CriticalAntiDepBreaker.cpp revision 9b4ae24a6d11afa1453e2cfce2c702316ad7e093
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28CriticalAntiDepBreaker::
29CriticalAntiDepBreaker(MachineFunction& MFi) :
30  AntiDepBreaker(), MF(MFi),
31  MRI(MF.getRegInfo()),
32  TRI(MF.getTarget().getRegisterInfo()),
33  AllocatableSet(TRI->getAllocatableSet(MF))
34{
35}
36
37CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
38}
39
40void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
41  // Clear out the register class data.
42  std::fill(Classes, array_endof(Classes),
43            static_cast<const TargetRegisterClass *>(0));
44
45  // Initialize the indices to indicate that no registers are live.
46  const unsigned BBSize = BB->size();
47  for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
48    KillIndices[i] = ~0u;
49    DefIndices[i] = BBSize;
50  }
51
52  // Clear "do not change" set.
53  KeepRegs.clear();
54
55  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
56
57  // Determine the live-out physregs for this block.
58  if (IsReturnBlock) {
59    // In a return block, examine the function live-out regs.
60    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
61         E = MRI.liveout_end(); I != E; ++I) {
62      unsigned Reg = *I;
63      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64      KillIndices[Reg] = BB->size();
65      DefIndices[Reg] = ~0u;
66      // Repeat, for all aliases.
67      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
68        unsigned AliasReg = *Alias;
69        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
70        KillIndices[AliasReg] = BB->size();
71        DefIndices[AliasReg] = ~0u;
72      }
73    }
74  } else {
75    // In a non-return block, examine the live-in regs of all successors.
76    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
77         SE = BB->succ_end(); SI != SE; ++SI)
78      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
79           E = (*SI)->livein_end(); I != E; ++I) {
80        unsigned Reg = *I;
81        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
82        KillIndices[Reg] = BB->size();
83        DefIndices[Reg] = ~0u;
84        // Repeat, for all aliases.
85        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
86          unsigned AliasReg = *Alias;
87          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
88          KillIndices[AliasReg] = BB->size();
89          DefIndices[AliasReg] = ~0u;
90        }
91      }
92  }
93
94  // Mark live-out callee-saved registers. In a return block this is
95  // all callee-saved registers. In non-return this is any
96  // callee-saved register that is not saved in the prolog.
97  const MachineFrameInfo *MFI = MF.getFrameInfo();
98  BitVector Pristine = MFI->getPristineRegs(BB);
99  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
100    unsigned Reg = *I;
101    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
102    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
103    KillIndices[Reg] = BB->size();
104    DefIndices[Reg] = ~0u;
105    // Repeat, for all aliases.
106    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
107      unsigned AliasReg = *Alias;
108      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
109      KillIndices[AliasReg] = BB->size();
110      DefIndices[AliasReg] = ~0u;
111    }
112  }
113}
114
115void CriticalAntiDepBreaker::FinishBlock() {
116  RegRefs.clear();
117  KeepRegs.clear();
118}
119
120void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
121                                     unsigned InsertPosIndex) {
122  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
123
124  // Any register which was defined within the previous scheduling region
125  // may have been rescheduled and its lifetime may overlap with registers
126  // in ways not reflected in our current liveness state. For each such
127  // register, adjust the liveness state to be conservatively correct.
128  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
129    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
130      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
131      // Mark this register to be non-renamable.
132      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
133      // Move the def index to the end of the previous region, to reflect
134      // that the def could theoretically have been scheduled at the end.
135      DefIndices[Reg] = InsertPosIndex;
136    }
137
138  PrescanInstruction(MI);
139  ScanInstruction(MI, Count);
140}
141
142/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
143/// critical path.
144static SDep *CriticalPathStep(SUnit *SU) {
145  SDep *Next = 0;
146  unsigned NextDepth = 0;
147  // Find the predecessor edge with the greatest depth.
148  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
149       P != PE; ++P) {
150    SUnit *PredSU = P->getSUnit();
151    unsigned PredLatency = P->getLatency();
152    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
153    // In the case of a latency tie, prefer an anti-dependency edge over
154    // other types of edges.
155    if (NextDepth < PredTotalLatency ||
156        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
157      NextDepth = PredTotalLatency;
158      Next = &*P;
159    }
160  }
161  return Next;
162}
163
164void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
165  // Scan the register operands for this instruction and update
166  // Classes and RegRefs.
167  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
168    MachineOperand &MO = MI->getOperand(i);
169    if (!MO.isReg()) continue;
170    unsigned Reg = MO.getReg();
171    if (Reg == 0) continue;
172    const TargetRegisterClass *NewRC = 0;
173
174    if (i < MI->getDesc().getNumOperands())
175      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
176
177    // For now, only allow the register to be changed if its register
178    // class is consistent across all uses.
179    if (!Classes[Reg] && NewRC)
180      Classes[Reg] = NewRC;
181    else if (!NewRC || Classes[Reg] != NewRC)
182      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
183
184    // Now check for aliases.
185    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
186      // If an alias of the reg is used during the live range, give up.
187      // Note that this allows us to skip checking if AntiDepReg
188      // overlaps with any of the aliases, among other things.
189      unsigned AliasReg = *Alias;
190      if (Classes[AliasReg]) {
191        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
192        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
193      }
194    }
195
196    // If we're still willing to consider this register, note the reference.
197    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
198      RegRefs.insert(std::make_pair(Reg, &MO));
199
200    // It's not safe to change register allocation for source operands of
201    // that have special allocation requirements.
202    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
203      if (KeepRegs.insert(Reg)) {
204        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
205             *Subreg; ++Subreg)
206          KeepRegs.insert(*Subreg);
207      }
208    }
209  }
210}
211
212void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
213                                             unsigned Count) {
214  // Update liveness.
215  // Proceding upwards, registers that are defed but not used in this
216  // instruction are now dead.
217  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
218    MachineOperand &MO = MI->getOperand(i);
219    if (!MO.isReg()) continue;
220    unsigned Reg = MO.getReg();
221    if (Reg == 0) continue;
222    if (!MO.isDef()) continue;
223    // Ignore two-addr defs.
224    if (MI->isRegTiedToUseOperand(i)) continue;
225
226    DefIndices[Reg] = Count;
227    KillIndices[Reg] = ~0u;
228    assert(((KillIndices[Reg] == ~0u) !=
229            (DefIndices[Reg] == ~0u)) &&
230           "Kill and Def maps aren't consistent for Reg!");
231    KeepRegs.erase(Reg);
232    Classes[Reg] = 0;
233    RegRefs.erase(Reg);
234    // Repeat, for all subregs.
235    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
236         *Subreg; ++Subreg) {
237      unsigned SubregReg = *Subreg;
238      DefIndices[SubregReg] = Count;
239      KillIndices[SubregReg] = ~0u;
240      KeepRegs.erase(SubregReg);
241      Classes[SubregReg] = 0;
242      RegRefs.erase(SubregReg);
243    }
244    // Conservatively mark super-registers as unusable.
245    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
246         *Super; ++Super) {
247      unsigned SuperReg = *Super;
248      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
249    }
250  }
251  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
252    MachineOperand &MO = MI->getOperand(i);
253    if (!MO.isReg()) continue;
254    unsigned Reg = MO.getReg();
255    if (Reg == 0) continue;
256    if (!MO.isUse()) continue;
257
258    const TargetRegisterClass *NewRC = 0;
259    if (i < MI->getDesc().getNumOperands())
260      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
261
262    // For now, only allow the register to be changed if its register
263    // class is consistent across all uses.
264    if (!Classes[Reg] && NewRC)
265      Classes[Reg] = NewRC;
266    else if (!NewRC || Classes[Reg] != NewRC)
267      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
268
269    RegRefs.insert(std::make_pair(Reg, &MO));
270
271    // It wasn't previously live but now it is, this is a kill.
272    if (KillIndices[Reg] == ~0u) {
273      KillIndices[Reg] = Count;
274      DefIndices[Reg] = ~0u;
275          assert(((KillIndices[Reg] == ~0u) !=
276                  (DefIndices[Reg] == ~0u)) &&
277               "Kill and Def maps aren't consistent for Reg!");
278    }
279    // Repeat, for all aliases.
280    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
281      unsigned AliasReg = *Alias;
282      if (KillIndices[AliasReg] == ~0u) {
283        KillIndices[AliasReg] = Count;
284        DefIndices[AliasReg] = ~0u;
285      }
286    }
287  }
288}
289
290unsigned
291CriticalAntiDepBreaker::findSuitableFreeRegister(unsigned AntiDepReg,
292                                                 unsigned LastNewReg,
293                                                 const TargetRegisterClass *RC) {
294  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
295       RE = RC->allocation_order_end(MF); R != RE; ++R) {
296    unsigned NewReg = *R;
297    // Don't replace a register with itself.
298    if (NewReg == AntiDepReg) continue;
299    // Don't replace a register with one that was recently used to repair
300    // an anti-dependence with this AntiDepReg, because that would
301    // re-introduce that anti-dependence.
302    if (NewReg == LastNewReg) continue;
303    // If NewReg is dead and NewReg's most recent def is not before
304    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
305    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) &&
306           "Kill and Def maps aren't consistent for AntiDepReg!");
307    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) &&
308           "Kill and Def maps aren't consistent for NewReg!");
309    if (KillIndices[NewReg] != ~0u ||
310        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
311        KillIndices[AntiDepReg] > DefIndices[NewReg])
312      continue;
313    return NewReg;
314  }
315
316  // No registers are free and available!
317  return 0;
318}
319
320unsigned CriticalAntiDepBreaker::
321BreakAntiDependencies(std::vector<SUnit>& SUnits,
322                      MachineBasicBlock::iterator& Begin,
323                      MachineBasicBlock::iterator& End,
324                      unsigned InsertPosIndex) {
325  // The code below assumes that there is at least one instruction,
326  // so just duck out immediately if the block is empty.
327  if (SUnits.empty()) return 0;
328
329  // Find the node at the bottom of the critical path.
330  SUnit *Max = 0;
331  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
332    SUnit *SU = &SUnits[i];
333    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
334      Max = SU;
335  }
336
337#ifndef NDEBUG
338  {
339    DEBUG(errs() << "Critical path has total latency "
340          << (Max->getDepth() + Max->Latency) << "\n");
341    DEBUG(errs() << "Available regs:");
342    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
343      if (KillIndices[Reg] == ~0u)
344        DEBUG(errs() << " " << TRI->getName(Reg));
345    }
346    DEBUG(errs() << '\n');
347  }
348#endif
349
350  // Track progress along the critical path through the SUnit graph as we walk
351  // the instructions.
352  SUnit *CriticalPathSU = Max;
353  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
354
355  // Consider this pattern:
356  //   A = ...
357  //   ... = A
358  //   A = ...
359  //   ... = A
360  //   A = ...
361  //   ... = A
362  //   A = ...
363  //   ... = A
364  // There are three anti-dependencies here, and without special care,
365  // we'd break all of them using the same register:
366  //   A = ...
367  //   ... = A
368  //   B = ...
369  //   ... = B
370  //   B = ...
371  //   ... = B
372  //   B = ...
373  //   ... = B
374  // because at each anti-dependence, B is the first register that
375  // isn't A which is free.  This re-introduces anti-dependencies
376  // at all but one of the original anti-dependencies that we were
377  // trying to break.  To avoid this, keep track of the most recent
378  // register that each register was replaced with, avoid
379  // using it to repair an anti-dependence on the same register.
380  // This lets us produce this:
381  //   A = ...
382  //   ... = A
383  //   B = ...
384  //   ... = B
385  //   C = ...
386  //   ... = C
387  //   B = ...
388  //   ... = B
389  // This still has an anti-dependence on B, but at least it isn't on the
390  // original critical path.
391  //
392  // TODO: If we tracked more than one register here, we could potentially
393  // fix that remaining critical edge too. This is a little more involved,
394  // because unlike the most recent register, less recent registers should
395  // still be considered, though only if no other registers are available.
396  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
397
398  // Attempt to break anti-dependence edges on the critical path. Walk the
399  // instructions from the bottom up, tracking information about liveness
400  // as we go to help determine which registers are available.
401  unsigned Broken = 0;
402  unsigned Count = InsertPosIndex - 1;
403  for (MachineBasicBlock::iterator I = End, E = Begin;
404       I != E; --Count) {
405    MachineInstr *MI = --I;
406
407    // Check if this instruction has a dependence on the critical path that
408    // is an anti-dependence that we may be able to break. If it is, set
409    // AntiDepReg to the non-zero register associated with the anti-dependence.
410    //
411    // We limit our attention to the critical path as a heuristic to avoid
412    // breaking anti-dependence edges that aren't going to significantly
413    // impact the overall schedule. There are a limited number of registers
414    // and we want to save them for the important edges.
415    //
416    // TODO: Instructions with multiple defs could have multiple
417    // anti-dependencies. The current code here only knows how to break one
418    // edge per instruction. Note that we'd have to be able to break all of
419    // the anti-dependencies in an instruction in order to be effective.
420    unsigned AntiDepReg = 0;
421    if (MI == CriticalPathMI) {
422      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
423        SUnit *NextSU = Edge->getSUnit();
424
425        // Only consider anti-dependence edges.
426        if (Edge->getKind() == SDep::Anti) {
427          AntiDepReg = Edge->getReg();
428          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
429          if (!AllocatableSet.test(AntiDepReg))
430            // Don't break anti-dependencies on non-allocatable registers.
431            AntiDepReg = 0;
432          else if (KeepRegs.count(AntiDepReg))
433            // Don't break anti-dependencies if an use down below requires
434            // this exact register.
435            AntiDepReg = 0;
436          else {
437            // If the SUnit has other dependencies on the SUnit that it
438            // anti-depends on, don't bother breaking the anti-dependency
439            // since those edges would prevent such units from being
440            // scheduled past each other regardless.
441            //
442            // Also, if there are dependencies on other SUnits with the
443            // same register as the anti-dependency, don't attempt to
444            // break it.
445            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
446                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
447              if (P->getSUnit() == NextSU ?
448                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
449                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
450                AntiDepReg = 0;
451                break;
452              }
453          }
454        }
455        CriticalPathSU = NextSU;
456        CriticalPathMI = CriticalPathSU->getInstr();
457      } else {
458        // We've reached the end of the critical path.
459        CriticalPathSU = 0;
460        CriticalPathMI = 0;
461      }
462    }
463
464    PrescanInstruction(MI);
465
466    if (MI->getDesc().hasExtraDefRegAllocReq())
467      // If this instruction's defs have special allocation requirement, don't
468      // break this anti-dependency.
469      AntiDepReg = 0;
470    else if (AntiDepReg) {
471      // If this instruction has a use of AntiDepReg, breaking it
472      // is invalid.
473      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
474        MachineOperand &MO = MI->getOperand(i);
475        if (!MO.isReg()) continue;
476        unsigned Reg = MO.getReg();
477        if (Reg == 0) continue;
478        if (MO.isUse() && AntiDepReg == Reg) {
479          AntiDepReg = 0;
480          break;
481        }
482      }
483    }
484
485    // Determine AntiDepReg's register class, if it is live and is
486    // consistently used within a single class.
487    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
488    assert((AntiDepReg == 0 || RC != NULL) &&
489           "Register should be live if it's causing an anti-dependence!");
490    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
491      AntiDepReg = 0;
492
493    // Look for a suitable register to use to break the anti-depenence.
494    //
495    // TODO: Instead of picking the first free register, consider which might
496    // be the best.
497    if (AntiDepReg != 0) {
498      if (unsigned NewReg = findSuitableFreeRegister(AntiDepReg,
499                                                     LastNewReg[AntiDepReg],
500                                                     RC)) {
501        DEBUG(errs() << "Breaking anti-dependence edge on "
502              << TRI->getName(AntiDepReg)
503              << " with " << RegRefs.count(AntiDepReg) << " references"
504              << " using " << TRI->getName(NewReg) << "!\n");
505
506        // Update the references to the old register to refer to the new
507        // register.
508        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
509                  std::multimap<unsigned, MachineOperand *>::iterator>
510           Range = RegRefs.equal_range(AntiDepReg);
511        for (std::multimap<unsigned, MachineOperand *>::iterator
512             Q = Range.first, QE = Range.second; Q != QE; ++Q)
513          Q->second->setReg(NewReg);
514
515        // We just went back in time and modified history; the
516        // liveness information for the anti-depenence reg is now
517        // inconsistent. Set the state as if it were dead.
518        Classes[NewReg] = Classes[AntiDepReg];
519        DefIndices[NewReg] = DefIndices[AntiDepReg];
520        KillIndices[NewReg] = KillIndices[AntiDepReg];
521        assert(((KillIndices[NewReg] == ~0u) !=
522                (DefIndices[NewReg] == ~0u)) &&
523             "Kill and Def maps aren't consistent for NewReg!");
524
525        Classes[AntiDepReg] = 0;
526        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
527        KillIndices[AntiDepReg] = ~0u;
528        assert(((KillIndices[AntiDepReg] == ~0u) !=
529                (DefIndices[AntiDepReg] == ~0u)) &&
530             "Kill and Def maps aren't consistent for AntiDepReg!");
531
532        RegRefs.erase(AntiDepReg);
533        LastNewReg[AntiDepReg] = NewReg;
534        ++Broken;
535      }
536    }
537
538    ScanInstruction(MI, Count);
539  }
540
541  return Broken;
542}
543