CriticalAntiDepBreaker.cpp revision 557bbe6b5d13faaec38f85a266db457c7cb09ff2
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28CriticalAntiDepBreaker::
29CriticalAntiDepBreaker(MachineFunction& MFi) :
30  AntiDepBreaker(), MF(MFi),
31  MRI(MF.getRegInfo()),
32  TRI(MF.getTarget().getRegisterInfo()),
33  AllocatableSet(TRI->getAllocatableSet(MF))
34{
35}
36
37CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
38}
39
40void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
41  // Clear out the register class data.
42  std::fill(Classes, array_endof(Classes),
43            static_cast<const TargetRegisterClass *>(0));
44
45  // Initialize the indices to indicate that no registers are live.
46  std::fill(KillIndices, array_endof(KillIndices), ~0u);
47  std::fill(DefIndices, array_endof(DefIndices), BB->size());
48
49  // Clear "do not change" set.
50  KeepRegs.clear();
51
52  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
53
54  // Determine the live-out physregs for this block.
55  if (IsReturnBlock) {
56    // In a return block, examine the function live-out regs.
57    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
58         E = MRI.liveout_end(); I != E; ++I) {
59      unsigned Reg = *I;
60      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
61      KillIndices[Reg] = BB->size();
62      DefIndices[Reg] = ~0u;
63      // Repeat, for all aliases.
64      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
65        unsigned AliasReg = *Alias;
66        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
67        KillIndices[AliasReg] = BB->size();
68        DefIndices[AliasReg] = ~0u;
69      }
70    }
71  } else {
72    // In a non-return block, examine the live-in regs of all successors.
73    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
74         SE = BB->succ_end(); SI != SE; ++SI)
75      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
76           E = (*SI)->livein_end(); I != E; ++I) {
77        unsigned Reg = *I;
78        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
79        KillIndices[Reg] = BB->size();
80        DefIndices[Reg] = ~0u;
81        // Repeat, for all aliases.
82        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
83          unsigned AliasReg = *Alias;
84          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
85          KillIndices[AliasReg] = BB->size();
86          DefIndices[AliasReg] = ~0u;
87        }
88      }
89  }
90
91  // Mark live-out callee-saved registers. In a return block this is
92  // all callee-saved registers. In non-return this is any
93  // callee-saved register that is not saved in the prolog.
94  const MachineFrameInfo *MFI = MF.getFrameInfo();
95  BitVector Pristine = MFI->getPristineRegs(BB);
96  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
97    unsigned Reg = *I;
98    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
99    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
100    KillIndices[Reg] = BB->size();
101    DefIndices[Reg] = ~0u;
102    // Repeat, for all aliases.
103    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
104      unsigned AliasReg = *Alias;
105      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
106      KillIndices[AliasReg] = BB->size();
107      DefIndices[AliasReg] = ~0u;
108    }
109  }
110}
111
112void CriticalAntiDepBreaker::FinishBlock() {
113  RegRefs.clear();
114  KeepRegs.clear();
115}
116
117void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
118                                     unsigned InsertPosIndex) {
119  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
120
121  // Any register which was defined within the previous scheduling region
122  // may have been rescheduled and its lifetime may overlap with registers
123  // in ways not reflected in our current liveness state. For each such
124  // register, adjust the liveness state to be conservatively correct.
125  for (unsigned Reg = 0; Reg != TargetRegisterInfo::FirstVirtualRegister; ++Reg)
126    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
127      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
128      // Mark this register to be non-renamable.
129      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
130      // Move the def index to the end of the previous region, to reflect
131      // that the def could theoretically have been scheduled at the end.
132      DefIndices[Reg] = InsertPosIndex;
133    }
134
135  PrescanInstruction(MI);
136  ScanInstruction(MI, Count);
137}
138
139/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
140/// critical path.
141static SDep *CriticalPathStep(SUnit *SU) {
142  SDep *Next = 0;
143  unsigned NextDepth = 0;
144  // Find the predecessor edge with the greatest depth.
145  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
146       P != PE; ++P) {
147    SUnit *PredSU = P->getSUnit();
148    unsigned PredLatency = P->getLatency();
149    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
150    // In the case of a latency tie, prefer an anti-dependency edge over
151    // other types of edges.
152    if (NextDepth < PredTotalLatency ||
153        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
154      NextDepth = PredTotalLatency;
155      Next = &*P;
156    }
157  }
158  return Next;
159}
160
161void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
162  // Scan the register operands for this instruction and update
163  // Classes and RegRefs.
164  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
165    MachineOperand &MO = MI->getOperand(i);
166    if (!MO.isReg()) continue;
167    unsigned Reg = MO.getReg();
168    if (Reg == 0) continue;
169    const TargetRegisterClass *NewRC = 0;
170
171    if (i < MI->getDesc().getNumOperands())
172      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
173
174    // For now, only allow the register to be changed if its register
175    // class is consistent across all uses.
176    if (!Classes[Reg] && NewRC)
177      Classes[Reg] = NewRC;
178    else if (!NewRC || Classes[Reg] != NewRC)
179      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
180
181    // Now check for aliases.
182    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
183      // If an alias of the reg is used during the live range, give up.
184      // Note that this allows us to skip checking if AntiDepReg
185      // overlaps with any of the aliases, among other things.
186      unsigned AliasReg = *Alias;
187      if (Classes[AliasReg]) {
188        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
189        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
190      }
191    }
192
193    // If we're still willing to consider this register, note the reference.
194    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
195      RegRefs.insert(std::make_pair(Reg, &MO));
196
197    // It's not safe to change register allocation for source operands of
198    // that have special allocation requirements.
199    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
200      if (KeepRegs.insert(Reg)) {
201        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
202             *Subreg; ++Subreg)
203          KeepRegs.insert(*Subreg);
204      }
205    }
206  }
207}
208
209void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
210                                             unsigned Count) {
211  // Update liveness.
212  // Proceding upwards, registers that are defed but not used in this
213  // instruction are now dead.
214  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
215    MachineOperand &MO = MI->getOperand(i);
216    if (!MO.isReg()) continue;
217    unsigned Reg = MO.getReg();
218    if (Reg == 0) continue;
219    if (!MO.isDef()) continue;
220    // Ignore two-addr defs.
221    if (MI->isRegTiedToUseOperand(i)) continue;
222
223    DefIndices[Reg] = Count;
224    KillIndices[Reg] = ~0u;
225    assert(((KillIndices[Reg] == ~0u) !=
226            (DefIndices[Reg] == ~0u)) &&
227           "Kill and Def maps aren't consistent for Reg!");
228    KeepRegs.erase(Reg);
229    Classes[Reg] = 0;
230    RegRefs.erase(Reg);
231    // Repeat, for all subregs.
232    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
233         *Subreg; ++Subreg) {
234      unsigned SubregReg = *Subreg;
235      DefIndices[SubregReg] = Count;
236      KillIndices[SubregReg] = ~0u;
237      KeepRegs.erase(SubregReg);
238      Classes[SubregReg] = 0;
239      RegRefs.erase(SubregReg);
240    }
241    // Conservatively mark super-registers as unusable.
242    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
243         *Super; ++Super) {
244      unsigned SuperReg = *Super;
245      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
246    }
247  }
248  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
249    MachineOperand &MO = MI->getOperand(i);
250    if (!MO.isReg()) continue;
251    unsigned Reg = MO.getReg();
252    if (Reg == 0) continue;
253    if (!MO.isUse()) continue;
254
255    const TargetRegisterClass *NewRC = 0;
256    if (i < MI->getDesc().getNumOperands())
257      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
258
259    // For now, only allow the register to be changed if its register
260    // class is consistent across all uses.
261    if (!Classes[Reg] && NewRC)
262      Classes[Reg] = NewRC;
263    else if (!NewRC || Classes[Reg] != NewRC)
264      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
265
266    RegRefs.insert(std::make_pair(Reg, &MO));
267
268    // It wasn't previously live but now it is, this is a kill.
269    if (KillIndices[Reg] == ~0u) {
270      KillIndices[Reg] = Count;
271      DefIndices[Reg] = ~0u;
272          assert(((KillIndices[Reg] == ~0u) !=
273                  (DefIndices[Reg] == ~0u)) &&
274               "Kill and Def maps aren't consistent for Reg!");
275    }
276    // Repeat, for all aliases.
277    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
278      unsigned AliasReg = *Alias;
279      if (KillIndices[AliasReg] == ~0u) {
280        KillIndices[AliasReg] = Count;
281        DefIndices[AliasReg] = ~0u;
282      }
283    }
284  }
285}
286
287unsigned
288CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
289                                                 unsigned LastNewReg,
290                                                 const TargetRegisterClass *RC) {
291  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
292       RE = RC->allocation_order_end(MF); R != RE; ++R) {
293    unsigned NewReg = *R;
294    // Don't replace a register with itself.
295    if (NewReg == AntiDepReg) continue;
296    // Don't replace a register with one that was recently used to repair
297    // an anti-dependence with this AntiDepReg, because that would
298    // re-introduce that anti-dependence.
299    if (NewReg == LastNewReg) continue;
300    // If NewReg is dead and NewReg's most recent def is not before
301    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
302    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
303           "Kill and Def maps aren't consistent for AntiDepReg!");
304    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
305           "Kill and Def maps aren't consistent for NewReg!");
306    if (KillIndices[NewReg] != ~0u ||
307        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
308        KillIndices[AntiDepReg] > DefIndices[NewReg])
309      continue;
310    return NewReg;
311  }
312
313  // No registers are free and available!
314  return 0;
315}
316
317unsigned CriticalAntiDepBreaker::
318BreakAntiDependencies(std::vector<SUnit>& SUnits,
319                      MachineBasicBlock::iterator& Begin,
320                      MachineBasicBlock::iterator& End,
321                      unsigned InsertPosIndex) {
322  // The code below assumes that there is at least one instruction,
323  // so just duck out immediately if the block is empty.
324  if (SUnits.empty()) return 0;
325
326  // Find the node at the bottom of the critical path.
327  SUnit *Max = 0;
328  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
329    SUnit *SU = &SUnits[i];
330    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
331      Max = SU;
332  }
333
334#ifndef NDEBUG
335  {
336    DEBUG(errs() << "Critical path has total latency "
337          << (Max->getDepth() + Max->Latency) << "\n");
338    DEBUG(errs() << "Available regs:");
339    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
340      if (KillIndices[Reg] == ~0u)
341        DEBUG(errs() << " " << TRI->getName(Reg));
342    }
343    DEBUG(errs() << '\n');
344  }
345#endif
346
347  // Track progress along the critical path through the SUnit graph as we walk
348  // the instructions.
349  SUnit *CriticalPathSU = Max;
350  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
351
352  // Consider this pattern:
353  //   A = ...
354  //   ... = A
355  //   A = ...
356  //   ... = A
357  //   A = ...
358  //   ... = A
359  //   A = ...
360  //   ... = A
361  // There are three anti-dependencies here, and without special care,
362  // we'd break all of them using the same register:
363  //   A = ...
364  //   ... = A
365  //   B = ...
366  //   ... = B
367  //   B = ...
368  //   ... = B
369  //   B = ...
370  //   ... = B
371  // because at each anti-dependence, B is the first register that
372  // isn't A which is free.  This re-introduces anti-dependencies
373  // at all but one of the original anti-dependencies that we were
374  // trying to break.  To avoid this, keep track of the most recent
375  // register that each register was replaced with, avoid
376  // using it to repair an anti-dependence on the same register.
377  // This lets us produce this:
378  //   A = ...
379  //   ... = A
380  //   B = ...
381  //   ... = B
382  //   C = ...
383  //   ... = C
384  //   B = ...
385  //   ... = B
386  // This still has an anti-dependence on B, but at least it isn't on the
387  // original critical path.
388  //
389  // TODO: If we tracked more than one register here, we could potentially
390  // fix that remaining critical edge too. This is a little more involved,
391  // because unlike the most recent register, less recent registers should
392  // still be considered, though only if no other registers are available.
393  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
394
395  // Attempt to break anti-dependence edges on the critical path. Walk the
396  // instructions from the bottom up, tracking information about liveness
397  // as we go to help determine which registers are available.
398  unsigned Broken = 0;
399  unsigned Count = InsertPosIndex - 1;
400  for (MachineBasicBlock::iterator I = End, E = Begin;
401       I != E; --Count) {
402    MachineInstr *MI = --I;
403
404    // Check if this instruction has a dependence on the critical path that
405    // is an anti-dependence that we may be able to break. If it is, set
406    // AntiDepReg to the non-zero register associated with the anti-dependence.
407    //
408    // We limit our attention to the critical path as a heuristic to avoid
409    // breaking anti-dependence edges that aren't going to significantly
410    // impact the overall schedule. There are a limited number of registers
411    // and we want to save them for the important edges.
412    //
413    // TODO: Instructions with multiple defs could have multiple
414    // anti-dependencies. The current code here only knows how to break one
415    // edge per instruction. Note that we'd have to be able to break all of
416    // the anti-dependencies in an instruction in order to be effective.
417    unsigned AntiDepReg = 0;
418    if (MI == CriticalPathMI) {
419      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
420        SUnit *NextSU = Edge->getSUnit();
421
422        // Only consider anti-dependence edges.
423        if (Edge->getKind() == SDep::Anti) {
424          AntiDepReg = Edge->getReg();
425          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
426          if (!AllocatableSet.test(AntiDepReg))
427            // Don't break anti-dependencies on non-allocatable registers.
428            AntiDepReg = 0;
429          else if (KeepRegs.count(AntiDepReg))
430            // Don't break anti-dependencies if an use down below requires
431            // this exact register.
432            AntiDepReg = 0;
433          else {
434            // If the SUnit has other dependencies on the SUnit that it
435            // anti-depends on, don't bother breaking the anti-dependency
436            // since those edges would prevent such units from being
437            // scheduled past each other regardless.
438            //
439            // Also, if there are dependencies on other SUnits with the
440            // same register as the anti-dependency, don't attempt to
441            // break it.
442            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
443                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
444              if (P->getSUnit() == NextSU ?
445                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
446                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
447                AntiDepReg = 0;
448                break;
449              }
450          }
451        }
452        CriticalPathSU = NextSU;
453        CriticalPathMI = CriticalPathSU->getInstr();
454      } else {
455        // We've reached the end of the critical path.
456        CriticalPathSU = 0;
457        CriticalPathMI = 0;
458      }
459    }
460
461    PrescanInstruction(MI);
462
463    if (MI->getDesc().hasExtraDefRegAllocReq())
464      // If this instruction's defs have special allocation requirement, don't
465      // break this anti-dependency.
466      AntiDepReg = 0;
467    else if (AntiDepReg) {
468      // If this instruction has a use of AntiDepReg, breaking it
469      // is invalid.
470      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
471        MachineOperand &MO = MI->getOperand(i);
472        if (!MO.isReg()) continue;
473        unsigned Reg = MO.getReg();
474        if (Reg == 0) continue;
475        if (MO.isUse() && AntiDepReg == Reg) {
476          AntiDepReg = 0;
477          break;
478        }
479      }
480    }
481
482    // Determine AntiDepReg's register class, if it is live and is
483    // consistently used within a single class.
484    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
485    assert((AntiDepReg == 0 || RC != NULL) &&
486           "Register should be live if it's causing an anti-dependence!");
487    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
488      AntiDepReg = 0;
489
490    // Look for a suitable register to use to break the anti-depenence.
491    //
492    // TODO: Instead of picking the first free register, consider which might
493    // be the best.
494    if (AntiDepReg != 0) {
495      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
496                                                     LastNewReg[AntiDepReg],
497                                                     RC)) {
498        DEBUG(errs() << "Breaking anti-dependence edge on "
499              << TRI->getName(AntiDepReg)
500              << " with " << RegRefs.count(AntiDepReg) << " references"
501              << " using " << TRI->getName(NewReg) << "!\n");
502
503        // Update the references to the old register to refer to the new
504        // register.
505        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
506                  std::multimap<unsigned, MachineOperand *>::iterator>
507           Range = RegRefs.equal_range(AntiDepReg);
508        for (std::multimap<unsigned, MachineOperand *>::iterator
509             Q = Range.first, QE = Range.second; Q != QE; ++Q)
510          Q->second->setReg(NewReg);
511
512        // We just went back in time and modified history; the
513        // liveness information for the anti-depenence reg is now
514        // inconsistent. Set the state as if it were dead.
515        Classes[NewReg] = Classes[AntiDepReg];
516        DefIndices[NewReg] = DefIndices[AntiDepReg];
517        KillIndices[NewReg] = KillIndices[AntiDepReg];
518        assert(((KillIndices[NewReg] == ~0u) !=
519                (DefIndices[NewReg] == ~0u)) &&
520             "Kill and Def maps aren't consistent for NewReg!");
521
522        Classes[AntiDepReg] = 0;
523        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
524        KillIndices[AntiDepReg] = ~0u;
525        assert(((KillIndices[AntiDepReg] == ~0u) !=
526                (DefIndices[AntiDepReg] == ~0u)) &&
527             "Kill and Def maps aren't consistent for AntiDepReg!");
528
529        RegRefs.erase(AntiDepReg);
530        LastNewReg[AntiDepReg] = NewReg;
531        ++Broken;
532      }
533    }
534
535    ScanInstruction(MI, Count);
536  }
537
538  return Broken;
539}
540