepReg covers it.
352bool
353CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
354                                                RegRefIter RegRefEnd,
355                                                unsigned NewReg)
356{
357  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
358    MachineOperand *RefOper = I->second;
359
360    // Don't allow the instruction defining AntiDepReg to earlyclobber its
361    // operands, in case they may be assigned to NewReg. In this case antidep
362    // breaking must fail, but it's too rare to bother optimizing.
363    if (RefOper->isDef() && RefOper->isEarlyClobber())
364      return true;
365
366    // Handle cases in which this instructions defines NewReg.
367    MachineInstr *MI = RefOper->getParent();
368    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
369      const MachineOperand &CheckOper = MI->getOperand(i);
370
371      if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
372        return true;
373
374      if (!CheckOper.isReg() || !CheckOper.isDef() ||
375          CheckOper.getReg() != NewReg)
376        continue;
377
378      // Don't allow the instruction to define NewReg and AntiDepReg.
379      // When AntiDepReg is renamed it will be an illegal op.
380      if (RefOper->isDef())
381        return true;
382
383      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
384      // NewReg
385      if (CheckOper.isEarlyClobber())
386        return true;
387
388      // Don't allow inline asm to define NewReg at all. Who know what it's
389      // doing with it.
390      if (MI->isInlineAsm())
391        return true;
392    }
393  }
394  return false;
395}
396
397unsigned
398CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
399                                                 RegRefIter RegRefEnd,
400                                                 unsigned AntiDepReg,
401                                                 unsigned LastNewReg,
402                                                 const TargetRegisterClass *RC)
403{
404  ArrayRef<unsigned> Order = RegClassInfo.getOrder(RC);
405  for (unsigned i = 0; i != Order.size(); ++i) {
406    unsigned NewReg = Order[i];
407    // Don't replace a register with itself.
408    if (NewReg == AntiDepReg) continue;
409    // Don't replace a register with one that was recently used to repair
410    // an anti-dependence with this AntiDepReg, because that would
411    // re-introduce that anti-dependence.
412    if (NewReg == LastNewReg) continue;
413    // If any instructions that define AntiDepReg also define the NewReg, it's
414    // not suitable.  For example, Instruction with multiple definitions can
415    // result in this condition.
416    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
417    // If NewReg is dead and NewReg's most recent def is not before
418    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
419    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
420           && "Kill and Def maps aren't consistent for AntiDepReg!");
421    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
422           && "Kill and Def maps aren't consistent for NewReg!");
423    if (KillIndices[NewReg] != ~0u ||
424        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
425        KillIndices[AntiDepReg] > DefIndices[NewReg])
426      continue;
427    return NewReg;
428  }
429
430  // No registers are free and available!
431  return 0;
432}
433
434unsigned CriticalAntiDepBreaker::
435BreakAntiDependencies(const std::vector<SUnit>& SUnits,
436                      MachineBasicBlock::iterator Begin,
437                      MachineBasicBlock::iterator End,
438                      unsigned InsertPosIndex,
439                      DbgValueVector &DbgValues) {
440  // The code below assumes that there is at least one instruction,
441  // so just duck out immediately if the block is empty.
442  if (SUnits.empty()) return 0;
443
444  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
445  // This is used for updating debug information.
446  //
447  // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
448  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
449
450  // Find the node at the bottom of the critical path.
451  const SUnit *Max = 0;
452  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
453    const SUnit *SU = &SUnits[i];
454    MISUnitMap[SU->getInstr()] = SU;
455    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
456      Max = SU;
457  }
458
459#ifndef NDEBUG
460  {
461    DEBUG(dbgs() << "Critical path has total latency "
462          << (Max->getDepth() + Max->Latency) << "\n");
463    DEBUG(dbgs() << "Available regs:");
464    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
465      if (KillIndices[Reg] == ~0u)
466        DEBUG(dbgs() << " " << TRI->getName(Reg));
467    }
468    DEBUG(dbgs() << '\n');
469  }
470#endif
471
472  // Track progress along the critical path through the SUnit graph as we walk
473  // the instructions.
474  const SUnit *CriticalPathSU = Max;
475  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
476
477  // Consider this pattern:
478  //   A = ...
479  //   ... = A
480  //   A = ...
481  //   ... = A
482  //   A = ...
483  //   ... = A
484  //   A = ...
485  //   ... = A
486  // There are three anti-dependencies here, and without special care,
487  // we'd break all of them using the same register:
488  //   A = ...
489  //   ... = A
490  //   B = ...
491  //   ... = B
492  //   B = ...
493  //   ... = B
494  //   B = ...
495  //   ... = B
496  // because at each anti-dependence, B is the first register that
497  // isn't A which is free.  This re-introduces anti-dependencies
498  // at all but one of the original anti-dependencies that we were
499  // trying to break.  To avoid this, keep track of the most recent
500  // register that each register was replaced with, avoid
501  // using it to repair an anti-dependence on the same register.
502  // This lets us produce this:
503  //   A = ...
504  //   ... = A
505  //   B = ...
506  //   ... = B
507  //   C = ...
508  //   ... = C
509  //   B = ...
510  //   ... = B
511  // This still has an anti-dependence on B, but at least it isn't on the
512  // original critical path.
513  //
514  // TODO: If we tracked more than one register here, we could potentially
515  // fix that remaining critical edge too. This is a little more involved,
516  // because unlike the most recent register, less recent registers should
517  // still be considered, though only if no other registers are available.
518  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
519
520  // Attempt to break anti-dependence edges on the critical path. Walk the
521  // instructions from the bottom up, tracking information about liveness
522  // as we go to help determine which registers are available.
523  unsigned Broken = 0;
524  unsigned Count = InsertPosIndex - 1;
525  for (MachineBasicBlock::iterator I = End, E = Begin;
526       I != E; --Count) {
527    MachineInstr *MI = --I;
528    if (MI->isDebugValue())
529      continue;
530
531    // Check if this instruction has a dependence on the critical path that
532    // is an anti-dependence that we may be able to break. If it is, set
533    // AntiDepReg to the non-zero register associated with the anti-dependence.
534    //
535    // We limit our attention to the critical path as a heuristic to avoid
536    // breaking anti-dependence edges that aren't going to significantly
537    // impact the overall schedule. There are a limited number of registers
538    // and we want to save them for the important edges.
539    //
540    // TODO: Instructions with multiple defs could have multiple
541    // anti-dependencies. The current code here only knows how to break one
542    // edge per instruction. Note that we'd have to be able to break all of
543    // the anti-dependencies in an instruction in order to be effective.
544    unsigned AntiDepReg = 0;
545    if (MI == CriticalPathMI) {
546      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
547        const SUnit *NextSU = Edge->getSUnit();
548
549        // Only consider anti-dependence edges.
550        if (Edge->getKind() == SDep::Anti) {
551          AntiDepReg = Edge->getReg();
552          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
553          if (!RegClassInfo.isAllocatable(AntiDepReg))
554            // Don't break anti-dependencies on non-allocatable registers.
555            AntiDepReg = 0;
556          else if (KeepRegs.test(AntiDepReg))
557            // Don't break anti-dependencies if an use down below requires
558            // this exact register.
559            AntiDepReg = 0;
560          else {
561            // If the SUnit has other dependencies on the SUnit that it
562            // anti-depends on, don't bother breaking the anti-dependency
563            // since those edges would prevent such units from being
564            // scheduled past each other regardless.
565            //
566            // Also, if there are dependencies on other SUnits with the
567            // same register as the anti-dependency, don't attempt to
568            // break it.
569            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
570                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
571              if (P->getSUnit() == NextSU ?
572                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
573                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
574                AntiDepReg = 0;
575                break;
576              }
577          }
578        }
579        CriticalPathSU = NextSU;
580        CriticalPathMI = CriticalPathSU->getInstr();
581      } else {
582        // We've reached the end of the critical path.
583        CriticalPathSU = 0;
584        CriticalPathMI = 0;
585      }
586    }
587
588    PrescanInstruction(MI);
589
590    // If MI's defs have a special allocation requirement, don't allow
591    // any def registers to be changed. Also assume all registers
592    // defined in a call must not be changed (ABI).
593    if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
594        TII->isPredicated(MI))
595      // If this instruction's defs have special allocation requirement, don't
596      // break this anti-dependency.
597      AntiDepReg = 0;
598    else if (AntiDepReg) {
599      // If this instruction has a use of AntiDepReg, breaking it
600      // is invalid.
601      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
602        MachineOperand &MO = MI->getOperand(i);
603        if (!MO.isReg()) continue;
604        unsigned Reg = MO.getReg();
605        if (Reg == 0) continue;
606        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
607          AntiDepReg = 0;
608          break;
609        }
610      }
611    }
612
613    // Determine AntiDepReg's register class, if it is live and is
614    // consistently used within a single class.
615    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
616    assert((AntiDepReg == 0 || RC != NULL) &&
617           "Register should be live if it's causing an anti-dependence!");
618    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
619      AntiDepReg = 0;
620
621    // Look for a suitable register to use to break the anti-depenence.
622    //
623    // TODO: Instead of picking the first free register, consider which might
624    // be the best.
625    if (AntiDepReg != 0) {
626      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
627                std::multimap<unsigned, MachineOperand *>::iterator>
628        Range = RegRefs.equal_range(AntiDepReg);
629      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
630                                                     AntiDepReg,
631                                                     LastNewReg[AntiDepReg],
632                                                     RC)) {
633        DEBUG(dbgs() << "Breaking anti-dependence edge on "
634              << TRI->getName(AntiDepReg)
635              << " with " << RegRefs.count(AntiDepReg) << " references"
636              << " using " << TRI->getName(NewReg) << "!\n");
637
638        // Update the references to the old register to refer to the new
639        // register.
640        for (std::multimap<unsigned, MachineOperand *>::iterator
641             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
642          Q->second->setReg(NewReg);
643          // If the SU for the instruction being updated has debug information
644          // related to the anti-dependency register, make sure to update that
645          // as well.
646          const SUnit *SU = MISUnitMap[Q->second->getParent()];
647          if (!SU) continue;
648          for (DbgValueVector::iterator DVI = DbgValues.begin(),
649                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
650            if (DVI->second == Q->second->getParent())
651              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
652        }
653
654        // We just went back in time and modified history; the
655        // liveness information for the anti-dependence reg is now
656        // inconsistent. Set the state as if it were dead.
657        Classes[NewReg] = Classes[AntiDepReg];
658        DefIndices[NewReg] = DefIndices[AntiDepReg];
659        KillIndices[NewReg] = KillIndices[AntiDepReg];
660        assert(((KillIndices[NewReg] == ~0u) !=
661                (DefIndices[NewReg] == ~0u)) &&
662             "Kill and Def maps aren't consistent for NewReg!");
663
664        Classes[AntiDepReg] = 0;
665        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
666        KillIndices[AntiDepReg] = ~0u;
667        assert(((KillIndices[AntiDepReg] == ~0u) !=
668                (DefIndices[AntiDepReg] == ~0u)) &&
669             "Kill and Def maps aren't consistent for AntiDepReg!");
670
671        RegRefs.erase(AntiDepReg);
672        LastNewReg[AntiDepReg] = NewReg;
673        ++Broken;
674      }
675    }
676
677    ScanInstruction(MI, Count);
678  }
679
680  return Broken;
681}
682