IntrinsicLowering.cpp revision 1636de94069d492185da2dd36859d4a1962a2eed
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace llvm;
25
26template <class ArgIt>
27static void EnsureFunctionExists(Module &M, const char *Name,
28                                 ArgIt ArgBegin, ArgIt ArgEnd,
29                                 const Type *RetTy) {
30  // Insert a correctly-typed definition now.
31  std::vector<const Type *> ParamTys;
32  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
33    ParamTys.push_back(I->getType());
34  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
35}
36
37/// ReplaceCallWith - This function is used when we want to lower an intrinsic
38/// call to a call of an external function.  This handles hard cases such as
39/// when there was already a prototype for the external function, and if that
40/// prototype doesn't match the arguments we expect to pass in.
41template <class ArgIt>
42static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
43                                 ArgIt ArgBegin, ArgIt ArgEnd,
44                                 const Type *RetTy, Constant *&FCache) {
45  if (!FCache) {
46    // If we haven't already looked up this function, check to see if the
47    // program already contains a function with this name.
48    Module *M = CI->getParent()->getParent()->getParent();
49    // Get or insert the definition now.
50    std::vector<const Type *> ParamTys;
51    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
52      ParamTys.push_back((*I)->getType());
53    FCache = M->getOrInsertFunction(NewFn,
54                                    FunctionType::get(RetTy, ParamTys, false));
55  }
56
57  SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
58  CallInst *NewCI = new CallInst(FCache, Args.begin(), Args.end(),
59                                 CI->getName(), CI);
60  if (!CI->use_empty())
61    CI->replaceAllUsesWith(NewCI);
62  return NewCI;
63}
64
65void IntrinsicLowering::AddPrototypes(Module &M) {
66  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
67    if (I->isDeclaration() && !I->use_empty())
68      switch (I->getIntrinsicID()) {
69      default: break;
70      case Intrinsic::setjmp:
71        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
72                             Type::Int32Ty);
73        break;
74      case Intrinsic::longjmp:
75        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
76                             Type::VoidTy);
77        break;
78      case Intrinsic::siglongjmp:
79        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
80                             Type::VoidTy);
81        break;
82      case Intrinsic::memcpy_i32:
83      case Intrinsic::memcpy_i64:
84        M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty),
85                              PointerType::get(Type::Int8Ty),
86                              PointerType::get(Type::Int8Ty),
87                              TD.getIntPtrType(), (Type *)0);
88        break;
89      case Intrinsic::memmove_i32:
90      case Intrinsic::memmove_i64:
91        M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty),
92                              PointerType::get(Type::Int8Ty),
93                              PointerType::get(Type::Int8Ty),
94                              TD.getIntPtrType(), (Type *)0);
95        break;
96      case Intrinsic::memset_i32:
97      case Intrinsic::memset_i64:
98        M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty),
99                              PointerType::get(Type::Int8Ty), Type::Int32Ty,
100                              TD.getIntPtrType(), (Type *)0);
101        break;
102      case Intrinsic::sqrt_f32:
103      case Intrinsic::sqrt_f64:
104        if(I->arg_begin()->getType() == Type::FloatTy)
105          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
106                               Type::FloatTy);
107        else
108          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
109                               Type::DoubleTy);
110        break;
111      }
112}
113
114/// LowerBSWAP - Emit the code to lower bswap of V before the specified
115/// instruction IP.
116static Value *LowerBSWAP(Value *V, Instruction *IP) {
117  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
118
119  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
120
121  switch(BitSize) {
122  default: assert(0 && "Unhandled type size of value to byteswap!");
123  case 16: {
124    Value *Tmp1 = BinaryOperator::createShl(V,
125                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
126    Value *Tmp2 = BinaryOperator::createLShr(V,
127                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
128    V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP);
129    break;
130  }
131  case 32: {
132    Value *Tmp4 = BinaryOperator::createShl(V,
133                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
134    Value *Tmp3 = BinaryOperator::createShl(V,
135                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
136    Value *Tmp2 = BinaryOperator::createLShr(V,
137                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
138    Value *Tmp1 = BinaryOperator::createLShr(V,
139                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
140    Tmp3 = BinaryOperator::createAnd(Tmp3,
141                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
142                                     "bswap.and3", IP);
143    Tmp2 = BinaryOperator::createAnd(Tmp2,
144                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
145                                     "bswap.and2", IP);
146    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP);
147    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP);
148    V = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.i32", IP);
149    break;
150  }
151  case 64: {
152    Value *Tmp8 = BinaryOperator::createShl(V,
153                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
154    Value *Tmp7 = BinaryOperator::createShl(V,
155                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
156    Value *Tmp6 = BinaryOperator::createShl(V,
157                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
158    Value *Tmp5 = BinaryOperator::createShl(V,
159                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
160    Value* Tmp4 = BinaryOperator::createLShr(V,
161                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
162    Value* Tmp3 = BinaryOperator::createLShr(V,
163                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
164    Value* Tmp2 = BinaryOperator::createLShr(V,
165                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
166    Value* Tmp1 = BinaryOperator::createLShr(V,
167                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
168    Tmp7 = BinaryOperator::createAnd(Tmp7,
169                             ConstantInt::get(Type::Int64Ty,
170                               0xFF000000000000ULL),
171                             "bswap.and7", IP);
172    Tmp6 = BinaryOperator::createAnd(Tmp6,
173                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
174                             "bswap.and6", IP);
175    Tmp5 = BinaryOperator::createAnd(Tmp5,
176                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
177                             "bswap.and5", IP);
178    Tmp4 = BinaryOperator::createAnd(Tmp4,
179                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
180                             "bswap.and4", IP);
181    Tmp3 = BinaryOperator::createAnd(Tmp3,
182                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
183                             "bswap.and3", IP);
184    Tmp2 = BinaryOperator::createAnd(Tmp2,
185                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
186                             "bswap.and2", IP);
187    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP);
188    Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP);
189    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP);
190    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP);
191    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP);
192    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP);
193    V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP);
194    break;
195  }
196  }
197  return V;
198}
199
200/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
201/// instruction IP.
202static Value *LowerCTPOP(Value *V, Instruction *IP) {
203  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
204
205  static const uint64_t MaskValues[6] = {
206    0x5555555555555555ULL, 0x3333333333333333ULL,
207    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
208    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
209  };
210
211  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
212  unsigned WordSize = (BitSize + 63) / 64;
213  Value *Count = ConstantInt::get(V->getType(), 0);
214
215  for (unsigned n = 0; n < WordSize; ++n) {
216    Value *PartValue = V;
217    for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
218         i <<= 1, ++ct) {
219      Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
220      Value *LHS = BinaryOperator::createAnd(
221                     PartValue, MaskCst, "cppop.and1", IP);
222      Value *VShift = BinaryOperator::createLShr(PartValue,
223                        ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
224      Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP);
225      PartValue = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP);
226    }
227    Count = BinaryOperator::createAdd(PartValue, Count, "ctpop.part", IP);
228    if (BitSize > 64) {
229      V = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(), 64),
230                                     "ctpop.part.sh", IP);
231      BitSize -= 64;
232    }
233  }
234
235  return Count;
236}
237
238/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
239/// instruction IP.
240static Value *LowerCTLZ(Value *V, Instruction *IP) {
241
242  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
243  for (unsigned i = 1; i < BitSize; i <<= 1) {
244    Value *ShVal = ConstantInt::get(V->getType(), i);
245    ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP);
246    V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP);
247  }
248
249  V = BinaryOperator::createNot(V, "", IP);
250  return LowerCTPOP(V, IP);
251}
252
253/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
254/// three integer arguments. The first argument is the Value from which the
255/// bits will be selected. It may be of any bit width. The second and third
256/// arguments specify a range of bits to select with the second argument
257/// specifying the low bit and the third argument specifying the high bit. Both
258/// must be type i32. The result is the corresponding selected bits from the
259/// Value in the same width as the Value (first argument). If the low bit index
260/// is higher than the high bit index then the inverse selection is done and
261/// the bits are returned in inverse order.
262/// @brief Lowering of llvm.part.select intrinsic.
263static Instruction *LowerPartSelect(CallInst *CI) {
264  // Make sure we're dealing with a part select intrinsic here
265  Function *F = CI->getCalledFunction();
266  const FunctionType *FT = F->getFunctionType();
267  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
268      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
269      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
270    return CI;
271
272  // Get the intrinsic implementation function by converting all the . to _
273  // in the intrinsic's function name and then reconstructing the function
274  // declaration.
275  std::string Name(F->getName());
276  for (unsigned i = 4; i < Name.length(); ++i)
277    if (Name[i] == '.')
278      Name[i] = '_';
279  Module* M = F->getParent();
280  F = cast<Function>(M->getOrInsertFunction(Name, FT));
281  F->setLinkage(GlobalValue::WeakLinkage);
282
283  // If we haven't defined the impl function yet, do so now
284  if (F->isDeclaration()) {
285
286    // Get the arguments to the function
287    Function::arg_iterator args = F->arg_begin();
288    Value* Val = args++; Val->setName("Val");
289    Value* Lo = args++; Lo->setName("Lo");
290    Value* Hi  = args++; Hi->setName("High");
291
292    // We want to select a range of bits here such that [Hi, Lo] is shifted
293    // down to the low bits. However, it is quite possible that Hi is smaller
294    // than Lo in which case the bits have to be reversed.
295
296    // Create the blocks we will need for the two cases (forward, reverse)
297    BasicBlock* CurBB   = new BasicBlock("entry", F);
298    BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent());
299    BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent());
300    BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent());
301    BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent());
302    BasicBlock *RsltBlk = new BasicBlock("result",  CurBB->getParent());
303
304    // Cast Hi and Lo to the size of Val so the widths are all the same
305    if (Hi->getType() != Val->getType())
306      Hi = CastInst::createIntegerCast(Hi, Val->getType(), false,
307                                         "tmp", CurBB);
308    if (Lo->getType() != Val->getType())
309      Lo = CastInst::createIntegerCast(Lo, Val->getType(), false,
310                                          "tmp", CurBB);
311
312    // Compute a few things that both cases will need, up front.
313    Constant* Zero = ConstantInt::get(Val->getType(), 0);
314    Constant* One = ConstantInt::get(Val->getType(), 1);
315    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
316
317    // Compare the Hi and Lo bit positions. This is used to determine
318    // which case we have (forward or reverse)
319    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
320    new BranchInst(RevSize, FwdSize, Cmp, CurBB);
321
322    // First, copmute the number of bits in the forward case.
323    Instruction* FBitSize =
324      BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize);
325    new BranchInst(Compute, FwdSize);
326
327    // Second, compute the number of bits in the reverse case.
328    Instruction* RBitSize =
329      BinaryOperator::createSub(Lo, Hi, "rbits", RevSize);
330    new BranchInst(Compute, RevSize);
331
332    // Now, compute the bit range. Start by getting the bitsize and the shift
333    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
334    // the number of bits we want in the range. We shift the bits down to the
335    // least significant bits, apply the mask to zero out unwanted high bits,
336    // and we have computed the "forward" result. It may still need to be
337    // reversed.
338
339    // Get the BitSize from one of the two subtractions
340    PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute);
341    BitSize->reserveOperandSpace(2);
342    BitSize->addIncoming(FBitSize, FwdSize);
343    BitSize->addIncoming(RBitSize, RevSize);
344
345    // Get the ShiftAmount as the smaller of Hi/Lo
346    PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute);
347    ShiftAmt->reserveOperandSpace(2);
348    ShiftAmt->addIncoming(Lo, FwdSize);
349    ShiftAmt->addIncoming(Hi, RevSize);
350
351    // Increment the bit size
352    Instruction *BitSizePlusOne =
353      BinaryOperator::createAdd(BitSize, One, "bits", Compute);
354
355    // Create a Mask to zero out the high order bits.
356    Instruction* Mask =
357      BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute);
358    Mask = BinaryOperator::createNot(Mask, "mask", Compute);
359
360    // Shift the bits down and apply the mask
361    Instruction* FRes =
362      BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute);
363    FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute);
364    new BranchInst(Reverse, RsltBlk, Cmp, Compute);
365
366    // In the Reverse block we have the mask already in FRes but we must reverse
367    // it by shifting FRes bits right and putting them in RRes by shifting them
368    // in from left.
369
370    // First set up our loop counters
371    PHINode *Count = new PHINode(Val->getType(), "count", Reverse);
372    Count->reserveOperandSpace(2);
373    Count->addIncoming(BitSizePlusOne, Compute);
374
375    // Next, get the value that we are shifting.
376    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", Reverse);
377    BitsToShift->reserveOperandSpace(2);
378    BitsToShift->addIncoming(FRes, Compute);
379
380    // Finally, get the result of the last computation
381    PHINode *RRes  = new PHINode(Val->getType(), "rres", Reverse);
382    RRes->reserveOperandSpace(2);
383    RRes->addIncoming(Zero, Compute);
384
385    // Decrement the counter
386    Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse);
387    Count->addIncoming(Decr, Reverse);
388
389    // Compute the Bit that we want to move
390    Instruction *Bit =
391      BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse);
392
393    // Compute the new value for next iteration.
394    Instruction *NewVal =
395      BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse);
396    BitsToShift->addIncoming(NewVal, Reverse);
397
398    // Shift the bit into the low bits of the result.
399    Instruction *NewRes =
400      BinaryOperator::createShl(RRes, One, "lshift", Reverse);
401    NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse);
402    RRes->addIncoming(NewRes, Reverse);
403
404    // Terminate loop if we've moved all the bits.
405    ICmpInst *Cond =
406      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
407    new BranchInst(RsltBlk, Reverse, Cond, Reverse);
408
409    // Finally, in the result block, select one of the two results with a PHI
410    // node and return the result;
411    CurBB = RsltBlk;
412    PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB);
413    BitSelect->reserveOperandSpace(2);
414    BitSelect->addIncoming(FRes, Compute);
415    BitSelect->addIncoming(NewRes, Reverse);
416    new ReturnInst(BitSelect, CurBB);
417  }
418
419  // Return a call to the implementation function
420  Value *Args[] = {
421    CI->getOperand(1),
422    CI->getOperand(2),
423    CI->getOperand(3)
424  };
425  return new CallInst(F, Args, array_endof(Args), CI->getName(), CI);
426}
427
428/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
429/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
430/// The first two arguments can be any bit width. The result is the same width
431/// as %Value. The operation replaces bits between %Low and %High with the value
432/// in %Replacement. If %Replacement is not the same width, it is truncated or
433/// zero extended as appropriate to fit the bits being replaced. If %Low is
434/// greater than %High then the inverse set of bits are replaced.
435/// @brief Lowering of llvm.bit.part.set intrinsic.
436static Instruction *LowerPartSet(CallInst *CI) {
437  // Make sure we're dealing with a part select intrinsic here
438  Function *F = CI->getCalledFunction();
439  const FunctionType *FT = F->getFunctionType();
440  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
441      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
442      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
443      !FT->getParamType(3)->isInteger())
444    return CI;
445
446  // Get the intrinsic implementation function by converting all the . to _
447  // in the intrinsic's function name and then reconstructing the function
448  // declaration.
449  std::string Name(F->getName());
450  for (unsigned i = 4; i < Name.length(); ++i)
451    if (Name[i] == '.')
452      Name[i] = '_';
453  Module* M = F->getParent();
454  F = cast<Function>(M->getOrInsertFunction(Name, FT));
455  F->setLinkage(GlobalValue::WeakLinkage);
456
457  // If we haven't defined the impl function yet, do so now
458  if (F->isDeclaration()) {
459    // Get the arguments for the function.
460    Function::arg_iterator args = F->arg_begin();
461    Value* Val = args++; Val->setName("Val");
462    Value* Rep = args++; Rep->setName("Rep");
463    Value* Lo  = args++; Lo->setName("Lo");
464    Value* Hi  = args++; Hi->setName("Hi");
465
466    // Get some types we need
467    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
468    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
469    uint32_t ValBits = ValTy->getBitWidth();
470    uint32_t RepBits = RepTy->getBitWidth();
471
472    // Constant Definitions
473    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
474    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
475    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
476    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
477    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
478    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
479    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
480
481    // Basic blocks we fill in below.
482    BasicBlock* entry = new BasicBlock("entry", F, 0);
483    BasicBlock* large = new BasicBlock("large", F, 0);
484    BasicBlock* small = new BasicBlock("small", F, 0);
485    BasicBlock* reverse = new BasicBlock("reverse", F, 0);
486    BasicBlock* result = new BasicBlock("result", F, 0);
487
488    // BASIC BLOCK: entry
489    // First, get the number of bits that we're placing as an i32
490    ICmpInst* is_forward =
491      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
492    SelectInst* Hi_pn = new SelectInst(is_forward, Hi, Lo, "", entry);
493    SelectInst* Lo_pn = new SelectInst(is_forward, Lo, Hi, "", entry);
494    BinaryOperator* NumBits = BinaryOperator::createSub(Hi_pn, Lo_pn, "",entry);
495    NumBits = BinaryOperator::createAdd(NumBits, One, "", entry);
496    // Now, convert Lo and Hi to ValTy bit width
497    if (ValBits > 32) {
498      Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
499    } else if (ValBits < 32) {
500      Lo = new TruncInst(Lo_pn, ValTy, "", entry);
501    }
502    // Determine if the replacement bits are larger than the number of bits we
503    // are replacing and deal with it.
504    ICmpInst* is_large =
505      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
506    new BranchInst(large, small, is_large, entry);
507
508    // BASIC BLOCK: large
509    Instruction* MaskBits =
510      BinaryOperator::createSub(RepBitWidth, NumBits, "", large);
511    MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(),
512                                           false, "", large);
513    BinaryOperator* Mask1 =
514      BinaryOperator::createLShr(RepMask, MaskBits, "", large);
515    BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large);
516    new BranchInst(small, large);
517
518    // BASIC BLOCK: small
519    PHINode* Rep3 = new PHINode(RepTy, "", small);
520    Rep3->reserveOperandSpace(2);
521    Rep3->addIncoming(Rep2, large);
522    Rep3->addIncoming(Rep, entry);
523    Value* Rep4 = Rep3;
524    if (ValBits > RepBits)
525      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
526    else if (ValBits < RepBits)
527      Rep4 = new TruncInst(Rep3, ValTy, "", small);
528    new BranchInst(result, reverse, is_forward, small);
529
530    // BASIC BLOCK: reverse (reverses the bits of the replacement)
531    // Set up our loop counter as a PHI so we can decrement on each iteration.
532    // We will loop for the number of bits in the replacement value.
533    PHINode *Count = new PHINode(Type::Int32Ty, "count", reverse);
534    Count->reserveOperandSpace(2);
535    Count->addIncoming(NumBits, small);
536
537    // Get the value that we are shifting bits out of as a PHI because
538    // we'll change this with each iteration.
539    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", reverse);
540    BitsToShift->reserveOperandSpace(2);
541    BitsToShift->addIncoming(Rep4, small);
542
543    // Get the result of the last computation or zero on first iteration
544    PHINode *RRes  = new PHINode(Val->getType(), "rres", reverse);
545    RRes->reserveOperandSpace(2);
546    RRes->addIncoming(ValZero, small);
547
548    // Decrement the loop counter by one
549    Instruction *Decr = BinaryOperator::createSub(Count, One, "", reverse);
550    Count->addIncoming(Decr, reverse);
551
552    // Get the bit that we want to move into the result
553    Value *Bit = BinaryOperator::createAnd(BitsToShift, ValOne, "", reverse);
554
555    // Compute the new value of the bits to shift for the next iteration.
556    Value *NewVal = BinaryOperator::createLShr(BitsToShift, ValOne,"", reverse);
557    BitsToShift->addIncoming(NewVal, reverse);
558
559    // Shift the bit we extracted into the low bit of the result.
560    Instruction *NewRes = BinaryOperator::createShl(RRes, ValOne, "", reverse);
561    NewRes = BinaryOperator::createOr(NewRes, Bit, "", reverse);
562    RRes->addIncoming(NewRes, reverse);
563
564    // Terminate loop if we've moved all the bits.
565    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
566    new BranchInst(result, reverse, Cond, reverse);
567
568    // BASIC BLOCK: result
569    PHINode *Rplcmnt  = new PHINode(Val->getType(), "", result);
570    Rplcmnt->reserveOperandSpace(2);
571    Rplcmnt->addIncoming(NewRes, reverse);
572    Rplcmnt->addIncoming(Rep4, small);
573    Value* t0   = CastInst::createIntegerCast(NumBits,ValTy,false,"",result);
574    Value* t1   = BinaryOperator::createShl(ValMask, Lo, "", result);
575    Value* t2   = BinaryOperator::createNot(t1, "", result);
576    Value* t3   = BinaryOperator::createShl(t1, t0, "", result);
577    Value* t4   = BinaryOperator::createOr(t2, t3, "", result);
578    Value* t5   = BinaryOperator::createAnd(t4, Val, "", result);
579    Value* t6   = BinaryOperator::createShl(Rplcmnt, Lo, "", result);
580    Value* Rslt = BinaryOperator::createOr(t5, t6, "part_set", result);
581    new ReturnInst(Rslt, result);
582  }
583
584  // Return a call to the implementation function
585  Value *Args[] = {
586    CI->getOperand(1),
587    CI->getOperand(2),
588    CI->getOperand(3),
589    CI->getOperand(4)
590  };
591  return new CallInst(F, Args, array_endof(Args), CI->getName(), CI);
592}
593
594
595void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
596  Function *Callee = CI->getCalledFunction();
597  assert(Callee && "Cannot lower an indirect call!");
598
599  switch (Callee->getIntrinsicID()) {
600  case Intrinsic::not_intrinsic:
601    cerr << "Cannot lower a call to a non-intrinsic function '"
602         << Callee->getName() << "'!\n";
603    abort();
604  default:
605    cerr << "Error: Code generator does not support intrinsic function '"
606         << Callee->getName() << "'!\n";
607    abort();
608
609    // The setjmp/longjmp intrinsics should only exist in the code if it was
610    // never optimized (ie, right out of the CFE), or if it has been hacked on
611    // by the lowerinvoke pass.  In both cases, the right thing to do is to
612    // convert the call to an explicit setjmp or longjmp call.
613  case Intrinsic::setjmp: {
614    static Constant *SetjmpFCache = 0;
615    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
616                               Type::Int32Ty, SetjmpFCache);
617    if (CI->getType() != Type::VoidTy)
618      CI->replaceAllUsesWith(V);
619    break;
620  }
621  case Intrinsic::sigsetjmp:
622     if (CI->getType() != Type::VoidTy)
623       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
624     break;
625
626  case Intrinsic::longjmp: {
627    static Constant *LongjmpFCache = 0;
628    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
629                    Type::VoidTy, LongjmpFCache);
630    break;
631  }
632
633  case Intrinsic::siglongjmp: {
634    // Insert the call to abort
635    static Constant *AbortFCache = 0;
636    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
637                    Type::VoidTy, AbortFCache);
638    break;
639  }
640  case Intrinsic::ctpop:
641    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
642    break;
643
644  case Intrinsic::bswap:
645    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
646    break;
647
648  case Intrinsic::ctlz:
649    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
650    break;
651
652  case Intrinsic::cttz: {
653    // cttz(x) -> ctpop(~X & (X-1))
654    Value *Src = CI->getOperand(1);
655    Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI);
656    Value *SrcM1  = ConstantInt::get(Src->getType(), 1);
657    SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI);
658    Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI);
659    CI->replaceAllUsesWith(Src);
660    break;
661  }
662
663  case Intrinsic::part_select:
664    CI->replaceAllUsesWith(LowerPartSelect(CI));
665    break;
666
667  case Intrinsic::part_set:
668    CI->replaceAllUsesWith(LowerPartSet(CI));
669    break;
670
671  case Intrinsic::stacksave:
672  case Intrinsic::stackrestore: {
673    static bool Warned = false;
674    if (!Warned)
675      cerr << "WARNING: this target does not support the llvm.stack"
676           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
677               "save" : "restore") << " intrinsic.\n";
678    Warned = true;
679    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
680      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
681    break;
682  }
683
684  case Intrinsic::returnaddress:
685  case Intrinsic::frameaddress:
686    cerr << "WARNING: this target does not support the llvm."
687         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
688             "return" : "frame") << "address intrinsic.\n";
689    CI->replaceAllUsesWith(ConstantPointerNull::get(
690                                            cast<PointerType>(CI->getType())));
691    break;
692
693  case Intrinsic::prefetch:
694    break;    // Simply strip out prefetches on unsupported architectures
695
696  case Intrinsic::pcmarker:
697    break;    // Simply strip out pcmarker on unsupported architectures
698  case Intrinsic::readcyclecounter: {
699    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
700         << "ter intrinsic.  It is being lowered to a constant 0\n";
701    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
702    break;
703  }
704
705  case Intrinsic::dbg_stoppoint:
706  case Intrinsic::dbg_region_start:
707  case Intrinsic::dbg_region_end:
708  case Intrinsic::dbg_func_start:
709  case Intrinsic::dbg_declare:
710    break;    // Simply strip out debugging intrinsics
711
712  case Intrinsic::eh_exception:
713  case Intrinsic::eh_selector:
714    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
715    break;
716
717  case Intrinsic::eh_typeid_for:
718    // Return something different to eh_selector.
719    CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
720    break;
721
722  case Intrinsic::var_annotation:
723    break;   // Strip out annotate intrinsic
724
725  case Intrinsic::memcpy_i32:
726  case Intrinsic::memcpy_i64: {
727    static Constant *MemcpyFCache = 0;
728    Value *Size = CI->getOperand(3);
729    const Type *IntPtr = TD.getIntPtrType();
730    if (Size->getType()->getPrimitiveSizeInBits() <
731        IntPtr->getPrimitiveSizeInBits())
732      Size = new ZExtInst(Size, IntPtr, "", CI);
733    else if (Size->getType()->getPrimitiveSizeInBits() >
734             IntPtr->getPrimitiveSizeInBits())
735      Size = new TruncInst(Size, IntPtr, "", CI);
736    Value *Ops[3];
737    Ops[0] = CI->getOperand(1);
738    Ops[1] = CI->getOperand(2);
739    Ops[2] = Size;
740    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
741                    MemcpyFCache);
742    break;
743  }
744  case Intrinsic::memmove_i32:
745  case Intrinsic::memmove_i64: {
746    static Constant *MemmoveFCache = 0;
747    Value *Size = CI->getOperand(3);
748    const Type *IntPtr = TD.getIntPtrType();
749    if (Size->getType()->getPrimitiveSizeInBits() <
750        IntPtr->getPrimitiveSizeInBits())
751      Size = new ZExtInst(Size, IntPtr, "", CI);
752    else if (Size->getType()->getPrimitiveSizeInBits() >
753             IntPtr->getPrimitiveSizeInBits())
754      Size = new TruncInst(Size, IntPtr, "", CI);
755    Value *Ops[3];
756    Ops[0] = CI->getOperand(1);
757    Ops[1] = CI->getOperand(2);
758    Ops[2] = Size;
759    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
760                    MemmoveFCache);
761    break;
762  }
763  case Intrinsic::memset_i32:
764  case Intrinsic::memset_i64: {
765    static Constant *MemsetFCache = 0;
766    Value *Size = CI->getOperand(3);
767    const Type *IntPtr = TD.getIntPtrType();
768    if (Size->getType()->getPrimitiveSizeInBits() <
769        IntPtr->getPrimitiveSizeInBits())
770      Size = new ZExtInst(Size, IntPtr, "", CI);
771    else if (Size->getType()->getPrimitiveSizeInBits() >
772             IntPtr->getPrimitiveSizeInBits())
773      Size = new TruncInst(Size, IntPtr, "", CI);
774    Value *Ops[3];
775    Ops[0] = CI->getOperand(1);
776    // Extend the amount to i32.
777    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
778    Ops[2] = Size;
779    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
780                    MemsetFCache);
781    break;
782  }
783  case Intrinsic::sqrt_f32: {
784    static Constant *sqrtfFCache = 0;
785    ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
786                    Type::FloatTy, sqrtfFCache);
787    break;
788  }
789  case Intrinsic::sqrt_f64: {
790    static Constant *sqrtFCache = 0;
791    ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
792                    Type::DoubleTy, sqrtFCache);
793    break;
794  }
795  }
796
797  assert(CI->use_empty() &&
798         "Lowering should have eliminated any uses of the intrinsic call!");
799  CI->eraseFromParent();
800}
801