CriticalAntiDepBreaker.cpp revision a81a67f127633eaeb207c9c7ce010044b38224ca
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetRegisterInfo.h"
22#include "llvm/Support/Debug.h"
23#include "llvm/Support/ErrorHandling.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28CriticalAntiDepBreaker::
29CriticalAntiDepBreaker(MachineFunction& MFi) :
30  AntiDepBreaker(), MF(MFi),
31  MRI(MF.getRegInfo()),
32  TRI(MF.getTarget().getRegisterInfo()),
33  AllocatableSet(TRI->getAllocatableSet(MF))
34{
35}
36
37CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
38}
39
40void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
41  // Clear out the register class data.
42  std::fill(Classes, array_endof(Classes),
43            static_cast<const TargetRegisterClass *>(0));
44
45  // Initialize the indices to indicate that no registers are live.
46  const unsigned BBSize = BB->size();
47  for (unsigned i = 0; i < TRI->getNumRegs(); ++i) {
48    KillIndices[i] = ~0u;
49    DefIndices[i] = BBSize;
50  }
51
52  // Clear "do not change" set.
53  KeepRegs.clear();
54
55  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
56
57  // Determine the live-out physregs for this block.
58  if (IsReturnBlock) {
59    // In a return block, examine the function live-out regs.
60    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
61         E = MRI.liveout_end(); I != E; ++I) {
62      unsigned Reg = *I;
63      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
64      KillIndices[Reg] = BB->size();
65      DefIndices[Reg] = ~0u;
66      // Repeat, for all aliases.
67      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
68        unsigned AliasReg = *Alias;
69        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
70        KillIndices[AliasReg] = BB->size();
71        DefIndices[AliasReg] = ~0u;
72      }
73    }
74  } else {
75    // In a non-return block, examine the live-in regs of all successors.
76    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
77         SE = BB->succ_end(); SI != SE; ++SI)
78      for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
79           E = (*SI)->livein_end(); I != E; ++I) {
80        unsigned Reg = *I;
81        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
82        KillIndices[Reg] = BB->size();
83        DefIndices[Reg] = ~0u;
84        // Repeat, for all aliases.
85        for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
86          unsigned AliasReg = *Alias;
87          Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
88          KillIndices[AliasReg] = BB->size();
89          DefIndices[AliasReg] = ~0u;
90        }
91      }
92  }
93
94  // Mark live-out callee-saved registers. In a return block this is
95  // all callee-saved registers. In non-return this is any
96  // callee-saved register that is not saved in the prolog.
97  const MachineFrameInfo *MFI = MF.getFrameInfo();
98  BitVector Pristine = MFI->getPristineRegs(BB);
99  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
100    unsigned Reg = *I;
101    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
102    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
103    KillIndices[Reg] = BB->size();
104    DefIndices[Reg] = ~0u;
105    // Repeat, for all aliases.
106    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
107      unsigned AliasReg = *Alias;
108      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
109      KillIndices[AliasReg] = BB->size();
110      DefIndices[AliasReg] = ~0u;
111    }
112  }
113}
114
115void CriticalAntiDepBreaker::FinishBlock() {
116  RegRefs.clear();
117  KeepRegs.clear();
118}
119
120void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
121                                     unsigned InsertPosIndex) {
122  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
123
124  // Any register which was defined within the previous scheduling region
125  // may have been rescheduled and its lifetime may overlap with registers
126  // in ways not reflected in our current liveness state. For each such
127  // register, adjust the liveness state to be conservatively correct.
128  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg)
129    if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
130      assert(KillIndices[Reg] == ~0u && "Clobbered register is live!");
131      // Mark this register to be non-renamable.
132      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
133      // Move the def index to the end of the previous region, to reflect
134      // that the def could theoretically have been scheduled at the end.
135      DefIndices[Reg] = InsertPosIndex;
136    }
137
138  PrescanInstruction(MI);
139  ScanInstruction(MI, Count);
140}
141
142/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
143/// critical path.
144static SDep *CriticalPathStep(SUnit *SU) {
145  SDep *Next = 0;
146  unsigned NextDepth = 0;
147  // Find the predecessor edge with the greatest depth.
148  for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
149       P != PE; ++P) {
150    SUnit *PredSU = P->getSUnit();
151    unsigned PredLatency = P->getLatency();
152    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
153    // In the case of a latency tie, prefer an anti-dependency edge over
154    // other types of edges.
155    if (NextDepth < PredTotalLatency ||
156        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
157      NextDepth = PredTotalLatency;
158      Next = &*P;
159    }
160  }
161  return Next;
162}
163
164void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
165  // Scan the register operands for this instruction and update
166  // Classes and RegRefs.
167  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
168    MachineOperand &MO = MI->getOperand(i);
169    if (!MO.isReg()) continue;
170    unsigned Reg = MO.getReg();
171    if (Reg == 0) continue;
172    const TargetRegisterClass *NewRC = 0;
173
174    if (i < MI->getDesc().getNumOperands())
175      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
176
177    // For now, only allow the register to be changed if its register
178    // class is consistent across all uses.
179    if (!Classes[Reg] && NewRC)
180      Classes[Reg] = NewRC;
181    else if (!NewRC || Classes[Reg] != NewRC)
182      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
183
184    // Now check for aliases.
185    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
186      // If an alias of the reg is used during the live range, give up.
187      // Note that this allows us to skip checking if AntiDepReg
188      // overlaps with any of the aliases, among other things.
189      unsigned AliasReg = *Alias;
190      if (Classes[AliasReg]) {
191        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
192        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
193      }
194    }
195
196    // If we're still willing to consider this register, note the reference.
197    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
198      RegRefs.insert(std::make_pair(Reg, &MO));
199
200    // It's not safe to change register allocation for source operands of
201    // that have special allocation requirements.
202    if (MO.isUse() && MI->getDesc().hasExtraSrcRegAllocReq()) {
203      if (KeepRegs.insert(Reg)) {
204        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
205             *Subreg; ++Subreg)
206          KeepRegs.insert(*Subreg);
207      }
208    }
209  }
210}
211
212void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
213                                             unsigned Count) {
214  // Update liveness.
215  // Proceding upwards, registers that are defed but not used in this
216  // instruction are now dead.
217  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
218    MachineOperand &MO = MI->getOperand(i);
219    if (!MO.isReg()) continue;
220    unsigned Reg = MO.getReg();
221    if (Reg == 0) continue;
222    if (!MO.isDef()) continue;
223    // Ignore two-addr defs.
224    if (MI->isRegTiedToUseOperand(i)) continue;
225
226    DefIndices[Reg] = Count;
227    KillIndices[Reg] = ~0u;
228    assert(((KillIndices[Reg] == ~0u) !=
229            (DefIndices[Reg] == ~0u)) &&
230           "Kill and Def maps aren't consistent for Reg!");
231    KeepRegs.erase(Reg);
232    Classes[Reg] = 0;
233    RegRefs.erase(Reg);
234    // Repeat, for all subregs.
235    for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
236         *Subreg; ++Subreg) {
237      unsigned SubregReg = *Subreg;
238      DefIndices[SubregReg] = Count;
239      KillIndices[SubregReg] = ~0u;
240      KeepRegs.erase(SubregReg);
241      Classes[SubregReg] = 0;
242      RegRefs.erase(SubregReg);
243    }
244    // Conservatively mark super-registers as unusable.
245    for (const unsigned *Super = TRI->getSuperRegisters(Reg);
246         *Super; ++Super) {
247      unsigned SuperReg = *Super;
248      Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
249    }
250  }
251  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
252    MachineOperand &MO = MI->getOperand(i);
253    if (!MO.isReg()) continue;
254    unsigned Reg = MO.getReg();
255    if (Reg == 0) continue;
256    if (!MO.isUse()) continue;
257
258    const TargetRegisterClass *NewRC = 0;
259    if (i < MI->getDesc().getNumOperands())
260      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
261
262    // For now, only allow the register to be changed if its register
263    // class is consistent across all uses.
264    if (!Classes[Reg] && NewRC)
265      Classes[Reg] = NewRC;
266    else if (!NewRC || Classes[Reg] != NewRC)
267      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
268
269    RegRefs.insert(std::make_pair(Reg, &MO));
270
271    // It wasn't previously live but now it is, this is a kill.
272    if (KillIndices[Reg] == ~0u) {
273      KillIndices[Reg] = Count;
274      DefIndices[Reg] = ~0u;
275          assert(((KillIndices[Reg] == ~0u) !=
276                  (DefIndices[Reg] == ~0u)) &&
277               "Kill and Def maps aren't consistent for Reg!");
278    }
279    // Repeat, for all aliases.
280    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
281      unsigned AliasReg = *Alias;
282      if (KillIndices[AliasReg] == ~0u) {
283        KillIndices[AliasReg] = Count;
284        DefIndices[AliasReg] = ~0u;
285      }
286    }
287  }
288}
289
290unsigned
291CriticalAntiDepBreaker::findSuitableFreeRegister(MachineInstr *MI,
292                                                 unsigned AntiDepReg,
293                                                 unsigned LastNewReg,
294                                                 const TargetRegisterClass *RC)
295{
296  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
297       RE = RC->allocation_order_end(MF); R != RE; ++R) {
298    unsigned NewReg = *R;
299    // Don't replace a register with itself.
300    if (NewReg == AntiDepReg) continue;
301    // Don't replace a register with one that was recently used to repair
302    // an anti-dependence with this AntiDepReg, because that would
303    // re-introduce that anti-dependence.
304    if (NewReg == LastNewReg) continue;
305    // If the instruction already has a def of the NewReg, it's not suitable.
306    // For example, Instruction with multiple definitions can result in this
307    // condition.
308    if (MI->modifiesRegister(NewReg, TRI)) continue;
309    // If NewReg is dead and NewReg's most recent def is not before
310    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
311    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
312           && "Kill and Def maps aren't consistent for AntiDepReg!");
313    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
314           && "Kill and Def maps aren't consistent for NewReg!");
315    if (KillIndices[NewReg] != ~0u ||
316        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
317        KillIndices[AntiDepReg] > DefIndices[NewReg])
318      continue;
319    return NewReg;
320  }
321
322  // No registers are free and available!
323  return 0;
324}
325
326unsigned CriticalAntiDepBreaker::
327BreakAntiDependencies(std::vector<SUnit>& SUnits,
328                      MachineBasicBlock::iterator& Begin,
329                      MachineBasicBlock::iterator& End,
330                      unsigned InsertPosIndex) {
331  // The code below assumes that there is at least one instruction,
332  // so just duck out immediately if the block is empty.
333  if (SUnits.empty()) return 0;
334
335  // Find the node at the bottom of the critical path.
336  SUnit *Max = 0;
337  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
338    SUnit *SU = &SUnits[i];
339    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
340      Max = SU;
341  }
342
343#ifndef NDEBUG
344  {
345    DEBUG(dbgs() << "Critical path has total latency "
346          << (Max->getDepth() + Max->Latency) << "\n");
347    DEBUG(dbgs() << "Available regs:");
348    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
349      if (KillIndices[Reg] == ~0u)
350        DEBUG(dbgs() << " " << TRI->getName(Reg));
351    }
352    DEBUG(dbgs() << '\n');
353  }
354#endif
355
356  // Track progress along the critical path through the SUnit graph as we walk
357  // the instructions.
358  SUnit *CriticalPathSU = Max;
359  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
360
361  // Consider this pattern:
362  //   A = ...
363  //   ... = A
364  //   A = ...
365  //   ... = A
366  //   A = ...
367  //   ... = A
368  //   A = ...
369  //   ... = A
370  // There are three anti-dependencies here, and without special care,
371  // we'd break all of them using the same register:
372  //   A = ...
373  //   ... = A
374  //   B = ...
375  //   ... = B
376  //   B = ...
377  //   ... = B
378  //   B = ...
379  //   ... = B
380  // because at each anti-dependence, B is the first register that
381  // isn't A which is free.  This re-introduces anti-dependencies
382  // at all but one of the original anti-dependencies that we were
383  // trying to break.  To avoid this, keep track of the most recent
384  // register that each register was replaced with, avoid
385  // using it to repair an anti-dependence on the same register.
386  // This lets us produce this:
387  //   A = ...
388  //   ... = A
389  //   B = ...
390  //   ... = B
391  //   C = ...
392  //   ... = C
393  //   B = ...
394  //   ... = B
395  // This still has an anti-dependence on B, but at least it isn't on the
396  // original critical path.
397  //
398  // TODO: If we tracked more than one register here, we could potentially
399  // fix that remaining critical edge too. This is a little more involved,
400  // because unlike the most recent register, less recent registers should
401  // still be considered, though only if no other registers are available.
402  unsigned LastNewReg[TargetRegisterInfo::FirstVirtualRegister] = {};
403
404  // Attempt to break anti-dependence edges on the critical path. Walk the
405  // instructions from the bottom up, tracking information about liveness
406  // as we go to help determine which registers are available.
407  unsigned Broken = 0;
408  unsigned Count = InsertPosIndex - 1;
409  for (MachineBasicBlock::iterator I = End, E = Begin;
410       I != E; --Count) {
411    MachineInstr *MI = --I;
412
413    // Check if this instruction has a dependence on the critical path that
414    // is an anti-dependence that we may be able to break. If it is, set
415    // AntiDepReg to the non-zero register associated with the anti-dependence.
416    //
417    // We limit our attention to the critical path as a heuristic to avoid
418    // breaking anti-dependence edges that aren't going to significantly
419    // impact the overall schedule. There are a limited number of registers
420    // and we want to save them for the important edges.
421    //
422    // TODO: Instructions with multiple defs could have multiple
423    // anti-dependencies. The current code here only knows how to break one
424    // edge per instruction. Note that we'd have to be able to break all of
425    // the anti-dependencies in an instruction in order to be effective.
426    unsigned AntiDepReg = 0;
427    if (MI == CriticalPathMI) {
428      if (SDep *Edge = CriticalPathStep(CriticalPathSU)) {
429        SUnit *NextSU = Edge->getSUnit();
430
431        // Only consider anti-dependence edges.
432        if (Edge->getKind() == SDep::Anti) {
433          AntiDepReg = Edge->getReg();
434          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
435          if (!AllocatableSet.test(AntiDepReg))
436            // Don't break anti-dependencies on non-allocatable registers.
437            AntiDepReg = 0;
438          else if (KeepRegs.count(AntiDepReg))
439            // Don't break anti-dependencies if an use down below requires
440            // this exact register.
441            AntiDepReg = 0;
442          else {
443            // If the SUnit has other dependencies on the SUnit that it
444            // anti-depends on, don't bother breaking the anti-dependency
445            // since those edges would prevent such units from being
446            // scheduled past each other regardless.
447            //
448            // Also, if there are dependencies on other SUnits with the
449            // same register as the anti-dependency, don't attempt to
450            // break it.
451            for (SUnit::pred_iterator P = CriticalPathSU->Preds.begin(),
452                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
453              if (P->getSUnit() == NextSU ?
454                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
455                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
456                AntiDepReg = 0;
457                break;
458              }
459          }
460        }
461        CriticalPathSU = NextSU;
462        CriticalPathMI = CriticalPathSU->getInstr();
463      } else {
464        // We've reached the end of the critical path.
465        CriticalPathSU = 0;
466        CriticalPathMI = 0;
467      }
468    }
469
470    PrescanInstruction(MI);
471
472    if (MI->getDesc().hasExtraDefRegAllocReq())
473      // If this instruction's defs have special allocation requirement, don't
474      // break this anti-dependency.
475      AntiDepReg = 0;
476    else if (AntiDepReg) {
477      // If this instruction has a use of AntiDepReg, breaking it
478      // is invalid.
479      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
480        MachineOperand &MO = MI->getOperand(i);
481        if (!MO.isReg()) continue;
482        unsigned Reg = MO.getReg();
483        if (Reg == 0) continue;
484        if (MO.isUse() && AntiDepReg == Reg) {
485          AntiDepReg = 0;
486          break;
487        }
488      }
489    }
490
491    // Determine AntiDepReg's register class, if it is live and is
492    // consistently used within a single class.
493    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
494    assert((AntiDepReg == 0 || RC != NULL) &&
495           "Register should be live if it's causing an anti-dependence!");
496    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
497      AntiDepReg = 0;
498
499    // Look for a suitable register to use to break the anti-depenence.
500    //
501    // TODO: Instead of picking the first free register, consider which might
502    // be the best.
503    if (AntiDepReg != 0) {
504      if (unsigned NewReg = findSuitableFreeRegister(MI, AntiDepReg,
505                                                     LastNewReg[AntiDepReg],
506                                                     RC)) {
507        DEBUG(dbgs() << "Breaking anti-dependence edge on "
508              << TRI->getName(AntiDepReg)
509              << " with " << RegRefs.count(AntiDepReg) << " references"
510              << " using " << TRI->getName(NewReg) << "!\n");
511
512        // Update the references to the old register to refer to the new
513        // register.
514        std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
515                  std::multimap<unsigned, MachineOperand *>::iterator>
516           Range = RegRefs.equal_range(AntiDepReg);
517        for (std::multimap<unsigned, MachineOperand *>::iterator
518             Q = Range.first, QE = Range.second; Q != QE; ++Q)
519          Q->second->setReg(NewReg);
520
521        // We just went back in time and modified history; the
522        // liveness information for the anti-depenence reg is now
523        // inconsistent. Set the state as if it were dead.
524        Classes[NewReg] = Classes[AntiDepReg];
525        DefIndices[NewReg] = DefIndices[AntiDepReg];
526        KillIndices[NewReg] = KillIndices[AntiDepReg];
527        assert(((KillIndices[NewReg] == ~0u) !=
528                (DefIndices[NewReg] == ~0u)) &&
529             "Kill and Def maps aren't consistent for NewReg!");
530
531        Classes[AntiDepReg] = 0;
532        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
533        KillIndices[AntiDepReg] = ~0u;
534        assert(((KillIndices[AntiDepReg] == ~0u) !=
535                (DefIndices[AntiDepReg] == ~0u)) &&
536             "Kill and Def maps aren't consistent for AntiDepReg!");
537
538        RegRefs.erase(AntiDepReg);
539        LastNewReg[AntiDepReg] = NewReg;
540        ++Broken;
541      }
542    }
543
544    ScanInstruction(MI, Count);
545  }
546
547  return Broken;
548}
549