CriticalAntiDepBreaker.cpp revision 7abe37e4aee38cc79d91dd069a37d7e91d5bef53
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28CriticalAntiDepBreaker::
29CriticalAntiDepBreaker(MachineFunction& MFi) :
30  AntiDepBreaker(), MF(MFi),
31  MRI(MF.getRegInfo()),
32  TRI(MF.getTarget().getRegisterInfo()),
33  AllocatableSet(TRI->getAllocatableSet(MF))
34{
35}
36
37CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
38}
39
40void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
41  // Clear out the register class data.
42  std::fill(Classes, array_endof(Classes),
43            static_cast<const TargetRegisterClass *>(0));
44
45  // Initialize the indices to indicate that no registers are live.
46  const unsigned BBSize = BB->size();
47  for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
48    KillIndices[i] = ~0u;
49    DefIndices[i] = BBSize;
50  }
51
52  // Clear "do not change" set.
53  KeepRegs.clear();
54
55  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
56
57  // Determine the live-out physregs for this block.
58  if (IsReturnBlock) {
59    // In a return block, examine the function live-out regs.
60    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
61         E = MRI.liveout_end(); I != E; ++I) {
62      unsigned Reg = *I;
63      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64      KillIndices[Reg] = BB->size();
65      DefIndices[Reg] = ~0u;
66      // Repeat, for all aliases.
67      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
68        unsigned AliasReg = *Alias;
69        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
70        KillIndices[AliasReg] = BB->size();
71        DefIndices[AliasReg] = ~0u;
72      }
73    }
74  } else {
75    // In a non-return block, examine the live-in regs of all successors.
76    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
77         SE = BB->succ_end(); SI != SE; ++SI)
78      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
79           E = (*SI)->livein_end(); I != E; ++I) {
80        unsigned Reg = *I;
81        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
82        KillIndices[Reg] = BB->size();
83        DefIndices[Reg] = ~0u;
84        // Repeat, for all aliases.
85        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
86          unsigned AliasReg = *Alias;
87          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
88          KillIndices[AliasReg] = BB->size();
89          DefIndices[AliasReg] = ~0u;
90        }
91      }
92  }
93
94  // Mark live-out callee-saved registers. In a return block this is
95  // all callee-saved registers. In non-return this is any
96  // callee-saved register that is not saved in the prolog.
97  const MachineFrameInfo *MFI = MF.getFrameInfo();
98  BitVector Pristine = MFI->getPristineRegs(BB);
99  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
100    unsigned Reg = *I;
101    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
102    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
103    KillIndices[Reg] = BB->size();
104    DefIndices[Reg] = ~0u;
105    // Repeat, for all aliases.
106    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
107      unsigned AliasReg = *Alias;
108      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
109      KillIndices[AliasReg] = BB->size();
110      DefIndices[AliasReg] = ~0u;
111    }
112  }
113}
114
115void CriticalAntiDepBreaker::FinishBlock() {
116  RegRefs.clear();
117  KeepRegs.clear();
118}
119
120void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
121                                     unsigned InsertPosIndex) {
122  if (MI->isDebugValue())
123    return;
124  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
125
126  // Any register which was defined within the previous scheduling region
127  // may have been rescheduled and its lifetime may overlap with registers
128  // in ways not reflected in our current liveness state. For each such
129  // register, adjust the liveness state to be conservatively correct.
130  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
131    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
132      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
133      // Mark this register to be non-renamable.
134      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
135      // Move the def index to the end of the previous region, to reflect
136      // that the def could theoretically have been scheduled at the end.
137      DefIndices[Reg] = InsertPosIndex;
138    }
139
140  PrescanInstruction(MI);
141  ScanInstruction(MI, Count);
142}
143
144/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
145/// critical path.
146static const SDep *CriticalPathStep(const SUnit *SU) {
147  const SDep *Next = 0;
148  unsigned NextDepth = 0;
149  // Find the predecessor edge with the greatest depth.
150  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
151       P != PE; ++P) {
152    const SUnit *PredSU = P->getSUnit();
153    unsigned PredLatency = P->getLatency();
154    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
155    // In the case of a latency tie, prefer an anti-dependency edge over
156    // other types of edges.
157    if (NextDepth < PredTotalLatency ||
158        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
159      NextDepth = PredTotalLatency;
160      Next = &*P;
161    }
162  }
163  return Next;
164}
165
166void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
167  // Scan the register operands for this instruction and update
168  // Classes and RegRefs.
169  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170    MachineOperand &MO = MI->getOperand(i);
171    if (!MO.isReg()) continue;
172    unsigned Reg = MO.getReg();
173    if (Reg == 0) continue;
174    const TargetRegisterClass *NewRC = 0;
175
176    if (i < MI->getDesc().getNumOperands())
177      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
178
179    // For now, only allow the register to be changed if its register
180    // class is consistent across all uses.
181    if (!Classes[Reg] && NewRC)
182      Classes[Reg] = NewRC;
183    else if (!NewRC || Classes[Reg] != NewRC)
184      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
185
186    // Now check for aliases.
187    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
188      // If an alias of the reg is used during the live range, give up.
189      // Note that this allows us to skip checking if AntiDepReg
190      // overlaps with any of the aliases, among other things.
191      unsigned AliasReg = *Alias;
192      if (Classes[AliasReg]) {
193        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
194        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
195      }
196    }
197
198    // If we're still willing to consider this register, note the reference.
199    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
200      RegRefs.insert(std::make_pair(Reg, &MO));
201
202    // It's not safe to change register allocation for source operands of
203    // that have special allocation requirements.
204    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
205      if (KeepRegs.insert(Reg)) {
206        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
207             *Subreg; ++Subreg)
208          KeepRegs.insert(*Subreg);
209      }
210    }
211  }
212}
213
214void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
215                                             unsigned Count) {
216  // Update liveness.
217  // Proceding upwards, registers that are defed but not used in this
218  // instruction are now dead.
219  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
220    MachineOperand &MO = MI->getOperand(i);
221    if (!MO.isReg()) continue;
222    unsigned Reg = MO.getReg();
223    if (Reg == 0) continue;
224    if (!MO.isDef()) continue;
225    // Ignore two-addr defs.
226    if (MI->isRegTiedToUseOperand(i)) continue;
227
228    DefIndices[Reg] = Count;
229    KillIndices[Reg] = ~0u;
230    assert(((KillIndices[Reg] == ~0u) !=
231            (DefIndices[Reg] == ~0u)) &&
232           "Kill and Def maps aren't consistent for Reg!");
233    KeepRegs.erase(Reg);
234    Classes[Reg] = 0;
235    RegRefs.erase(Reg);
236    // Repeat, for all subregs.
237    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
238         *Subreg; ++Subreg) {
239      unsigned SubregReg = *Subreg;
240      DefIndices[SubregReg] = Count;
241      KillIndices[SubregReg] = ~0u;
242      KeepRegs.erase(SubregReg);
243      Classes[SubregReg] = 0;
244      RegRefs.erase(SubregReg);
245    }
246    // Conservatively mark super-registers as unusable.
247    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
248         *Super; ++Super) {
249      unsigned SuperReg = *Super;
250      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
251    }
252  }
253  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
254    MachineOperand &MO = MI->getOperand(i);
255    if (!MO.isReg()) continue;
256    unsigned Reg = MO.getReg();
257    if (Reg == 0) continue;
258    if (!MO.isUse()) continue;
259
260    const TargetRegisterClass *NewRC = 0;
261    if (i < MI->getDesc().getNumOperands())
262      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
263
264    // For now, only allow the register to be changed if its register
265    // class is consistent across all uses.
266    if (!Classes[Reg] && NewRC)
267      Classes[Reg] = NewRC;
268    else if (!NewRC || Classes[Reg] != NewRC)
269      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
270
271    RegRefs.insert(std::make_pair(Reg, &MO));
272
273    // It wasn't previously live but now it is, this is a kill.
274    if (KillIndices[Reg] == ~0u) {
275      KillIndices[Reg] = Count;
276      DefIndices[Reg] = ~0u;
277          assert(((KillIndices[Reg] == ~0u) !=
278                  (DefIndices[Reg] == ~0u)) &&
279               "Kill and Def maps aren't consistent for Reg!");
280    }
281    // Repeat, for all aliases.
282    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
283      unsigned AliasReg = *Alias;
284      if (KillIndices[AliasReg] == ~0u) {
285        KillIndices[AliasReg] = Count;
286        DefIndices[AliasReg] = ~0u;
287      }
288    }
289  }
290}
291
292unsigned
293CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
294                                                 unsigned AntiDepReg,
295                                                 unsigned LastNewReg,
296                                                 const TargetRegisterClass *RC)
297{
298  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
299       RE = RC->allocation_order_end(MF); R != RE; ++R) {
300    unsigned NewReg = *R;
301    // Don't replace a register with itself.
302    if (NewReg == AntiDepReg) continue;
303    // Don't replace a register with one that was recently used to repair
304    // an anti-dependence with this AntiDepReg, because that would
305    // re-introduce that anti-dependence.
306    if (NewReg == LastNewReg) continue;
307    // If the instruction already has a def of the NewReg, it's not suitable.
308    // For example, Instruction with multiple definitions can result in this
309    // condition.
310    if (MI->modifiesRegister(NewReg, TRI)) continue;
311    // If NewReg is dead and NewReg's most recent def is not before
312    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
313    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
314           && "Kill and Def maps aren't consistent for AntiDepReg!");
315    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
316           && "Kill and Def maps aren't consistent for NewReg!");
317    if (KillIndices[NewReg] != ~0u ||
318        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
319        KillIndices[AntiDepReg] > DefIndices[NewReg])
320      continue;
321    return NewReg;
322  }
323
324  // No registers are free and available!
325  return 0;
326}
327
328unsigned CriticalAntiDepBreaker::
329BreakAntiDependencies(const std::vector<SUnit>& SUnits,
330                      MachineBasicBlock::iterator Begin,
331                      MachineBasicBlock::iterator End,
332                      unsigned InsertPosIndex) {
333  // The code below assumes that there is at least one instruction,
334  // so just duck out immediately if the block is empty.
335  if (SUnits.empty()) return 0;
336
337  // Find the node at the bottom of the critical path.
338  const SUnit *Max = 0;
339  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
340    const SUnit *SU = &SUnits[i];
341    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
342      Max = SU;
343  }
344
345#ifndef NDEBUG
346  {
347    DEBUG(dbgs() << "Critical path has total latency "
348          << (Max->getDepth() + Max->Latency) << "\n");
349    DEBUG(dbgs() << "Available regs:");
350    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
351      if (KillIndices[Reg] == ~0u)
352        DEBUG(dbgs() << " " << TRI->getName(Reg));
353    }
354    DEBUG(dbgs() << '\n');
355  }
356#endif
357
358  // Track progress along the critical path through the SUnit graph as we walk
359  // the instructions.
360  const SUnit *CriticalPathSU = Max;
361  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
362
363  // Consider this pattern:
364  //   A = ...
365  //   ... = A
366  //   A = ...
367  //   ... = A
368  //   A = ...
369  //   ... = A
370  //   A = ...
371  //   ... = A
372  // There are three anti-dependencies here, and without special care,
373  // we'd break all of them using the same register:
374  //   A = ...
375  //   ... = A
376  //   B = ...
377  //   ... = B
378  //   B = ...
379  //   ... = B
380  //   B = ...
381  //   ... = B
382  // because at each anti-dependence, B is the first register that
383  // isn't A which is free.  This re-introduces anti-dependencies
384  // at all but one of the original anti-dependencies that we were
385  // trying to break.  To avoid this, keep track of the most recent
386  // register that each register was replaced with, avoid
387  // using it to repair an anti-dependence on the same register.
388  // This lets us produce this:
389  //   A = ...
390  //   ... = A
391  //   B = ...
392  //   ... = B
393  //   C = ...
394  //   ... = C
395  //   B = ...
396  //   ... = B
397  // This still has an anti-dependence on B, but at least it isn't on the
398  // original critical path.
399  //
400  // TODO: If we tracked more than one register here, we could potentially
401  // fix that remaining critical edge too. This is a little more involved,
402  // because unlike the most recent register, less recent registers should
403  // still be considered, though only if no other registers are available.
404  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
405
406  // Attempt to break anti-dependence edges on the critical path. Walk the
407  // instructions from the bottom up, tracking information about liveness
408  // as we go to help determine which registers are available.
409  unsigned Broken = 0;
410  unsigned Count = InsertPosIndex - 1;
411  for (MachineBasicBlock::iterator I = End, E = Begin;
412       I != E; --Count) {
413    MachineInstr *MI = --I;
414    if (MI->isDebugValue())
415      continue;
416
417    // Check if this instruction has a dependence on the critical path that
418    // is an anti-dependence that we may be able to break. If it is, set
419    // AntiDepReg to the non-zero register associated with the anti-dependence.
420    //
421    // We limit our attention to the critical path as a heuristic to avoid
422    // breaking anti-dependence edges that aren't going to significantly
423    // impact the overall schedule. There are a limited number of registers
424    // and we want to save them for the important edges.
425    //
426    // TODO: Instructions with multiple defs could have multiple
427    // anti-dependencies. The current code here only knows how to break one
428    // edge per instruction. Note that we'd have to be able to break all of
429    // the anti-dependencies in an instruction in order to be effective.
430    unsigned AntiDepReg = 0;
431    if (MI == CriticalPathMI) {
432      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
433        const SUnit *NextSU = Edge->getSUnit();
434
435        // Only consider anti-dependence edges.
436        if (Edge->getKind() == SDep::Anti) {
437          AntiDepReg = Edge->getReg();
438          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
439          if (!AllocatableSet.test(AntiDepReg))
440            // Don't break anti-dependencies on non-allocatable registers.
441            AntiDepReg = 0;
442          else if (KeepRegs.count(AntiDepReg))
443            // Don't break anti-dependencies if an use down below requires
444            // this exact register.
445            AntiDepReg = 0;
446          else {
447            // If the SUnit has other dependencies on the SUnit that it
448            // anti-depends on, don't bother breaking the anti-dependency
449            // since those edges would prevent such units from being
450            // scheduled past each other regardless.
451            //
452            // Also, if there are dependencies on other SUnits with the
453            // same register as the anti-dependency, don't attempt to
454            // break it.
455            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
456                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
457              if (P->getSUnit() == NextSU ?
458                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
459                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
460                AntiDepReg = 0;
461                break;
462              }
463          }
464        }
465        CriticalPathSU = NextSU;
466        CriticalPathMI = CriticalPathSU->getInstr();
467      } else {
468        // We've reached the end of the critical path.
469        CriticalPathSU = 0;
470        CriticalPathMI = 0;
471      }
472    }
473
474    PrescanInstruction(MI);
475
476    if (MI->getDesc().hasExtraDefRegAllocReq())
477      // If this instruction's defs have special allocation requirement, don't
478      // break this anti-dependency.
479      AntiDepReg = 0;
480    else if (AntiDepReg) {
481      // If this instruction has a use of AntiDepReg, breaking it
482      // is invalid.
483      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
484        MachineOperand &MO = MI->getOperand(i);
485        if (!MO.isReg()) continue;
486        unsigned Reg = MO.getReg();
487        if (Reg == 0) continue;
488        if (MO.isUse() && AntiDepReg == Reg) {
489          AntiDepReg = 0;
490          break;
491        }
492      }
493    }
494
495    // Determine AntiDepReg's register class, if it is live and is
496    // consistently used within a single class.
497    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
498    assert((AntiDepReg == 0 || RC != NULL) &&
499           "Register should be live if it's causing an anti-dependence!");
500    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
501      AntiDepReg = 0;
502
503    // Look for a suitable register to use to break the anti-depenence.
504    //
505    // TODO: Instead of picking the first free register, consider which might
506    // be the best.
507    if (AntiDepReg != 0) {
508      if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
509                                                     LastNewReg[AntiDepReg],
510                                                     RC)) {
511        DEBUG(dbgs() << "Breaking anti-dependence edge on "
512              << TRI->getName(AntiDepReg)
513              << " with " << RegRefs.count(AntiDepReg) << " references"
514              << " using " << TRI->getName(NewReg) << "!\n");
515
516        // Update the references to the old register to refer to the new
517        // register.
518        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
519                  std::multimap<unsigned, MachineOperand *>::iterator>
520           Range = RegRefs.equal_range(AntiDepReg);
521        for (std::multimap<unsigned, MachineOperand *>::iterator
522             Q = Range.first, QE = Range.second; Q != QE; ++Q)
523          Q->second->setReg(NewReg);
524
525        // We just went back in time and modified history; the
526        // liveness information for the anti-depenence reg is now
527        // inconsistent. Set the state as if it were dead.
528        Classes[NewReg] = Classes[AntiDepReg];
529        DefIndices[NewReg] = DefIndices[AntiDepReg];
530        KillIndices[NewReg] = KillIndices[AntiDepReg];
531        assert(((KillIndices[NewReg] == ~0u) !=
532                (DefIndices[NewReg] == ~0u)) &&
533             "Kill and Def maps aren't consistent for NewReg!");
534
535        Classes[AntiDepReg] = 0;
536        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
537        KillIndices[AntiDepReg] = ~0u;
538        assert(((KillIndices[AntiDepReg] == ~0u) !=
539                (DefIndices[AntiDepReg] == ~0u)) &&
540             "Kill and Def maps aren't consistent for AntiDepReg!");
541
542        RegRefs.erase(AntiDepReg);
543        LastNewReg[AntiDepReg] = NewReg;
544        ++Broken;
545      }
546    }
547
548    ScanInstruction(MI, Count);
549  }
550
551  return Broken;
552}
553