InlineSpiller.cpp revision 2debd48ca790ac01be6e12e094fdf4fdcadc8364
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/ADT/TinyPtrVector.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/LiveStackAnalysis.h"
24#include "llvm/CodeGen/MachineDominators.h"
25#include "llvm/CodeGen/MachineFrameInfo.h"
26#include "llvm/CodeGen/MachineFunction.h"
27#include "llvm/CodeGen/MachineLoopInfo.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Target/TargetInstrInfo.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/raw_ostream.h"
34
35using namespace llvm;
36
37STATISTIC(NumSpilledRanges,   "Number of spilled live ranges");
38STATISTIC(NumSnippets,        "Number of spilled snippets");
39STATISTIC(NumSpills,          "Number of spills inserted");
40STATISTIC(NumSpillsRemoved,   "Number of spills removed");
41STATISTIC(NumReloads,         "Number of reloads inserted");
42STATISTIC(NumReloadsRemoved,  "Number of reloads removed");
43STATISTIC(NumFolded,          "Number of folded stack accesses");
44STATISTIC(NumFoldedLoads,     "Number of folded loads");
45STATISTIC(NumRemats,          "Number of rematerialized defs for spilling");
46STATISTIC(NumOmitReloadSpill, "Number of omitted spills of reloads");
47STATISTIC(NumHoists,          "Number of hoisted spills");
48
49static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
50                                     cl::desc("Disable inline spill hoisting"));
51
52namespace {
53class InlineSpiller : public Spiller {
54  MachineFunctionPass &Pass;
55  MachineFunction &MF;
56  LiveIntervals &LIS;
57  LiveStacks &LSS;
58  AliasAnalysis *AA;
59  MachineDominatorTree &MDT;
60  MachineLoopInfo &Loops;
61  VirtRegMap &VRM;
62  MachineFrameInfo &MFI;
63  MachineRegisterInfo &MRI;
64  const TargetInstrInfo &TII;
65  const TargetRegisterInfo &TRI;
66
67  // Variables that are valid during spill(), but used by multiple methods.
68  LiveRangeEdit *Edit;
69  LiveInterval *StackInt;
70  int StackSlot;
71  unsigned Original;
72
73  // All registers to spill to StackSlot, including the main register.
74  SmallVector<unsigned, 8> RegsToSpill;
75
76  // All COPY instructions to/from snippets.
77  // They are ignored since both operands refer to the same stack slot.
78  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
79
80  // Values that failed to remat at some point.
81  SmallPtrSet<VNInfo*, 8> UsedValues;
82
83public:
84  // Information about a value that was defined by a copy from a sibling
85  // register.
86  struct SibValueInfo {
87    // True when all reaching defs were reloads: No spill is necessary.
88    bool AllDefsAreReloads;
89
90    // True when value is defined by an original PHI not from splitting.
91    bool DefByOrigPHI;
92
93    // True when the COPY defining this value killed its source.
94    bool KillsSource;
95
96    // The preferred register to spill.
97    unsigned SpillReg;
98
99    // The value of SpillReg that should be spilled.
100    VNInfo *SpillVNI;
101
102    // The block where SpillVNI should be spilled. Currently, this must be the
103    // block containing SpillVNI->def.
104    MachineBasicBlock *SpillMBB;
105
106    // A defining instruction that is not a sibling copy or a reload, or NULL.
107    // This can be used as a template for rematerialization.
108    MachineInstr *DefMI;
109
110    // List of values that depend on this one.  These values are actually the
111    // same, but live range splitting has placed them in different registers,
112    // or SSA update needed to insert PHI-defs to preserve SSA form.  This is
113    // copies of the current value and phi-kills.  Usually only phi-kills cause
114    // more than one dependent value.
115    TinyPtrVector<VNInfo*> Deps;
116
117    SibValueInfo(unsigned Reg, VNInfo *VNI)
118      : AllDefsAreReloads(true), DefByOrigPHI(false), KillsSource(false),
119        SpillReg(Reg), SpillVNI(VNI), SpillMBB(0), DefMI(0) {}
120
121    // Returns true when a def has been found.
122    bool hasDef() const { return DefByOrigPHI || DefMI; }
123  };
124
125private:
126  // Values in RegsToSpill defined by sibling copies.
127  typedef DenseMap<VNInfo*, SibValueInfo> SibValueMap;
128  SibValueMap SibValues;
129
130  // Dead defs generated during spilling.
131  SmallVector<MachineInstr*, 8> DeadDefs;
132
133  ~InlineSpiller() {}
134
135public:
136  InlineSpiller(MachineFunctionPass &pass,
137                MachineFunction &mf,
138                VirtRegMap &vrm)
139    : Pass(pass),
140      MF(mf),
141      LIS(pass.getAnalysis<LiveIntervals>()),
142      LSS(pass.getAnalysis<LiveStacks>()),
143      AA(&pass.getAnalysis<AliasAnalysis>()),
144      MDT(pass.getAnalysis<MachineDominatorTree>()),
145      Loops(pass.getAnalysis<MachineLoopInfo>()),
146      VRM(vrm),
147      MFI(*mf.getFrameInfo()),
148      MRI(mf.getRegInfo()),
149      TII(*mf.getTarget().getInstrInfo()),
150      TRI(*mf.getTarget().getRegisterInfo()) {}
151
152  void spill(LiveRangeEdit &);
153
154private:
155  bool isSnippet(const LiveInterval &SnipLI);
156  void collectRegsToSpill();
157
158  bool isRegToSpill(unsigned Reg) {
159    return std::find(RegsToSpill.begin(),
160                     RegsToSpill.end(), Reg) != RegsToSpill.end();
161  }
162
163  bool isSibling(unsigned Reg);
164  MachineInstr *traceSiblingValue(unsigned, VNInfo*, VNInfo*);
165  void propagateSiblingValue(SibValueMap::iterator, VNInfo *VNI = 0);
166  void analyzeSiblingValues();
167
168  bool hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI);
169  void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
170
171  void markValueUsed(LiveInterval*, VNInfo*);
172  bool reMaterializeFor(LiveInterval&, MachineBasicBlock::iterator MI);
173  void reMaterializeAll();
174
175  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
176  bool foldMemoryOperand(MachineBasicBlock::iterator MI,
177                         const SmallVectorImpl<unsigned> &Ops,
178                         MachineInstr *LoadMI = 0);
179  void insertReload(LiveInterval &NewLI, SlotIndex,
180                    MachineBasicBlock::iterator MI);
181  void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
182                   SlotIndex, MachineBasicBlock::iterator MI);
183
184  void spillAroundUses(unsigned Reg);
185  void spillAll();
186};
187}
188
189namespace llvm {
190Spiller *createInlineSpiller(MachineFunctionPass &pass,
191                             MachineFunction &mf,
192                             VirtRegMap &vrm) {
193  return new InlineSpiller(pass, mf, vrm);
194}
195}
196
197//===----------------------------------------------------------------------===//
198//                                Snippets
199//===----------------------------------------------------------------------===//
200
201// When spilling a virtual register, we also spill any snippets it is connected
202// to. The snippets are small live ranges that only have a single real use,
203// leftovers from live range splitting. Spilling them enables memory operand
204// folding or tightens the live range around the single use.
205//
206// This minimizes register pressure and maximizes the store-to-load distance for
207// spill slots which can be important in tight loops.
208
209/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
210/// otherwise return 0.
211static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
212  if (!MI->isFullCopy())
213    return 0;
214  if (MI->getOperand(0).getReg() == Reg)
215      return MI->getOperand(1).getReg();
216  if (MI->getOperand(1).getReg() == Reg)
217      return MI->getOperand(0).getReg();
218  return 0;
219}
220
221/// isSnippet - Identify if a live interval is a snippet that should be spilled.
222/// It is assumed that SnipLI is a virtual register with the same original as
223/// Edit->getReg().
224bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
225  unsigned Reg = Edit->getReg();
226
227  // A snippet is a tiny live range with only a single instruction using it
228  // besides copies to/from Reg or spills/fills. We accept:
229  //
230  //   %snip = COPY %Reg / FILL fi#
231  //   %snip = USE %snip
232  //   %Reg = COPY %snip / SPILL %snip, fi#
233  //
234  if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
235    return false;
236
237  MachineInstr *UseMI = 0;
238
239  // Check that all uses satisfy our criteria.
240  for (MachineRegisterInfo::reg_nodbg_iterator
241         RI = MRI.reg_nodbg_begin(SnipLI.reg);
242       MachineInstr *MI = RI.skipInstruction();) {
243
244    // Allow copies to/from Reg.
245    if (isFullCopyOf(MI, Reg))
246      continue;
247
248    // Allow stack slot loads.
249    int FI;
250    if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
251      continue;
252
253    // Allow stack slot stores.
254    if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
255      continue;
256
257    // Allow a single additional instruction.
258    if (UseMI && MI != UseMI)
259      return false;
260    UseMI = MI;
261  }
262  return true;
263}
264
265/// collectRegsToSpill - Collect live range snippets that only have a single
266/// real use.
267void InlineSpiller::collectRegsToSpill() {
268  unsigned Reg = Edit->getReg();
269
270  // Main register always spills.
271  RegsToSpill.assign(1, Reg);
272  SnippetCopies.clear();
273
274  // Snippets all have the same original, so there can't be any for an original
275  // register.
276  if (Original == Reg)
277    return;
278
279  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
280       MachineInstr *MI = RI.skipInstruction();) {
281    unsigned SnipReg = isFullCopyOf(MI, Reg);
282    if (!isSibling(SnipReg))
283      continue;
284    LiveInterval &SnipLI = LIS.getInterval(SnipReg);
285    if (!isSnippet(SnipLI))
286      continue;
287    SnippetCopies.insert(MI);
288    if (isRegToSpill(SnipReg))
289      continue;
290    RegsToSpill.push_back(SnipReg);
291    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
292    ++NumSnippets;
293  }
294}
295
296
297//===----------------------------------------------------------------------===//
298//                            Sibling Values
299//===----------------------------------------------------------------------===//
300
301// After live range splitting, some values to be spilled may be defined by
302// copies from sibling registers. We trace the sibling copies back to the
303// original value if it still exists. We need it for rematerialization.
304//
305// Even when the value can't be rematerialized, we still want to determine if
306// the value has already been spilled, or we may want to hoist the spill from a
307// loop.
308
309bool InlineSpiller::isSibling(unsigned Reg) {
310  return TargetRegisterInfo::isVirtualRegister(Reg) &&
311           VRM.getOriginal(Reg) == Original;
312}
313
314#ifndef NDEBUG
315static raw_ostream &operator<<(raw_ostream &OS,
316                               const InlineSpiller::SibValueInfo &SVI) {
317  OS << "spill " << PrintReg(SVI.SpillReg) << ':'
318     << SVI.SpillVNI->id << '@' << SVI.SpillVNI->def;
319  if (SVI.SpillMBB)
320    OS << " in BB#" << SVI.SpillMBB->getNumber();
321  if (SVI.AllDefsAreReloads)
322    OS << " all-reloads";
323  if (SVI.DefByOrigPHI)
324    OS << " orig-phi";
325  if (SVI.KillsSource)
326    OS << " kill";
327  OS << " deps[";
328  for (unsigned i = 0, e = SVI.Deps.size(); i != e; ++i)
329    OS << ' ' << SVI.Deps[i]->id << '@' << SVI.Deps[i]->def;
330  OS << " ]";
331  if (SVI.DefMI)
332    OS << " def: " << *SVI.DefMI;
333  else
334    OS << '\n';
335  return OS;
336}
337#endif
338
339/// propagateSiblingValue - Propagate the value in SVI to dependents if it is
340/// known.  Otherwise remember the dependency for later.
341///
342/// @param SVI SibValues entry to propagate.
343/// @param VNI Dependent value, or NULL to propagate to all saved dependents.
344void InlineSpiller::propagateSiblingValue(SibValueMap::iterator SVI,
345                                          VNInfo *VNI) {
346  // When VNI is non-NULL, add it to SVI's deps, and only propagate to that.
347  TinyPtrVector<VNInfo*> FirstDeps;
348  if (VNI) {
349    FirstDeps.push_back(VNI);
350    SVI->second.Deps.push_back(VNI);
351  }
352
353  // Has the value been completely determined yet?  If not, defer propagation.
354  if (!SVI->second.hasDef())
355    return;
356
357  // Work list of values to propagate.  It would be nice to use a SetVector
358  // here, but then we would be forced to use a SmallSet.
359  SmallVector<SibValueMap::iterator, 8> WorkList(1, SVI);
360  SmallPtrSet<VNInfo*, 8> WorkSet;
361
362  do {
363    SVI = WorkList.pop_back_val();
364    WorkSet.erase(SVI->first);
365    TinyPtrVector<VNInfo*> *Deps = VNI ? &FirstDeps : &SVI->second.Deps;
366    VNI = 0;
367
368    SibValueInfo &SV = SVI->second;
369    if (!SV.SpillMBB)
370      SV.SpillMBB = LIS.getMBBFromIndex(SV.SpillVNI->def);
371
372    DEBUG(dbgs() << "  prop to " << Deps->size() << ": "
373                 << SVI->first->id << '@' << SVI->first->def << ":\t" << SV);
374
375    assert(SV.hasDef() && "Propagating undefined value");
376
377    // Should this value be propagated as a preferred spill candidate?  We don't
378    // propagate values of registers that are about to spill.
379    bool PropSpill = !DisableHoisting && !isRegToSpill(SV.SpillReg);
380    unsigned SpillDepth = ~0u;
381
382    for (TinyPtrVector<VNInfo*>::iterator DepI = Deps->begin(),
383         DepE = Deps->end(); DepI != DepE; ++DepI) {
384      SibValueMap::iterator DepSVI = SibValues.find(*DepI);
385      assert(DepSVI != SibValues.end() && "Dependent value not in SibValues");
386      SibValueInfo &DepSV = DepSVI->second;
387      if (!DepSV.SpillMBB)
388        DepSV.SpillMBB = LIS.getMBBFromIndex(DepSV.SpillVNI->def);
389
390      bool Changed = false;
391
392      // Propagate defining instruction.
393      if (!DepSV.hasDef()) {
394        Changed = true;
395        DepSV.DefMI = SV.DefMI;
396        DepSV.DefByOrigPHI = SV.DefByOrigPHI;
397      }
398
399      // Propagate AllDefsAreReloads.  For PHI values, this computes an AND of
400      // all predecessors.
401      if (!SV.AllDefsAreReloads && DepSV.AllDefsAreReloads) {
402        Changed = true;
403        DepSV.AllDefsAreReloads = false;
404      }
405
406      // Propagate best spill value.
407      if (PropSpill && SV.SpillVNI != DepSV.SpillVNI) {
408        if (SV.SpillMBB == DepSV.SpillMBB) {
409          // DepSV is in the same block.  Hoist when dominated.
410          if (DepSV.KillsSource && SV.SpillVNI->def < DepSV.SpillVNI->def) {
411            // This is an alternative def earlier in the same MBB.
412            // Hoist the spill as far as possible in SpillMBB. This can ease
413            // register pressure:
414            //
415            //   x = def
416            //   y = use x
417            //   s = copy x
418            //
419            // Hoisting the spill of s to immediately after the def removes the
420            // interference between x and y:
421            //
422            //   x = def
423            //   spill x
424            //   y = use x<kill>
425            //
426            // This hoist only helps when the DepSV copy kills its source.
427            Changed = true;
428            DepSV.SpillReg = SV.SpillReg;
429            DepSV.SpillVNI = SV.SpillVNI;
430            DepSV.SpillMBB = SV.SpillMBB;
431          }
432        } else {
433          // DepSV is in a different block.
434          if (SpillDepth == ~0u)
435            SpillDepth = Loops.getLoopDepth(SV.SpillMBB);
436
437          // Also hoist spills to blocks with smaller loop depth, but make sure
438          // that the new value dominates.  Non-phi dependents are always
439          // dominated, phis need checking.
440          if ((Loops.getLoopDepth(DepSV.SpillMBB) > SpillDepth) &&
441              (!DepSVI->first->isPHIDef() ||
442               MDT.dominates(SV.SpillMBB, DepSV.SpillMBB))) {
443            Changed = true;
444            DepSV.SpillReg = SV.SpillReg;
445            DepSV.SpillVNI = SV.SpillVNI;
446            DepSV.SpillMBB = SV.SpillMBB;
447          }
448        }
449      }
450
451      if (!Changed)
452        continue;
453
454      // Something changed in DepSVI. Propagate to dependents.
455      if (WorkSet.insert(DepSVI->first))
456        WorkList.push_back(DepSVI);
457
458      DEBUG(dbgs() << "  update " << DepSVI->first->id << '@'
459            << DepSVI->first->def << " to:\t" << DepSV);
460    }
461  } while (!WorkList.empty());
462}
463
464/// traceSiblingValue - Trace a value that is about to be spilled back to the
465/// real defining instructions by looking through sibling copies. Always stay
466/// within the range of OrigVNI so the registers are known to carry the same
467/// value.
468///
469/// Determine if the value is defined by all reloads, so spilling isn't
470/// necessary - the value is already in the stack slot.
471///
472/// Return a defining instruction that may be a candidate for rematerialization.
473///
474MachineInstr *InlineSpiller::traceSiblingValue(unsigned UseReg, VNInfo *UseVNI,
475                                               VNInfo *OrigVNI) {
476  // Check if a cached value already exists.
477  SibValueMap::iterator SVI;
478  bool Inserted;
479  tie(SVI, Inserted) =
480    SibValues.insert(std::make_pair(UseVNI, SibValueInfo(UseReg, UseVNI)));
481  if (!Inserted) {
482    DEBUG(dbgs() << "Cached value " << PrintReg(UseReg) << ':'
483                 << UseVNI->id << '@' << UseVNI->def << ' ' << SVI->second);
484    return SVI->second.DefMI;
485  }
486
487  DEBUG(dbgs() << "Tracing value " << PrintReg(UseReg) << ':'
488               << UseVNI->id << '@' << UseVNI->def << '\n');
489
490  // List of (Reg, VNI) that have been inserted into SibValues, but need to be
491  // processed.
492  SmallVector<std::pair<unsigned, VNInfo*>, 8> WorkList;
493  WorkList.push_back(std::make_pair(UseReg, UseVNI));
494
495  do {
496    unsigned Reg;
497    VNInfo *VNI;
498    tie(Reg, VNI) = WorkList.pop_back_val();
499    DEBUG(dbgs() << "  " << PrintReg(Reg) << ':' << VNI->id << '@' << VNI->def
500                 << ":\t");
501
502    // First check if this value has already been computed.
503    SVI = SibValues.find(VNI);
504    assert(SVI != SibValues.end() && "Missing SibValues entry");
505
506    // Trace through PHI-defs created by live range splitting.
507    if (VNI->isPHIDef()) {
508      // Stop at original PHIs.  We don't know the value at the predecessors.
509      if (VNI->def == OrigVNI->def) {
510        DEBUG(dbgs() << "orig phi value\n");
511        SVI->second.DefByOrigPHI = true;
512        SVI->second.AllDefsAreReloads = false;
513        propagateSiblingValue(SVI);
514        continue;
515      }
516
517      // This is a PHI inserted by live range splitting.  We could trace the
518      // live-out value from predecessor blocks, but that search can be very
519      // expensive if there are many predecessors and many more PHIs as
520      // generated by tail-dup when it sees an indirectbr.  Instead, look at
521      // all the non-PHI defs that have the same value as OrigVNI.  They must
522      // jointly dominate VNI->def.  This is not optimal since VNI may actually
523      // be jointly dominated by a smaller subset of defs, so there is a change
524      // we will miss a AllDefsAreReloads optimization.
525
526      // Separate all values dominated by OrigVNI into PHIs and non-PHIs.
527      SmallVector<VNInfo*, 8> PHIs, NonPHIs;
528      LiveInterval &LI = LIS.getInterval(Reg);
529      LiveInterval &OrigLI = LIS.getInterval(Original);
530
531      for (LiveInterval::vni_iterator VI = LI.vni_begin(), VE = LI.vni_end();
532           VI != VE; ++VI) {
533        VNInfo *VNI2 = *VI;
534        if (VNI2->isUnused())
535          continue;
536        if (!OrigLI.containsOneValue() &&
537            OrigLI.getVNInfoAt(VNI2->def) != OrigVNI)
538          continue;
539        if (VNI2->isPHIDef() && VNI2->def != OrigVNI->def)
540          PHIs.push_back(VNI2);
541        else
542          NonPHIs.push_back(VNI2);
543      }
544      DEBUG(dbgs() << "split phi value, checking " << PHIs.size()
545                   << " phi-defs, and " << NonPHIs.size()
546                   << " non-phi/orig defs\n");
547
548      // Create entries for all the PHIs.  Don't add them to the worklist, we
549      // are processing all of them in one go here.
550      for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
551        SibValues.insert(std::make_pair(PHIs[i], SibValueInfo(Reg, PHIs[i])));
552
553      // Add every PHI as a dependent of all the non-PHIs.
554      for (unsigned i = 0, e = NonPHIs.size(); i != e; ++i) {
555        VNInfo *NonPHI = NonPHIs[i];
556        // Known value? Try an insertion.
557        tie(SVI, Inserted) =
558          SibValues.insert(std::make_pair(NonPHI, SibValueInfo(Reg, NonPHI)));
559        // Add all the PHIs as dependents of NonPHI.
560        for (unsigned pi = 0, pe = PHIs.size(); pi != pe; ++pi)
561          SVI->second.Deps.push_back(PHIs[pi]);
562        // This is the first time we see NonPHI, add it to the worklist.
563        if (Inserted)
564          WorkList.push_back(std::make_pair(Reg, NonPHI));
565        else
566          // Propagate to all inserted PHIs, not just VNI.
567          propagateSiblingValue(SVI);
568      }
569
570      // Next work list item.
571      continue;
572    }
573
574    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
575    assert(MI && "Missing def");
576
577    // Trace through sibling copies.
578    if (unsigned SrcReg = isFullCopyOf(MI, Reg)) {
579      if (isSibling(SrcReg)) {
580        LiveInterval &SrcLI = LIS.getInterval(SrcReg);
581        LiveRange *SrcLR = SrcLI.getLiveRangeContaining(VNI->def.getRegSlot(true));
582        assert(SrcLR && "Copy from non-existing value");
583        // Check if this COPY kills its source.
584        SVI->second.KillsSource = (SrcLR->end == VNI->def);
585        VNInfo *SrcVNI = SrcLR->valno;
586        DEBUG(dbgs() << "copy of " << PrintReg(SrcReg) << ':'
587                     << SrcVNI->id << '@' << SrcVNI->def
588                     << " kill=" << unsigned(SVI->second.KillsSource) << '\n');
589        // Known sibling source value? Try an insertion.
590        tie(SVI, Inserted) = SibValues.insert(std::make_pair(SrcVNI,
591                                                 SibValueInfo(SrcReg, SrcVNI)));
592        // This is the first time we see Src, add it to the worklist.
593        if (Inserted)
594          WorkList.push_back(std::make_pair(SrcReg, SrcVNI));
595        propagateSiblingValue(SVI, VNI);
596        // Next work list item.
597        continue;
598      }
599    }
600
601    // Track reachable reloads.
602    SVI->second.DefMI = MI;
603    SVI->second.SpillMBB = MI->getParent();
604    int FI;
605    if (Reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot) {
606      DEBUG(dbgs() << "reload\n");
607      propagateSiblingValue(SVI);
608      // Next work list item.
609      continue;
610    }
611
612    // Potential remat candidate.
613    DEBUG(dbgs() << "def " << *MI);
614    SVI->second.AllDefsAreReloads = false;
615    propagateSiblingValue(SVI);
616  } while (!WorkList.empty());
617
618  // Look up the value we were looking for.  We already did this lokup at the
619  // top of the function, but SibValues may have been invalidated.
620  SVI = SibValues.find(UseVNI);
621  assert(SVI != SibValues.end() && "Didn't compute requested info");
622  DEBUG(dbgs() << "  traced to:\t" << SVI->second);
623  return SVI->second.DefMI;
624}
625
626/// analyzeSiblingValues - Trace values defined by sibling copies back to
627/// something that isn't a sibling copy.
628///
629/// Keep track of values that may be rematerializable.
630void InlineSpiller::analyzeSiblingValues() {
631  SibValues.clear();
632
633  // No siblings at all?
634  if (Edit->getReg() == Original)
635    return;
636
637  LiveInterval &OrigLI = LIS.getInterval(Original);
638  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
639    unsigned Reg = RegsToSpill[i];
640    LiveInterval &LI = LIS.getInterval(Reg);
641    for (LiveInterval::const_vni_iterator VI = LI.vni_begin(),
642         VE = LI.vni_end(); VI != VE; ++VI) {
643      VNInfo *VNI = *VI;
644      if (VNI->isUnused())
645        continue;
646      MachineInstr *DefMI = 0;
647      // Check possible sibling copies.
648      if (VNI->isPHIDef() || VNI->getCopy()) {
649        VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
650        assert(OrigVNI && "Def outside original live range");
651        if (OrigVNI->def != VNI->def)
652          DefMI = traceSiblingValue(Reg, VNI, OrigVNI);
653      }
654      if (!DefMI && !VNI->isPHIDef())
655        DefMI = LIS.getInstructionFromIndex(VNI->def);
656      if (DefMI && Edit->checkRematerializable(VNI, DefMI, TII, AA)) {
657        DEBUG(dbgs() << "Value " << PrintReg(Reg) << ':' << VNI->id << '@'
658                     << VNI->def << " may remat from " << *DefMI);
659      }
660    }
661  }
662}
663
664/// hoistSpill - Given a sibling copy that defines a value to be spilled, insert
665/// a spill at a better location.
666bool InlineSpiller::hoistSpill(LiveInterval &SpillLI, MachineInstr *CopyMI) {
667  SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
668  VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
669  assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
670  SibValueMap::iterator I = SibValues.find(VNI);
671  if (I == SibValues.end())
672    return false;
673
674  const SibValueInfo &SVI = I->second;
675
676  // Let the normal folding code deal with the boring case.
677  if (!SVI.AllDefsAreReloads && SVI.SpillVNI == VNI)
678    return false;
679
680  // SpillReg may have been deleted by remat and DCE.
681  if (!LIS.hasInterval(SVI.SpillReg)) {
682    DEBUG(dbgs() << "Stale interval: " << PrintReg(SVI.SpillReg) << '\n');
683    SibValues.erase(I);
684    return false;
685  }
686
687  LiveInterval &SibLI = LIS.getInterval(SVI.SpillReg);
688  if (!SibLI.containsValue(SVI.SpillVNI)) {
689    DEBUG(dbgs() << "Stale value: " << PrintReg(SVI.SpillReg) << '\n');
690    SibValues.erase(I);
691    return false;
692  }
693
694  // Conservatively extend the stack slot range to the range of the original
695  // value. We may be able to do better with stack slot coloring by being more
696  // careful here.
697  assert(StackInt && "No stack slot assigned yet.");
698  LiveInterval &OrigLI = LIS.getInterval(Original);
699  VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
700  StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
701  DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
702               << *StackInt << '\n');
703
704  // Already spilled everywhere.
705  if (SVI.AllDefsAreReloads) {
706    DEBUG(dbgs() << "\tno spill needed: " << SVI);
707    ++NumOmitReloadSpill;
708    return true;
709  }
710  // We are going to spill SVI.SpillVNI immediately after its def, so clear out
711  // any later spills of the same value.
712  eliminateRedundantSpills(SibLI, SVI.SpillVNI);
713
714  MachineBasicBlock *MBB = LIS.getMBBFromIndex(SVI.SpillVNI->def);
715  MachineBasicBlock::iterator MII;
716  if (SVI.SpillVNI->isPHIDef())
717    MII = MBB->SkipPHIsAndLabels(MBB->begin());
718  else {
719    MachineInstr *DefMI = LIS.getInstructionFromIndex(SVI.SpillVNI->def);
720    assert(DefMI && "Defining instruction disappeared");
721    MII = DefMI;
722    ++MII;
723  }
724  // Insert spill without kill flag immediately after def.
725  TII.storeRegToStackSlot(*MBB, MII, SVI.SpillReg, false, StackSlot,
726                          MRI.getRegClass(SVI.SpillReg), &TRI);
727  --MII; // Point to store instruction.
728  LIS.InsertMachineInstrInMaps(MII);
729  DEBUG(dbgs() << "\thoisted: " << SVI.SpillVNI->def << '\t' << *MII);
730
731  ++NumSpills;
732  ++NumHoists;
733  return true;
734}
735
736/// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
737/// redundant spills of this value in SLI.reg and sibling copies.
738void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
739  assert(VNI && "Missing value");
740  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
741  WorkList.push_back(std::make_pair(&SLI, VNI));
742  assert(StackInt && "No stack slot assigned yet.");
743
744  do {
745    LiveInterval *LI;
746    tie(LI, VNI) = WorkList.pop_back_val();
747    unsigned Reg = LI->reg;
748    DEBUG(dbgs() << "Checking redundant spills for "
749                 << VNI->id << '@' << VNI->def << " in " << *LI << '\n');
750
751    // Regs to spill are taken care of.
752    if (isRegToSpill(Reg))
753      continue;
754
755    // Add all of VNI's live range to StackInt.
756    StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
757    DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
758
759    // Find all spills and copies of VNI.
760    for (MachineRegisterInfo::use_nodbg_iterator UI = MRI.use_nodbg_begin(Reg);
761         MachineInstr *MI = UI.skipInstruction();) {
762      if (!MI->isCopy() && !MI->getDesc().mayStore())
763        continue;
764      SlotIndex Idx = LIS.getInstructionIndex(MI);
765      if (LI->getVNInfoAt(Idx) != VNI)
766        continue;
767
768      // Follow sibling copies down the dominator tree.
769      if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
770        if (isSibling(DstReg)) {
771           LiveInterval &DstLI = LIS.getInterval(DstReg);
772           VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
773           assert(DstVNI && "Missing defined value");
774           assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
775           WorkList.push_back(std::make_pair(&DstLI, DstVNI));
776        }
777        continue;
778      }
779
780      // Erase spills.
781      int FI;
782      if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
783        DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << *MI);
784        // eliminateDeadDefs won't normally remove stores, so switch opcode.
785        MI->setDesc(TII.get(TargetOpcode::KILL));
786        DeadDefs.push_back(MI);
787        ++NumSpillsRemoved;
788        --NumSpills;
789      }
790    }
791  } while (!WorkList.empty());
792}
793
794
795//===----------------------------------------------------------------------===//
796//                            Rematerialization
797//===----------------------------------------------------------------------===//
798
799/// markValueUsed - Remember that VNI failed to rematerialize, so its defining
800/// instruction cannot be eliminated. See through snippet copies
801void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
802  SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
803  WorkList.push_back(std::make_pair(LI, VNI));
804  do {
805    tie(LI, VNI) = WorkList.pop_back_val();
806    if (!UsedValues.insert(VNI))
807      continue;
808
809    if (VNI->isPHIDef()) {
810      MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
811      for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
812             PE = MBB->pred_end(); PI != PE; ++PI) {
813        VNInfo *PVNI = LI->getVNInfoAt(LIS.getMBBEndIdx(*PI).getPrevSlot());
814        if (PVNI)
815          WorkList.push_back(std::make_pair(LI, PVNI));
816      }
817      continue;
818    }
819
820    // Follow snippet copies.
821    MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
822    if (!SnippetCopies.count(MI))
823      continue;
824    LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
825    assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
826    VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
827    assert(SnipVNI && "Snippet undefined before copy");
828    WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
829  } while (!WorkList.empty());
830}
831
832/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
833bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg,
834                                     MachineBasicBlock::iterator MI) {
835  SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
836  VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
837
838  if (!ParentVNI) {
839    DEBUG(dbgs() << "\tadding <undef> flags: ");
840    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
841      MachineOperand &MO = MI->getOperand(i);
842      if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
843        MO.setIsUndef();
844    }
845    DEBUG(dbgs() << UseIdx << '\t' << *MI);
846    return true;
847  }
848
849  if (SnippetCopies.count(MI))
850    return false;
851
852  // Use an OrigVNI from traceSiblingValue when ParentVNI is a sibling copy.
853  LiveRangeEdit::Remat RM(ParentVNI);
854  SibValueMap::const_iterator SibI = SibValues.find(ParentVNI);
855  if (SibI != SibValues.end())
856    RM.OrigMI = SibI->second.DefMI;
857  if (!Edit->canRematerializeAt(RM, UseIdx, false, LIS)) {
858    markValueUsed(&VirtReg, ParentVNI);
859    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
860    return false;
861  }
862
863  // If the instruction also writes VirtReg.reg, it had better not require the
864  // same register for uses and defs.
865  bool Reads, Writes;
866  SmallVector<unsigned, 8> Ops;
867  tie(Reads, Writes) = MI->readsWritesVirtualRegister(VirtReg.reg, &Ops);
868  if (Writes) {
869    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
870      MachineOperand &MO = MI->getOperand(Ops[i]);
871      if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
872        markValueUsed(&VirtReg, ParentVNI);
873        DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
874        return false;
875      }
876    }
877  }
878
879  // Before rematerializing into a register for a single instruction, try to
880  // fold a load into the instruction. That avoids allocating a new register.
881  if (RM.OrigMI->getDesc().canFoldAsLoad() &&
882      foldMemoryOperand(MI, Ops, RM.OrigMI)) {
883    Edit->markRematerialized(RM.ParentVNI);
884    ++NumFoldedLoads;
885    return true;
886  }
887
888  // Alocate a new register for the remat.
889  LiveInterval &NewLI = Edit->createFrom(Original, LIS, VRM);
890  NewLI.markNotSpillable();
891
892  // Finally we can rematerialize OrigMI before MI.
893  SlotIndex DefIdx = Edit->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
894                                           LIS, TII, TRI);
895  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
896               << *LIS.getInstructionFromIndex(DefIdx));
897
898  // Replace operands
899  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
900    MachineOperand &MO = MI->getOperand(Ops[i]);
901    if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
902      MO.setReg(NewLI.reg);
903      MO.setIsKill();
904    }
905  }
906  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
907
908  VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, LIS.getVNInfoAllocator());
909  NewLI.addRange(LiveRange(DefIdx, UseIdx.getRegSlot(), DefVNI));
910  DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
911  ++NumRemats;
912  return true;
913}
914
915/// reMaterializeAll - Try to rematerialize as many uses as possible,
916/// and trim the live ranges after.
917void InlineSpiller::reMaterializeAll() {
918  // analyzeSiblingValues has already tested all relevant defining instructions.
919  if (!Edit->anyRematerializable(LIS, TII, AA))
920    return;
921
922  UsedValues.clear();
923
924  // Try to remat before all uses of snippets.
925  bool anyRemat = false;
926  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
927    unsigned Reg = RegsToSpill[i];
928    LiveInterval &LI = LIS.getInterval(Reg);
929    for (MachineRegisterInfo::use_nodbg_iterator
930         RI = MRI.use_nodbg_begin(Reg);
931         MachineInstr *MI = RI.skipInstruction();)
932      anyRemat |= reMaterializeFor(LI, MI);
933  }
934  if (!anyRemat)
935    return;
936
937  // Remove any values that were completely rematted.
938  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
939    unsigned Reg = RegsToSpill[i];
940    LiveInterval &LI = LIS.getInterval(Reg);
941    for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
942         I != E; ++I) {
943      VNInfo *VNI = *I;
944      if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
945        continue;
946      MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
947      MI->addRegisterDead(Reg, &TRI);
948      if (!MI->allDefsAreDead())
949        continue;
950      DEBUG(dbgs() << "All defs dead: " << *MI);
951      DeadDefs.push_back(MI);
952    }
953  }
954
955  // Eliminate dead code after remat. Note that some snippet copies may be
956  // deleted here.
957  if (DeadDefs.empty())
958    return;
959  DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
960  Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
961
962  // Get rid of deleted and empty intervals.
963  for (unsigned i = RegsToSpill.size(); i != 0; --i) {
964    unsigned Reg = RegsToSpill[i-1];
965    if (!LIS.hasInterval(Reg)) {
966      RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
967      continue;
968    }
969    LiveInterval &LI = LIS.getInterval(Reg);
970    if (!LI.empty())
971      continue;
972    Edit->eraseVirtReg(Reg, LIS);
973    RegsToSpill.erase(RegsToSpill.begin() + (i - 1));
974  }
975  DEBUG(dbgs() << RegsToSpill.size() << " registers to spill after remat.\n");
976}
977
978
979//===----------------------------------------------------------------------===//
980//                                 Spilling
981//===----------------------------------------------------------------------===//
982
983/// If MI is a load or store of StackSlot, it can be removed.
984bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
985  int FI = 0;
986  unsigned InstrReg = TII.isLoadFromStackSlot(MI, FI);
987  bool IsLoad = InstrReg;
988  if (!IsLoad)
989    InstrReg = TII.isStoreToStackSlot(MI, FI);
990
991  // We have a stack access. Is it the right register and slot?
992  if (InstrReg != Reg || FI != StackSlot)
993    return false;
994
995  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
996  LIS.RemoveMachineInstrFromMaps(MI);
997  MI->eraseFromParent();
998
999  if (IsLoad) {
1000    ++NumReloadsRemoved;
1001    --NumReloads;
1002  } else {
1003    ++NumSpillsRemoved;
1004    --NumSpills;
1005  }
1006
1007  return true;
1008}
1009
1010/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
1011/// @param MI     Instruction using or defining the current register.
1012/// @param Ops    Operand indices from readsWritesVirtualRegister().
1013/// @param LoadMI Load instruction to use instead of stack slot when non-null.
1014/// @return       True on success, and MI will be erased.
1015bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
1016                                      const SmallVectorImpl<unsigned> &Ops,
1017                                      MachineInstr *LoadMI) {
1018  bool WasCopy = MI->isCopy();
1019  unsigned ImpReg = 0;
1020
1021  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
1022  // operands.
1023  SmallVector<unsigned, 8> FoldOps;
1024  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1025    unsigned Idx = Ops[i];
1026    MachineOperand &MO = MI->getOperand(Idx);
1027    if (MO.isImplicit()) {
1028      ImpReg = MO.getReg();
1029      continue;
1030    }
1031    // FIXME: Teach targets to deal with subregs.
1032    if (MO.getSubReg())
1033      return false;
1034    // We cannot fold a load instruction into a def.
1035    if (LoadMI && MO.isDef())
1036      return false;
1037    // Tied use operands should not be passed to foldMemoryOperand.
1038    if (!MI->isRegTiedToDefOperand(Idx))
1039      FoldOps.push_back(Idx);
1040  }
1041
1042  MachineInstr *FoldMI =
1043                LoadMI ? TII.foldMemoryOperand(MI, FoldOps, LoadMI)
1044                       : TII.foldMemoryOperand(MI, FoldOps, StackSlot);
1045  if (!FoldMI)
1046    return false;
1047  LIS.ReplaceMachineInstrInMaps(MI, FoldMI);
1048  MI->eraseFromParent();
1049
1050  // TII.foldMemoryOperand may have left some implicit operands on the
1051  // instruction.  Strip them.
1052  if (ImpReg)
1053    for (unsigned i = FoldMI->getNumOperands(); i; --i) {
1054      MachineOperand &MO = FoldMI->getOperand(i - 1);
1055      if (!MO.isReg() || !MO.isImplicit())
1056        break;
1057      if (MO.getReg() == ImpReg)
1058        FoldMI->RemoveOperand(i - 1);
1059    }
1060
1061  DEBUG(dbgs() << "\tfolded:  " << LIS.getInstructionIndex(FoldMI) << '\t'
1062               << *FoldMI);
1063  if (!WasCopy)
1064    ++NumFolded;
1065  else if (Ops.front() == 0)
1066    ++NumSpills;
1067  else
1068    ++NumReloads;
1069  return true;
1070}
1071
1072/// insertReload - Insert a reload of NewLI.reg before MI.
1073void InlineSpiller::insertReload(LiveInterval &NewLI,
1074                                 SlotIndex Idx,
1075                                 MachineBasicBlock::iterator MI) {
1076  MachineBasicBlock &MBB = *MI->getParent();
1077  TII.loadRegFromStackSlot(MBB, MI, NewLI.reg, StackSlot,
1078                           MRI.getRegClass(NewLI.reg), &TRI);
1079  --MI; // Point to load instruction.
1080  SlotIndex LoadIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1081  DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
1082  VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
1083                                       LIS.getVNInfoAllocator());
1084  NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
1085  ++NumReloads;
1086}
1087
1088/// insertSpill - Insert a spill of NewLI.reg after MI.
1089void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
1090                                SlotIndex Idx, MachineBasicBlock::iterator MI) {
1091  MachineBasicBlock &MBB = *MI->getParent();
1092  TII.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, StackSlot,
1093                          MRI.getRegClass(NewLI.reg), &TRI);
1094  --MI; // Point to store instruction.
1095  SlotIndex StoreIdx = LIS.InsertMachineInstrInMaps(MI).getRegSlot();
1096  DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
1097  VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
1098  NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
1099  ++NumSpills;
1100}
1101
1102/// spillAroundUses - insert spill code around each use of Reg.
1103void InlineSpiller::spillAroundUses(unsigned Reg) {
1104  DEBUG(dbgs() << "spillAroundUses " << PrintReg(Reg) << '\n');
1105  LiveInterval &OldLI = LIS.getInterval(Reg);
1106
1107  // Iterate over instructions using Reg.
1108  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Reg);
1109       MachineInstr *MI = RI.skipInstruction();) {
1110
1111    // Debug values are not allowed to affect codegen.
1112    if (MI->isDebugValue()) {
1113      // Modify DBG_VALUE now that the value is in a spill slot.
1114      uint64_t Offset = MI->getOperand(1).getImm();
1115      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
1116      DebugLoc DL = MI->getDebugLoc();
1117      if (MachineInstr *NewDV = TII.emitFrameIndexDebugValue(MF, StackSlot,
1118                                                           Offset, MDPtr, DL)) {
1119        DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
1120        MachineBasicBlock *MBB = MI->getParent();
1121        MBB->insert(MBB->erase(MI), NewDV);
1122      } else {
1123        DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
1124        MI->eraseFromParent();
1125      }
1126      continue;
1127    }
1128
1129    // Ignore copies to/from snippets. We'll delete them.
1130    if (SnippetCopies.count(MI))
1131      continue;
1132
1133    // Stack slot accesses may coalesce away.
1134    if (coalesceStackAccess(MI, Reg))
1135      continue;
1136
1137    // Analyze instruction.
1138    bool Reads, Writes;
1139    SmallVector<unsigned, 8> Ops;
1140    tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
1141
1142    // Find the slot index where this instruction reads and writes OldLI.
1143    // This is usually the def slot, except for tied early clobbers.
1144    SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
1145    if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1146      if (SlotIndex::isSameInstr(Idx, VNI->def))
1147        Idx = VNI->def;
1148
1149    // Check for a sibling copy.
1150    unsigned SibReg = isFullCopyOf(MI, Reg);
1151    if (SibReg && isSibling(SibReg)) {
1152      // This may actually be a copy between snippets.
1153      if (isRegToSpill(SibReg)) {
1154        DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1155        SnippetCopies.insert(MI);
1156        continue;
1157      }
1158      if (Writes) {
1159        // Hoist the spill of a sib-reg copy.
1160        if (hoistSpill(OldLI, MI)) {
1161          // This COPY is now dead, the value is already in the stack slot.
1162          MI->getOperand(0).setIsDead();
1163          DeadDefs.push_back(MI);
1164          continue;
1165        }
1166      } else {
1167        // This is a reload for a sib-reg copy. Drop spills downstream.
1168        LiveInterval &SibLI = LIS.getInterval(SibReg);
1169        eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1170        // The COPY will fold to a reload below.
1171      }
1172    }
1173
1174    // Attempt to fold memory ops.
1175    if (foldMemoryOperand(MI, Ops))
1176      continue;
1177
1178    // Allocate interval around instruction.
1179    // FIXME: Infer regclass from instruction alone.
1180    LiveInterval &NewLI = Edit->createFrom(Reg, LIS, VRM);
1181    NewLI.markNotSpillable();
1182
1183    if (Reads)
1184      insertReload(NewLI, Idx, MI);
1185
1186    // Rewrite instruction operands.
1187    bool hasLiveDef = false;
1188    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
1189      MachineOperand &MO = MI->getOperand(Ops[i]);
1190      MO.setReg(NewLI.reg);
1191      if (MO.isUse()) {
1192        if (!MI->isRegTiedToDefOperand(Ops[i]))
1193          MO.setIsKill();
1194      } else {
1195        if (!MO.isDead())
1196          hasLiveDef = true;
1197      }
1198    }
1199    DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI);
1200
1201    // FIXME: Use a second vreg if instruction has no tied ops.
1202    if (Writes) {
1203     if (hasLiveDef)
1204      insertSpill(NewLI, OldLI, Idx, MI);
1205     else {
1206       // This instruction defines a dead value.  We don't need to spill it,
1207       // but do create a live range for the dead value.
1208       VNInfo *VNI = NewLI.getNextValue(Idx, 0, LIS.getVNInfoAllocator());
1209       NewLI.addRange(LiveRange(Idx, Idx.getNextSlot(), VNI));
1210     }
1211    }
1212
1213    DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
1214  }
1215}
1216
1217/// spillAll - Spill all registers remaining after rematerialization.
1218void InlineSpiller::spillAll() {
1219  // Update LiveStacks now that we are committed to spilling.
1220  if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1221    StackSlot = VRM.assignVirt2StackSlot(Original);
1222    StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1223    StackInt->getNextValue(SlotIndex(), 0, LSS.getVNInfoAllocator());
1224  } else
1225    StackInt = &LSS.getInterval(StackSlot);
1226
1227  if (Original != Edit->getReg())
1228    VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1229
1230  assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1231  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1232    StackInt->MergeRangesInAsValue(LIS.getInterval(RegsToSpill[i]),
1233                                   StackInt->getValNumInfo(0));
1234  DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1235
1236  // Spill around uses of all RegsToSpill.
1237  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1238    spillAroundUses(RegsToSpill[i]);
1239
1240  // Hoisted spills may cause dead code.
1241  if (!DeadDefs.empty()) {
1242    DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1243    Edit->eliminateDeadDefs(DeadDefs, LIS, VRM, TII);
1244  }
1245
1246  // Finally delete the SnippetCopies.
1247  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i) {
1248    for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(RegsToSpill[i]);
1249         MachineInstr *MI = RI.skipInstruction();) {
1250      assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
1251      // FIXME: Do this with a LiveRangeEdit callback.
1252      LIS.RemoveMachineInstrFromMaps(MI);
1253      MI->eraseFromParent();
1254    }
1255  }
1256
1257  // Delete all spilled registers.
1258  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
1259    Edit->eraseVirtReg(RegsToSpill[i], LIS);
1260}
1261
1262void InlineSpiller::spill(LiveRangeEdit &edit) {
1263  ++NumSpilledRanges;
1264  Edit = &edit;
1265  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
1266         && "Trying to spill a stack slot.");
1267  // Share a stack slot among all descendants of Original.
1268  Original = VRM.getOriginal(edit.getReg());
1269  StackSlot = VRM.getStackSlot(Original);
1270  StackInt = 0;
1271
1272  DEBUG(dbgs() << "Inline spilling "
1273               << MRI.getRegClass(edit.getReg())->getName()
1274               << ':' << edit.getParent() << "\nFrom original "
1275               << LIS.getInterval(Original) << '\n');
1276  assert(edit.getParent().isSpillable() &&
1277         "Attempting to spill already spilled value.");
1278  assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1279
1280  collectRegsToSpill();
1281  analyzeSiblingValues();
1282  reMaterializeAll();
1283
1284  // Remat may handle everything.
1285  if (!RegsToSpill.empty())
1286    spillAll();
1287
1288  Edit->calculateRegClassAndHint(MF, LIS, Loops);
1289}
1290