CriticalAntiDepBreaker.cpp revision e29e8e100ea38be1771e5f010a5511cbb990d515
1//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the CriticalAntiDepBreaker class, which
11// implements register anti-dependence breaking along a blocks
12// critical path during post-RA scheduler.
13//
14//===----------------------------------------------------------------------===//
15
16#define DEBUG_TYPE "post-RA-sched"
17#include "CriticalAntiDepBreaker.h"
18#include "llvm/CodeGen/MachineBasicBlock.h"
19#include "llvm/CodeGen/MachineFrameInfo.h"
20#include "llvm/Target/TargetMachine.h"
21#include "llvm/Target/TargetInstrInfo.h"
22#include "llvm/Target/TargetRegisterInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26
27using namespace llvm;
28
29CriticalAntiDepBreaker::
30CriticalAntiDepBreaker(MachineFunction& MFi) :
31  AntiDepBreaker(), MF(MFi),
32  MRI(MF.getRegInfo()),
33  TII(MF.getTarget().getInstrInfo()),
34  TRI(MF.getTarget().getRegisterInfo()),
35  AllocatableSet(TRI->getAllocatableSet(MF)),
36  Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
37  KillIndices(TRI->getNumRegs(), 0),
38  DefIndices(TRI->getNumRegs(), 0) {}
39
40CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
41}
42
43void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
44  const unsigned BBSize = BB->size();
45  for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
46    // Clear out the register class data.
47    Classes[i] = static_cast<const TargetRegisterClass *>(0);
48
49    // Initialize the indices to indicate that no registers are live.
50    KillIndices[i] = ~0u;
51    DefIndices[i] = BBSize;
52  }
53
54  // Clear "do not change" set.
55  KeepRegs.clear();
56
57  bool IsReturnBlock = (!BB->empty() && BB->back().getDesc().isReturn());
58
59  // Determine the live-out physregs for this block.
60  if (IsReturnBlock) {
61    // In a return block, examine the function live-out regs.
62    for (MachineRegisterInfo::liveout_iterator I = MRI.liveout_begin(),
63         E = MRI.liveout_end(); I != E; ++I) {
64      unsigned Reg = *I;
65      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
66      KillIndices[Reg] = BB->size();
67      DefIndices[Reg] = ~0u;
68
69      // Repeat, for all aliases.
70      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
71        unsigned AliasReg = *Alias;
72        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
73        KillIndices[AliasReg] = BB->size();
74        DefIndices[AliasReg] = ~0u;
75      }
76    }
77  }
78
79  // In a non-return block, examine the live-in regs of all successors.
80  // Note a return block can have successors if the return instruction is
81  // predicated.
82  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
83         SE = BB->succ_end(); SI != SE; ++SI)
84    for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
85           E = (*SI)->livein_end(); I != E; ++I) {
86      unsigned Reg = *I;
87      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
88      KillIndices[Reg] = BB->size();
89      DefIndices[Reg] = ~0u;
90
91      // Repeat, for all aliases.
92      for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
93        unsigned AliasReg = *Alias;
94        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
95        KillIndices[AliasReg] = BB->size();
96        DefIndices[AliasReg] = ~0u;
97      }
98    }
99
100  // Mark live-out callee-saved registers. In a return block this is
101  // all callee-saved registers. In non-return this is any
102  // callee-saved register that is not saved in the prolog.
103  const MachineFrameInfo *MFI = MF.getFrameInfo();
104  BitVector Pristine = MFI->getPristineRegs(BB);
105  for (const unsigned *I = TRI->getCalleeSavedRegs(); *I; ++I) {
106    unsigned Reg = *I;
107    if (!IsReturnBlock && !Pristine.test(Reg)) continue;
108    Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
109    KillIndices[Reg] = BB->size();
110    DefIndices[Reg] = ~0u;
111
112    // Repeat, for all aliases.
113    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
114      unsigned AliasReg = *Alias;
115      Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
116      KillIndices[AliasReg] = BB->size();
117      DefIndices[AliasReg] = ~0u;
118    }
119  }
120}
121
122void CriticalAntiDepBreaker::FinishBlock() {
123  RegRefs.clear();
124  KeepRegs.clear();
125}
126
127void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
128                                     unsigned InsertPosIndex) {
129  if (MI->isDebugValue())
130    return;
131  assert(Count < InsertPosIndex && "Instruction index out of expected range!");
132
133  for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
134    if (KillIndices[Reg] != ~0u) {
135      // If Reg is currently live, then mark that it can't be renamed as
136      // we don't know the extent of its live-range anymore (now that it
137      // has been scheduled).
138      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
139      KillIndices[Reg] = Count;
140    } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
141      // Any register which was defined within the previous scheduling region
142      // may have been rescheduled and its lifetime may overlap with registers
143      // in ways not reflected in our current liveness state. For each such
144      // register, adjust the liveness state to be conservatively correct.
145      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
146
147      // Move the def index to the end of the previous region, to reflect
148      // that the def could theoretically have been scheduled at the end.
149      DefIndices[Reg] = InsertPosIndex;
150    }
151  }
152
153  PrescanInstruction(MI);
154  ScanInstruction(MI, Count);
155}
156
157/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
158/// critical path.
159static const SDep *CriticalPathStep(const SUnit *SU) {
160  const SDep *Next = 0;
161  unsigned NextDepth = 0;
162  // Find the predecessor edge with the greatest depth.
163  for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
164       P != PE; ++P) {
165    const SUnit *PredSU = P->getSUnit();
166    unsigned PredLatency = P->getLatency();
167    unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
168    // In the case of a latency tie, prefer an anti-dependency edge over
169    // other types of edges.
170    if (NextDepth < PredTotalLatency ||
171        (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
172      NextDepth = PredTotalLatency;
173      Next = &*P;
174    }
175  }
176  return Next;
177}
178
179void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
180  // It's not safe to change register allocation for source operands of
181  // that have special allocation requirements. Also assume all registers
182  // used in a call must not be changed (ABI).
183  // FIXME: The issue with predicated instruction is more complex. We are being
184  // conservative here because the kill markers cannot be trusted after
185  // if-conversion:
186  // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
187  // ...
188  // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
189  // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
190  // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
191  //
192  // The first R6 kill is not really a kill since it's killed by a predicated
193  // instruction which may not be executed. The second R6 def may or may not
194  // re-define R6 so it's not safe to change it since the last R6 use cannot be
195  // changed.
196  bool Special = MI->getDesc().isCall() ||
197    MI->getDesc().hasExtraSrcRegAllocReq() ||
198    TII->isPredicated(MI);
199
200  // Scan the register operands for this instruction and update
201  // Classes and RegRefs.
202  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
203    MachineOperand &MO = MI->getOperand(i);
204    if (!MO.isReg()) continue;
205    unsigned Reg = MO.getReg();
206    if (Reg == 0) continue;
207    const TargetRegisterClass *NewRC = 0;
208
209    if (i < MI->getDesc().getNumOperands())
210      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
211
212    // For now, only allow the register to be changed if its register
213    // class is consistent across all uses.
214    if (!Classes[Reg] && NewRC)
215      Classes[Reg] = NewRC;
216    else if (!NewRC || Classes[Reg] != NewRC)
217      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
218
219    // Now check for aliases.
220    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
221      // If an alias of the reg is used during the live range, give up.
222      // Note that this allows us to skip checking if AntiDepReg
223      // overlaps with any of the aliases, among other things.
224      unsigned AliasReg = *Alias;
225      if (Classes[AliasReg]) {
226        Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
227        Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
228      }
229    }
230
231    // If we're still willing to consider this register, note the reference.
232    if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
233      RegRefs.insert(std::make_pair(Reg, &MO));
234
235    if (MO.isUse() && Special) {
236      if (KeepRegs.insert(Reg)) {
237        for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
238             *Subreg; ++Subreg)
239          KeepRegs.insert(*Subreg);
240      }
241    }
242  }
243}
244
245void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
246                                             unsigned Count) {
247  // Update liveness.
248  // Proceding upwards, registers that are defed but not used in this
249  // instruction are now dead.
250
251  if (!TII->isPredicated(MI)) {
252    // Predicated defs are modeled as read + write, i.e. similar to two
253    // address updates.
254    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
255      MachineOperand &MO = MI->getOperand(i);
256      if (!MO.isReg()) continue;
257      unsigned Reg = MO.getReg();
258      if (Reg == 0) continue;
259      if (!MO.isDef()) continue;
260      // Ignore two-addr defs.
261      if (MI->isRegTiedToUseOperand(i)) continue;
262
263      DefIndices[Reg] = Count;
264      KillIndices[Reg] = ~0u;
265      assert(((KillIndices[Reg] == ~0u) !=
266              (DefIndices[Reg] == ~0u)) &&
267             "Kill and Def maps aren't consistent for Reg!");
268      KeepRegs.erase(Reg);
269      Classes[Reg] = 0;
270      RegRefs.erase(Reg);
271      // Repeat, for all subregs.
272      for (const unsigned *Subreg = TRI->getSubRegisters(Reg);
273           *Subreg; ++Subreg) {
274        unsigned SubregReg = *Subreg;
275        DefIndices[SubregReg] = Count;
276        KillIndices[SubregReg] = ~0u;
277        KeepRegs.erase(SubregReg);
278        Classes[SubregReg] = 0;
279        RegRefs.erase(SubregReg);
280      }
281      // Conservatively mark super-registers as unusable.
282      for (const unsigned *Super = TRI->getSuperRegisters(Reg);
283           *Super; ++Super) {
284        unsigned SuperReg = *Super;
285        Classes[SuperReg] = reinterpret_cast<TargetRegisterClass *>(-1);
286      }
287    }
288  }
289  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
290    MachineOperand &MO = MI->getOperand(i);
291    if (!MO.isReg()) continue;
292    unsigned Reg = MO.getReg();
293    if (Reg == 0) continue;
294    if (!MO.isUse()) continue;
295
296    const TargetRegisterClass *NewRC = 0;
297    if (i < MI->getDesc().getNumOperands())
298      NewRC = MI->getDesc().OpInfo[i].getRegClass(TRI);
299
300    // For now, only allow the register to be changed if its register
301    // class is consistent across all uses.
302    if (!Classes[Reg] && NewRC)
303      Classes[Reg] = NewRC;
304    else if (!NewRC || Classes[Reg] != NewRC)
305      Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
306
307    RegRefs.insert(std::make_pair(Reg, &MO));
308
309    // It wasn't previously live but now it is, this is a kill.
310    if (KillIndices[Reg] == ~0u) {
311      KillIndices[Reg] = Count;
312      DefIndices[Reg] = ~0u;
313          assert(((KillIndices[Reg] == ~0u) !=
314                  (DefIndices[Reg] == ~0u)) &&
315               "Kill and Def maps aren't consistent for Reg!");
316    }
317    // Repeat, for all aliases.
318    for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
319      unsigned AliasReg = *Alias;
320      if (KillIndices[AliasReg] == ~0u) {
321        KillIndices[AliasReg] = Count;
322        DefIndices[AliasReg] = ~0u;
323      }
324    }
325  }
326}
327
328// Check all machine operands that reference the antidependent register and must
329// be replaced by NewReg. Return true if any of their parent instructions may
330// clobber the new register.
331//
332// Note: AntiDepReg may be referenced by a two-address instruction such that
333// it's use operand is tied to a def operand. We guard against the case in which
334// the two-address instruction also defines NewReg, as may happen with
335// pre/postincrement loads. In this case, both the use and def operands are in
336// RegRefs because the def is inserted by PrescanInstruction and not erased
337// during ScanInstruction. So checking for an instructions with definitions of
338// both NewReg and AntiDepReg covers it.
339bool
340CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
341                                                RegRefIter RegRefEnd,
342                                                unsigned NewReg)
343{
344  for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
345    MachineOperand *RefOper = I->second;
346
347    // Don't allow the instruction defining AntiDepReg to earlyclobber its
348    // operands, in case they may be assigned to NewReg. In this case antidep
349    // breaking must fail, but it's too rare to bother optimizing.
350    if (RefOper->isDef() && RefOper->isEarlyClobber())
351      return true;
352
353    // Handle cases in which this instructions defines NewReg.
354    MachineInstr *MI = RefOper->getParent();
355    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
356      const MachineOperand &CheckOper = MI->getOperand(i);
357
358      if (!CheckOper.isReg() || !CheckOper.isDef() ||
359          CheckOper.getReg() != NewReg)
360        continue;
361
362      // Don't allow the instruction to define NewReg and AntiDepReg.
363      // When AntiDepReg is renamed it will be an illegal op.
364      if (RefOper->isDef())
365        return true;
366
367      // Don't allow an instruction using AntiDepReg to be earlyclobbered by
368      // NewReg
369      if (CheckOper.isEarlyClobber())
370        return true;
371
372      // Don't allow inline asm to define NewReg at all. Who know what it's
373      // doing with it.
374      if (MI->isInlineAsm())
375        return true;
376    }
377  }
378  return false;
379}
380
381unsigned
382CriticalAntiDepBreaker::findSuitableFreeRegister(RegRefIter RegRefBegin,
383                                                 RegRefIter RegRefEnd,
384                                                 unsigned AntiDepReg,
385                                                 unsigned LastNewReg,
386                                                 const TargetRegisterClass *RC)
387{
388  for (TargetRegisterClass::iterator R = RC->allocation_order_begin(MF),
389       RE = RC->allocation_order_end(MF); R != RE; ++R) {
390    unsigned NewReg = *R;
391    // Don't consider non-allocatable registers
392    if (!AllocatableSet.test(NewReg)) continue;
393    // Don't replace a register with itself.
394    if (NewReg == AntiDepReg) continue;
395    // Don't replace a register with one that was recently used to repair
396    // an anti-dependence with this AntiDepReg, because that would
397    // re-introduce that anti-dependence.
398    if (NewReg == LastNewReg) continue;
399    // If any instructions that define AntiDepReg also define the NewReg, it's
400    // not suitable.  For example, Instruction with multiple definitions can
401    // result in this condition.
402    if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
403    // If NewReg is dead and NewReg's most recent def is not before
404    // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
405    assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
406           && "Kill and Def maps aren't consistent for AntiDepReg!");
407    assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
408           && "Kill and Def maps aren't consistent for NewReg!");
409    if (KillIndices[NewReg] != ~0u ||
410        Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
411        KillIndices[AntiDepReg] > DefIndices[NewReg])
412      continue;
413    return NewReg;
414  }
415
416  // No registers are free and available!
417  return 0;
418}
419
420unsigned CriticalAntiDepBreaker::
421BreakAntiDependencies(const std::vector<SUnit>& SUnits,
422                      MachineBasicBlock::iterator Begin,
423                      MachineBasicBlock::iterator End,
424                      unsigned InsertPosIndex,
425                      DbgValueVector &DbgValues) {
426  // The code below assumes that there is at least one instruction,
427  // so just duck out immediately if the block is empty.
428  if (SUnits.empty()) return 0;
429
430  // Keep a map of the MachineInstr*'s back to the SUnit representing them.
431  // This is used for updating debug information.
432  DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
433
434  // Find the node at the bottom of the critical path.
435  const SUnit *Max = 0;
436  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
437    const SUnit *SU = &SUnits[i];
438    MISUnitMap[SU->getInstr()] = SU;
439    if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
440      Max = SU;
441  }
442
443#ifndef NDEBUG
444  {
445    DEBUG(dbgs() << "Critical path has total latency "
446          << (Max->getDepth() + Max->Latency) << "\n");
447    DEBUG(dbgs() << "Available regs:");
448    for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
449      if (KillIndices[Reg] == ~0u)
450        DEBUG(dbgs() << " " << TRI->getName(Reg));
451    }
452    DEBUG(dbgs() << '\n');
453  }
454#endif
455
456  // Track progress along the critical path through the SUnit graph as we walk
457  // the instructions.
458  const SUnit *CriticalPathSU = Max;
459  MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
460
461  // Consider this pattern:
462  //   A = ...
463  //   ... = A
464  //   A = ...
465  //   ... = A
466  //   A = ...
467  //   ... = A
468  //   A = ...
469  //   ... = A
470  // There are three anti-dependencies here, and without special care,
471  // we'd break all of them using the same register:
472  //   A = ...
473  //   ... = A
474  //   B = ...
475  //   ... = B
476  //   B = ...
477  //   ... = B
478  //   B = ...
479  //   ... = B
480  // because at each anti-dependence, B is the first register that
481  // isn't A which is free.  This re-introduces anti-dependencies
482  // at all but one of the original anti-dependencies that we were
483  // trying to break.  To avoid this, keep track of the most recent
484  // register that each register was replaced with, avoid
485  // using it to repair an anti-dependence on the same register.
486  // This lets us produce this:
487  //   A = ...
488  //   ... = A
489  //   B = ...
490  //   ... = B
491  //   C = ...
492  //   ... = C
493  //   B = ...
494  //   ... = B
495  // This still has an anti-dependence on B, but at least it isn't on the
496  // original critical path.
497  //
498  // TODO: If we tracked more than one register here, we could potentially
499  // fix that remaining critical edge too. This is a little more involved,
500  // because unlike the most recent register, less recent registers should
501  // still be considered, though only if no other registers are available.
502  std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
503
504  // Attempt to break anti-dependence edges on the critical path. Walk the
505  // instructions from the bottom up, tracking information about liveness
506  // as we go to help determine which registers are available.
507  unsigned Broken = 0;
508  unsigned Count = InsertPosIndex - 1;
509  for (MachineBasicBlock::iterator I = End, E = Begin;
510       I != E; --Count) {
511    MachineInstr *MI = --I;
512    if (MI->isDebugValue())
513      continue;
514
515    // Check if this instruction has a dependence on the critical path that
516    // is an anti-dependence that we may be able to break. If it is, set
517    // AntiDepReg to the non-zero register associated with the anti-dependence.
518    //
519    // We limit our attention to the critical path as a heuristic to avoid
520    // breaking anti-dependence edges that aren't going to significantly
521    // impact the overall schedule. There are a limited number of registers
522    // and we want to save them for the important edges.
523    //
524    // TODO: Instructions with multiple defs could have multiple
525    // anti-dependencies. The current code here only knows how to break one
526    // edge per instruction. Note that we'd have to be able to break all of
527    // the anti-dependencies in an instruction in order to be effective.
528    unsigned AntiDepReg = 0;
529    if (MI == CriticalPathMI) {
530      if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
531        const SUnit *NextSU = Edge->getSUnit();
532
533        // Only consider anti-dependence edges.
534        if (Edge->getKind() == SDep::Anti) {
535          AntiDepReg = Edge->getReg();
536          assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
537          if (!AllocatableSet.test(AntiDepReg))
538            // Don't break anti-dependencies on non-allocatable registers.
539            AntiDepReg = 0;
540          else if (KeepRegs.count(AntiDepReg))
541            // Don't break anti-dependencies if an use down below requires
542            // this exact register.
543            AntiDepReg = 0;
544          else {
545            // If the SUnit has other dependencies on the SUnit that it
546            // anti-depends on, don't bother breaking the anti-dependency
547            // since those edges would prevent such units from being
548            // scheduled past each other regardless.
549            //
550            // Also, if there are dependencies on other SUnits with the
551            // same register as the anti-dependency, don't attempt to
552            // break it.
553            for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
554                 PE = CriticalPathSU->Preds.end(); P != PE; ++P)
555              if (P->getSUnit() == NextSU ?
556                    (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
557                    (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
558                AntiDepReg = 0;
559                break;
560              }
561          }
562        }
563        CriticalPathSU = NextSU;
564        CriticalPathMI = CriticalPathSU->getInstr();
565      } else {
566        // We've reached the end of the critical path.
567        CriticalPathSU = 0;
568        CriticalPathMI = 0;
569      }
570    }
571
572    PrescanInstruction(MI);
573
574    // If MI's defs have a special allocation requirement, don't allow
575    // any def registers to be changed. Also assume all registers
576    // defined in a call must not be changed (ABI).
577    if (MI->getDesc().isCall() || MI->getDesc().hasExtraDefRegAllocReq() ||
578        TII->isPredicated(MI))
579      // If this instruction's defs have special allocation requirement, don't
580      // break this anti-dependency.
581      AntiDepReg = 0;
582    else if (AntiDepReg) {
583      // If this instruction has a use of AntiDepReg, breaking it
584      // is invalid.
585      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
586        MachineOperand &MO = MI->getOperand(i);
587        if (!MO.isReg()) continue;
588        unsigned Reg = MO.getReg();
589        if (Reg == 0) continue;
590        if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
591          AntiDepReg = 0;
592          break;
593        }
594      }
595    }
596
597    // Determine AntiDepReg's register class, if it is live and is
598    // consistently used within a single class.
599    const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
600    assert((AntiDepReg == 0 || RC != NULL) &&
601           "Register should be live if it's causing an anti-dependence!");
602    if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
603      AntiDepReg = 0;
604
605    // Look for a suitable register to use to break the anti-depenence.
606    //
607    // TODO: Instead of picking the first free register, consider which might
608    // be the best.
609    if (AntiDepReg != 0) {
610      std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
611                std::multimap<unsigned, MachineOperand *>::iterator>
612        Range = RegRefs.equal_range(AntiDepReg);
613      if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
614                                                     AntiDepReg,
615                                                     LastNewReg[AntiDepReg],
616                                                     RC)) {
617        DEBUG(dbgs() << "Breaking anti-dependence edge on "
618              << TRI->getName(AntiDepReg)
619              << " with " << RegRefs.count(AntiDepReg) << " references"
620              << " using " << TRI->getName(NewReg) << "!\n");
621
622        // Update the references to the old register to refer to the new
623        // register.
624        for (std::multimap<unsigned, MachineOperand *>::iterator
625             Q = Range.first, QE = Range.second; Q != QE; ++Q) {
626          Q->second->setReg(NewReg);
627          // If the SU for the instruction being updated has debug information
628          // related to the anti-dependency register, make sure to update that
629          // as well.
630          const SUnit *SU = MISUnitMap[Q->second->getParent()];
631          if (!SU) continue;
632          for (DbgValueVector::iterator DVI = DbgValues.begin(),
633                 DVE = DbgValues.end(); DVI != DVE; ++DVI)
634            if (DVI->second == Q->second->getParent())
635              UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
636        }
637
638        // We just went back in time and modified history; the
639        // liveness information for the anti-dependence reg is now
640        // inconsistent. Set the state as if it were dead.
641        Classes[NewReg] = Classes[AntiDepReg];
642        DefIndices[NewReg] = DefIndices[AntiDepReg];
643        KillIndices[NewReg] = KillIndices[AntiDepReg];
644        assert(((KillIndices[NewReg] == ~0u) !=
645                (DefIndices[NewReg] == ~0u)) &&
646             "Kill and Def maps aren't consistent for NewReg!");
647
648        Classes[AntiDepReg] = 0;
649        DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
650        KillIndices[AntiDepReg] = ~0u;
651        assert(((KillIndices[AntiDepReg] == ~0u) !=
652                (DefIndices[AntiDepReg] == ~0u)) &&
653             "Kill and Def maps aren't consistent for AntiDepReg!");
654
655        RegRefs.erase(AntiDepReg);
656        LastNewReg[AntiDepReg] = NewReg;
657        ++Broken;
658      }
659    }
660
661    ScanInstruction(MI, Count);
662  }
663
664  return Broken;
665}
666