InlineSpiller.cpp revision 7792e980c43536814ea42448db9799b4da32fef6
1//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The inline spiller modifies the machine function directly instead of
11// inserting spills and restores in VirtRegMap.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "regalloc"
16#include "Spiller.h"
17#include "LiveRangeEdit.h"
18#include "VirtRegMap.h"
19#include "llvm/Analysis/AliasAnalysis.h"
20#include "llvm/CodeGen/LiveIntervalAnalysis.h"
21#include "llvm/CodeGen/LiveStackAnalysis.h"
22#include "llvm/CodeGen/MachineFrameInfo.h"
23#include "llvm/CodeGen/MachineFunction.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/Target/TargetMachine.h"
26#include "llvm/Target/TargetInstrInfo.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace llvm;
31
32namespace {
33class InlineSpiller : public Spiller {
34  MachineFunctionPass &pass_;
35  MachineFunction &mf_;
36  LiveIntervals &lis_;
37  LiveStacks &lss_;
38  AliasAnalysis *aa_;
39  VirtRegMap &vrm_;
40  MachineFrameInfo &mfi_;
41  MachineRegisterInfo &mri_;
42  const TargetInstrInfo &tii_;
43  const TargetRegisterInfo &tri_;
44  const BitVector reserved_;
45
46  // Variables that are valid during spill(), but used by multiple methods.
47  LiveRangeEdit *edit_;
48  const TargetRegisterClass *rc_;
49  int stackSlot_;
50
51  // All registers to spill to stackSlot_, including the main register.
52  SmallVector<unsigned, 8> RegsToSpill;
53
54  // All COPY instructions to/from snippets.
55  // They are ignored since both operands refer to the same stack slot.
56  SmallPtrSet<MachineInstr*, 8> SnippetCopies;
57
58  // Values that failed to remat at some point.
59  SmallPtrSet<VNInfo*, 8> usedValues_;
60
61  ~InlineSpiller() {}
62
63public:
64  InlineSpiller(MachineFunctionPass &pass,
65                MachineFunction &mf,
66                VirtRegMap &vrm)
67    : pass_(pass),
68      mf_(mf),
69      lis_(pass.getAnalysis<LiveIntervals>()),
70      lss_(pass.getAnalysis<LiveStacks>()),
71      aa_(&pass.getAnalysis<AliasAnalysis>()),
72      vrm_(vrm),
73      mfi_(*mf.getFrameInfo()),
74      mri_(mf.getRegInfo()),
75      tii_(*mf.getTarget().getInstrInfo()),
76      tri_(*mf.getTarget().getRegisterInfo()),
77      reserved_(tri_.getReservedRegs(mf_)) {}
78
79  void spill(LiveRangeEdit &);
80
81private:
82  bool isSnippet(const LiveInterval &SnipLI);
83  void collectRegsToSpill();
84
85  bool reMaterializeFor(MachineBasicBlock::iterator MI);
86  void reMaterializeAll();
87
88  bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
89  bool foldMemoryOperand(MachineBasicBlock::iterator MI,
90                         const SmallVectorImpl<unsigned> &Ops,
91                         MachineInstr *LoadMI = 0);
92  void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
93  void insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
94                   MachineBasicBlock::iterator MI);
95
96  void spillAroundUses(unsigned Reg);
97};
98}
99
100namespace llvm {
101Spiller *createInlineSpiller(MachineFunctionPass &pass,
102                             MachineFunction &mf,
103                             VirtRegMap &vrm) {
104  return new InlineSpiller(pass, mf, vrm);
105}
106}
107
108//===----------------------------------------------------------------------===//
109//                                Snippets
110//===----------------------------------------------------------------------===//
111
112// When spilling a virtual register, we also spill any snippets it is connected
113// to. The snippets are small live ranges that only have a single real use,
114// leftovers from live range splitting. Spilling them enables memory operand
115// folding or tightens the live range around the single use.
116//
117// This minimizes register pressure and maximizes the store-to-load distance for
118// spill slots which can be important in tight loops.
119
120/// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
121/// otherwise return 0.
122static unsigned isFullCopyOf(const MachineInstr *MI, unsigned Reg) {
123  if (!MI->isCopy())
124    return 0;
125  if (MI->getOperand(0).getSubReg() != 0)
126    return 0;
127  if (MI->getOperand(1).getSubReg() != 0)
128    return 0;
129  if (MI->getOperand(0).getReg() == Reg)
130      return MI->getOperand(1).getReg();
131  if (MI->getOperand(1).getReg() == Reg)
132      return MI->getOperand(0).getReg();
133  return 0;
134}
135
136/// isSnippet - Identify if a live interval is a snippet that should be spilled.
137/// It is assumed that SnipLI is a virtual register with the same original as
138/// edit_->getReg().
139bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
140  unsigned Reg = edit_->getReg();
141
142  // A snippet is a tiny live range with only a single instruction using it
143  // besides copies to/from Reg or spills/fills. We accept:
144  //
145  //   %snip = COPY %Reg / FILL fi#
146  //   %snip = USE %snip
147  //   %Reg = COPY %snip / SPILL %snip, fi#
148  //
149  if (SnipLI.getNumValNums() > 2 || !lis_.intervalIsInOneMBB(SnipLI))
150    return false;
151
152  MachineInstr *UseMI = 0;
153
154  // Check that all uses satisfy our criteria.
155  for (MachineRegisterInfo::reg_nodbg_iterator
156         RI = mri_.reg_nodbg_begin(SnipLI.reg);
157       MachineInstr *MI = RI.skipInstruction();) {
158
159    // Allow copies to/from Reg.
160    if (isFullCopyOf(MI, Reg))
161      continue;
162
163    // Allow stack slot loads.
164    int FI;
165    if (SnipLI.reg == tii_.isLoadFromStackSlot(MI, FI) && FI == stackSlot_)
166      continue;
167
168    // Allow stack slot stores.
169    if (SnipLI.reg == tii_.isStoreToStackSlot(MI, FI) && FI == stackSlot_)
170      continue;
171
172    // Allow a single additional instruction.
173    if (UseMI && MI != UseMI)
174      return false;
175    UseMI = MI;
176  }
177  return true;
178}
179
180/// collectRegsToSpill - Collect live range snippets that only have a single
181/// real use.
182void InlineSpiller::collectRegsToSpill() {
183  unsigned Reg = edit_->getReg();
184  unsigned Orig = vrm_.getOriginal(Reg);
185
186  // Main register always spills.
187  RegsToSpill.assign(1, Reg);
188  SnippetCopies.clear();
189
190  // Snippets all have the same original, so there can't be any for an original
191  // register.
192  if (Orig == Reg)
193    return;
194
195  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(Reg);
196       MachineInstr *MI = RI.skipInstruction();) {
197    unsigned SnipReg = isFullCopyOf(MI, Reg);
198    if (!SnipReg)
199      continue;
200    if (!TargetRegisterInfo::isVirtualRegister(SnipReg))
201      continue;
202    if (vrm_.getOriginal(SnipReg) != Orig)
203      continue;
204    LiveInterval &SnipLI = lis_.getInterval(SnipReg);
205    if (!isSnippet(SnipLI))
206      continue;
207    SnippetCopies.insert(MI);
208    if (std::find(RegsToSpill.begin(), RegsToSpill.end(),
209                  SnipReg) == RegsToSpill.end())
210      RegsToSpill.push_back(SnipReg);
211
212    DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
213  }
214}
215
216/// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
217bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
218  SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
219  VNInfo *OrigVNI = edit_->getParent().getVNInfoAt(UseIdx);
220
221  if (!OrigVNI) {
222    DEBUG(dbgs() << "\tadding <undef> flags: ");
223    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
224      MachineOperand &MO = MI->getOperand(i);
225      if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg())
226        MO.setIsUndef();
227    }
228    DEBUG(dbgs() << UseIdx << '\t' << *MI);
229    return true;
230  }
231
232  // FIXME: Properly remat for snippets as well.
233  if (SnippetCopies.count(MI)) {
234    usedValues_.insert(OrigVNI);
235    return false;
236  }
237
238  LiveRangeEdit::Remat RM(OrigVNI);
239  if (!edit_->canRematerializeAt(RM, UseIdx, false, lis_)) {
240    usedValues_.insert(OrigVNI);
241    DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
242    return false;
243  }
244
245  // If the instruction also writes edit_->getReg(), it had better not require
246  // the same register for uses and defs.
247  bool Reads, Writes;
248  SmallVector<unsigned, 8> Ops;
249  tie(Reads, Writes) = MI->readsWritesVirtualRegister(edit_->getReg(), &Ops);
250  if (Writes) {
251    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
252      MachineOperand &MO = MI->getOperand(Ops[i]);
253      if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
254        usedValues_.insert(OrigVNI);
255        DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
256        return false;
257      }
258    }
259  }
260
261  // Before rematerializing into a register for a single instruction, try to
262  // fold a load into the instruction. That avoids allocating a new register.
263  if (RM.OrigMI->getDesc().canFoldAsLoad() &&
264      foldMemoryOperand(MI, Ops, RM.OrigMI)) {
265    edit_->markRematerialized(RM.ParentVNI);
266    return true;
267  }
268
269  // Alocate a new register for the remat.
270  LiveInterval &NewLI = edit_->create(mri_, lis_, vrm_);
271  NewLI.markNotSpillable();
272
273  // Rematting for a copy: Set allocation hint to be the destination register.
274  if (MI->isCopy())
275    mri_.setRegAllocationHint(NewLI.reg, 0, MI->getOperand(0).getReg());
276
277  // Finally we can rematerialize OrigMI before MI.
278  SlotIndex DefIdx = edit_->rematerializeAt(*MI->getParent(), MI, NewLI.reg, RM,
279                                            lis_, tii_, tri_);
280  DEBUG(dbgs() << "\tremat:  " << DefIdx << '\t'
281               << *lis_.getInstructionFromIndex(DefIdx));
282
283  // Replace operands
284  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
285    MachineOperand &MO = MI->getOperand(Ops[i]);
286    if (MO.isReg() && MO.isUse() && MO.getReg() == edit_->getReg()) {
287      MO.setReg(NewLI.reg);
288      MO.setIsKill();
289    }
290  }
291  DEBUG(dbgs() << "\t        " << UseIdx << '\t' << *MI);
292
293  VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, lis_.getVNInfoAllocator());
294  NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
295  DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
296  return true;
297}
298
299/// reMaterializeAll - Try to rematerialize as many uses as possible,
300/// and trim the live ranges after.
301void InlineSpiller::reMaterializeAll() {
302  // Do a quick scan of the interval values to find if any are remattable.
303  if (!edit_->anyRematerializable(lis_, tii_, aa_))
304    return;
305
306  usedValues_.clear();
307
308  // Try to remat before all uses of edit_->getReg().
309  bool anyRemat = false;
310  for (MachineRegisterInfo::use_nodbg_iterator
311       RI = mri_.use_nodbg_begin(edit_->getReg());
312       MachineInstr *MI = RI.skipInstruction();)
313     anyRemat |= reMaterializeFor(MI);
314
315  if (!anyRemat)
316    return;
317
318  // Remove any values that were completely rematted.
319  bool anyRemoved = false;
320  for (LiveInterval::vni_iterator I = edit_->getParent().vni_begin(),
321       E = edit_->getParent().vni_end(); I != E; ++I) {
322    VNInfo *VNI = *I;
323    if (VNI->hasPHIKill() || !edit_->didRematerialize(VNI) ||
324        usedValues_.count(VNI))
325      continue;
326    MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
327    DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
328    lis_.RemoveMachineInstrFromMaps(DefMI);
329    vrm_.RemoveMachineInstrFromMaps(DefMI);
330    DefMI->eraseFromParent();
331    VNI->def = SlotIndex();
332    anyRemoved = true;
333  }
334
335  if (!anyRemoved)
336    return;
337
338  // Removing values may cause debug uses where parent is not live.
339  for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(edit_->getReg());
340       MachineInstr *MI = RI.skipInstruction();) {
341    if (!MI->isDebugValue())
342      continue;
343    // Try to preserve the debug value if parent is live immediately after it.
344    MachineBasicBlock::iterator NextMI = MI;
345    ++NextMI;
346    if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) {
347      SlotIndex Idx = lis_.getInstructionIndex(NextMI);
348      VNInfo *VNI = edit_->getParent().getVNInfoAt(Idx);
349      if (VNI && (VNI->hasPHIKill() || usedValues_.count(VNI)))
350        continue;
351    }
352    DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
353    MI->eraseFromParent();
354  }
355}
356
357/// If MI is a load or store of stackSlot_, it can be removed.
358bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
359  int FI = 0;
360  unsigned InstrReg;
361  if (!(InstrReg = tii_.isLoadFromStackSlot(MI, FI)) &&
362      !(InstrReg = tii_.isStoreToStackSlot(MI, FI)))
363    return false;
364
365  // We have a stack access. Is it the right register and slot?
366  if (InstrReg != Reg || FI != stackSlot_)
367    return false;
368
369  DEBUG(dbgs() << "Coalescing stack access: " << *MI);
370  lis_.RemoveMachineInstrFromMaps(MI);
371  MI->eraseFromParent();
372  return true;
373}
374
375/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
376/// @param MI     Instruction using or defining the current register.
377/// @param Ops    Operand indices from readsWritesVirtualRegister().
378/// @param LoadMI Load instruction to use instead of stack slot when non-null.
379/// @return       True on success, and MI will be erased.
380bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
381                                      const SmallVectorImpl<unsigned> &Ops,
382                                      MachineInstr *LoadMI) {
383  // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
384  // operands.
385  SmallVector<unsigned, 8> FoldOps;
386  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
387    unsigned Idx = Ops[i];
388    MachineOperand &MO = MI->getOperand(Idx);
389    if (MO.isImplicit())
390      continue;
391    // FIXME: Teach targets to deal with subregs.
392    if (MO.getSubReg())
393      return false;
394    // We cannot fold a load instruction into a def.
395    if (LoadMI && MO.isDef())
396      return false;
397    // Tied use operands should not be passed to foldMemoryOperand.
398    if (!MI->isRegTiedToDefOperand(Idx))
399      FoldOps.push_back(Idx);
400  }
401
402  MachineInstr *FoldMI =
403                LoadMI ? tii_.foldMemoryOperand(MI, FoldOps, LoadMI)
404                       : tii_.foldMemoryOperand(MI, FoldOps, stackSlot_);
405  if (!FoldMI)
406    return false;
407  lis_.ReplaceMachineInstrInMaps(MI, FoldMI);
408  if (!LoadMI)
409    vrm_.addSpillSlotUse(stackSlot_, FoldMI);
410  MI->eraseFromParent();
411  DEBUG(dbgs() << "\tfolded: " << *FoldMI);
412  return true;
413}
414
415/// insertReload - Insert a reload of NewLI.reg before MI.
416void InlineSpiller::insertReload(LiveInterval &NewLI,
417                                 MachineBasicBlock::iterator MI) {
418  MachineBasicBlock &MBB = *MI->getParent();
419  SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
420  tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
421  --MI; // Point to load instruction.
422  SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
423  vrm_.addSpillSlotUse(stackSlot_, MI);
424  DEBUG(dbgs() << "\treload:  " << LoadIdx << '\t' << *MI);
425  VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0,
426                                       lis_.getVNInfoAllocator());
427  NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
428}
429
430/// insertSpill - Insert a spill of NewLI.reg after MI.
431void InlineSpiller::insertSpill(LiveInterval &NewLI, const LiveInterval &OldLI,
432                                MachineBasicBlock::iterator MI) {
433  MachineBasicBlock &MBB = *MI->getParent();
434
435  // Get the defined value. It could be an early clobber so keep the def index.
436  SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
437  VNInfo *VNI = OldLI.getVNInfoAt(Idx);
438  assert(VNI && VNI->def.getDefIndex() == Idx && "Inconsistent VNInfo");
439  Idx = VNI->def;
440
441  tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
442  --MI; // Point to store instruction.
443  SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
444  vrm_.addSpillSlotUse(stackSlot_, MI);
445  DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
446  VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, lis_.getVNInfoAllocator());
447  NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
448}
449
450/// spillAroundUses - insert spill code around each use of Reg.
451void InlineSpiller::spillAroundUses(unsigned Reg) {
452  LiveInterval &OldLI = lis_.getInterval(Reg);
453
454  // Iterate over instructions using Reg.
455  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(Reg);
456       MachineInstr *MI = RI.skipInstruction();) {
457
458    // Debug values are not allowed to affect codegen.
459    if (MI->isDebugValue()) {
460      // Modify DBG_VALUE now that the value is in a spill slot.
461      uint64_t Offset = MI->getOperand(1).getImm();
462      const MDNode *MDPtr = MI->getOperand(2).getMetadata();
463      DebugLoc DL = MI->getDebugLoc();
464      if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_,
465                                                           Offset, MDPtr, DL)) {
466        DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
467        MachineBasicBlock *MBB = MI->getParent();
468        MBB->insert(MBB->erase(MI), NewDV);
469      } else {
470        DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
471        MI->eraseFromParent();
472      }
473      continue;
474    }
475
476    // Ignore copies to/from snippets. We'll delete them.
477    if (SnippetCopies.count(MI))
478      continue;
479
480    // Stack slot accesses may coalesce away.
481    if (coalesceStackAccess(MI, Reg))
482      continue;
483
484    // Analyze instruction.
485    bool Reads, Writes;
486    SmallVector<unsigned, 8> Ops;
487    tie(Reads, Writes) = MI->readsWritesVirtualRegister(Reg, &Ops);
488
489    // Attempt to fold memory ops.
490    if (foldMemoryOperand(MI, Ops))
491      continue;
492
493    // Allocate interval around instruction.
494    // FIXME: Infer regclass from instruction alone.
495    LiveInterval &NewLI = edit_->create(mri_, lis_, vrm_);
496    NewLI.markNotSpillable();
497
498    if (Reads)
499      insertReload(NewLI, MI);
500
501    // Rewrite instruction operands.
502    bool hasLiveDef = false;
503    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
504      MachineOperand &MO = MI->getOperand(Ops[i]);
505      MO.setReg(NewLI.reg);
506      if (MO.isUse()) {
507        if (!MI->isRegTiedToDefOperand(Ops[i]))
508          MO.setIsKill();
509      } else {
510        if (!MO.isDead())
511          hasLiveDef = true;
512      }
513    }
514
515    // FIXME: Use a second vreg if instruction has no tied ops.
516    if (Writes && hasLiveDef)
517      insertSpill(NewLI, OldLI, MI);
518
519    DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
520  }
521}
522
523void InlineSpiller::spill(LiveRangeEdit &edit) {
524  edit_ = &edit;
525  assert(!TargetRegisterInfo::isStackSlot(edit.getReg())
526         && "Trying to spill a stack slot.");
527  DEBUG(dbgs() << "Inline spilling "
528               << mri_.getRegClass(edit.getReg())->getName()
529               << ':' << edit.getParent() << "\nFrom original "
530               << PrintReg(vrm_.getOriginal(edit.getReg())) << '\n');
531  assert(edit.getParent().isSpillable() &&
532         "Attempting to spill already spilled value.");
533
534  // Share a stack slot among all descendants of Orig.
535  unsigned Orig = vrm_.getOriginal(edit.getReg());
536  stackSlot_ = vrm_.getStackSlot(Orig);
537
538  collectRegsToSpill();
539
540  reMaterializeAll();
541
542  // Remat may handle everything.
543  if (edit_->getParent().empty())
544    return;
545
546  rc_ = mri_.getRegClass(edit.getReg());
547
548  if (stackSlot_ == VirtRegMap::NO_STACK_SLOT)
549    stackSlot_ = vrm_.assignVirt2StackSlot(Orig);
550
551  if (Orig != edit.getReg())
552    vrm_.assignVirt2StackSlot(edit.getReg(), stackSlot_);
553
554  // Update LiveStacks now that we are committed to spilling.
555  LiveInterval &stacklvr = lss_.getOrCreateInterval(stackSlot_, rc_);
556  if (!stacklvr.hasAtLeastOneValue())
557    stacklvr.getNextValue(SlotIndex(), 0, lss_.getVNInfoAllocator());
558  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
559    stacklvr.MergeRangesInAsValue(lis_.getInterval(RegsToSpill[i]),
560                                  stacklvr.getValNumInfo(0));
561
562  // Spill around uses of all RegsToSpill.
563  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
564    spillAroundUses(RegsToSpill[i]);
565
566  // Finally delete the SnippetCopies.
567  for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(edit.getReg());
568       MachineInstr *MI = RI.skipInstruction();) {
569    assert(SnippetCopies.count(MI) && "Remaining use wasn't a snippet copy");
570    // FIXME: Do this with a LiveRangeEdit callback.
571    vrm_.RemoveMachineInstrFromMaps(MI);
572    lis_.RemoveMachineInstrFromMaps(MI);
573    MI->eraseFromParent();
574  }
575
576  for (unsigned i = 0, e = RegsToSpill.size(); i != e; ++i)
577    edit.eraseVirtReg(RegsToSpill[i], lis_);
578}
579