IntrinsicLowering.cpp revision 4c4839d12ca71438a1e51e7e8faa0f3d7868ef8f
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace llvm;
25
26// Return the integer value Val zero-extended or truncated (if necessary) to
27// type ITy. Any new instructions are inserted at InsertBefore.
28template<typename InsertType>
29static Value *getZExtOrTrunc(Value *Val, const IntegerType *ITy,
30                             InsertType InsertPoint) {
31  const IntegerType *ValTy = cast<IntegerType>(Val->getType());
32  if (ValTy == ITy)
33    return Val;
34  Constant *CVal = dyn_cast<Constant>(Val);
35  if (ValTy->getBitWidth() < ITy->getBitWidth()) {
36    if (CVal)
37      return ConstantExpr::getZExt(CVal, ITy);
38    return new ZExtInst(Val, ITy, "", InsertPoint);
39  } else {
40    if (CVal)
41      return ConstantExpr::getTrunc(CVal, ITy);
42    return new TruncInst(Val, ITy, "", InsertPoint);
43  }
44}
45
46template <class ArgIt>
47static void EnsureFunctionExists(Module &M, const char *Name,
48                                 ArgIt ArgBegin, ArgIt ArgEnd,
49                                 const Type *RetTy) {
50  // Insert a correctly-typed definition now.
51  std::vector<const Type *> ParamTys;
52  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
53    ParamTys.push_back(I->getType());
54  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
55}
56
57static void EnsureFPIntrinsicsExist(Module &M, Function *Fn,
58                                    const char *FName,
59                                    const char *DName, const char *LDName) {
60  // Insert definitions for all the floating point types.
61  switch((int)Fn->arg_begin()->getType()->getTypeID()) {
62  case Type::FloatTyID:
63    EnsureFunctionExists(M, FName, Fn->arg_begin(), Fn->arg_end(),
64                         Type::FloatTy);
65    break;
66  case Type::DoubleTyID:
67    EnsureFunctionExists(M, DName, Fn->arg_begin(), Fn->arg_end(),
68                         Type::DoubleTy);
69    break;
70  case Type::X86_FP80TyID:
71  case Type::FP128TyID:
72  case Type::PPC_FP128TyID:
73    EnsureFunctionExists(M, LDName, Fn->arg_begin(), Fn->arg_end(),
74                         Fn->arg_begin()->getType());
75    break;
76  }
77}
78
79/// ReplaceCallWith - This function is used when we want to lower an intrinsic
80/// call to a call of an external function.  This handles hard cases such as
81/// when there was already a prototype for the external function, and if that
82/// prototype doesn't match the arguments we expect to pass in.
83template <class ArgIt>
84static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
85                                 ArgIt ArgBegin, ArgIt ArgEnd,
86                                 const Type *RetTy, Constant *&FCache) {
87  if (!FCache) {
88    // If we haven't already looked up this function, check to see if the
89    // program already contains a function with this name.
90    Module *M = CI->getParent()->getParent()->getParent();
91    // Get or insert the definition now.
92    std::vector<const Type *> ParamTys;
93    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
94      ParamTys.push_back((*I)->getType());
95    FCache = M->getOrInsertFunction(NewFn,
96                                    FunctionType::get(RetTy, ParamTys, false));
97  }
98
99  SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
100  CallInst *NewCI = CallInst::Create(FCache, Args.begin(), Args.end(),
101                                     CI->getName(), CI);
102  if (!CI->use_empty())
103    CI->replaceAllUsesWith(NewCI);
104  return NewCI;
105}
106
107void IntrinsicLowering::AddPrototypes(Module &M) {
108  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
109    if (I->isDeclaration() && !I->use_empty())
110      switch (I->getIntrinsicID()) {
111      default: break;
112      case Intrinsic::setjmp:
113        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
114                             Type::Int32Ty);
115        break;
116      case Intrinsic::longjmp:
117        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
118                             Type::VoidTy);
119        break;
120      case Intrinsic::siglongjmp:
121        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
122                             Type::VoidTy);
123        break;
124      case Intrinsic::memcpy:
125        M.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty),
126                              PointerType::getUnqual(Type::Int8Ty),
127                              PointerType::getUnqual(Type::Int8Ty),
128                              TD.getIntPtrType(), (Type *)0);
129        break;
130      case Intrinsic::memmove:
131        M.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty),
132                              PointerType::getUnqual(Type::Int8Ty),
133                              PointerType::getUnqual(Type::Int8Ty),
134                              TD.getIntPtrType(), (Type *)0);
135        break;
136      case Intrinsic::memset:
137        M.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty),
138                              PointerType::getUnqual(Type::Int8Ty),
139                              Type::Int32Ty,
140                              TD.getIntPtrType(), (Type *)0);
141        break;
142      case Intrinsic::sqrt:
143        EnsureFPIntrinsicsExist(M, I, "sqrtf", "sqrt", "sqrtl");
144        break;
145      case Intrinsic::sin:
146        EnsureFPIntrinsicsExist(M, I, "sinf", "sin", "sinl");
147        break;
148      case Intrinsic::cos:
149        EnsureFPIntrinsicsExist(M, I, "cosf", "cos", "cosl");
150        break;
151      case Intrinsic::pow:
152        EnsureFPIntrinsicsExist(M, I, "powf", "pow", "powl");
153        break;
154      case Intrinsic::log:
155        EnsureFPIntrinsicsExist(M, I, "logf", "log", "logl");
156        break;
157      case Intrinsic::log2:
158        EnsureFPIntrinsicsExist(M, I, "log2f", "log2", "log2l");
159        break;
160      case Intrinsic::log10:
161        EnsureFPIntrinsicsExist(M, I, "log10f", "log10", "log10l");
162        break;
163      case Intrinsic::exp:
164        EnsureFPIntrinsicsExist(M, I, "expf", "exp", "expl");
165        break;
166      case Intrinsic::exp2:
167        EnsureFPIntrinsicsExist(M, I, "exp2f", "exp2", "exp2l");
168        break;
169      }
170}
171
172/// LowerBSWAP - Emit the code to lower bswap of V before the specified
173/// instruction IP.
174static Value *LowerBSWAP(Value *V, Instruction *IP) {
175  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
176
177  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
178
179  switch(BitSize) {
180  default: assert(0 && "Unhandled type size of value to byteswap!");
181  case 16: {
182    Value *Tmp1 = BinaryOperator::CreateShl(V,
183                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
184    Value *Tmp2 = BinaryOperator::CreateLShr(V,
185                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
186    V = BinaryOperator::CreateOr(Tmp1, Tmp2, "bswap.i16", IP);
187    break;
188  }
189  case 32: {
190    Value *Tmp4 = BinaryOperator::CreateShl(V,
191                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
192    Value *Tmp3 = BinaryOperator::CreateShl(V,
193                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
194    Value *Tmp2 = BinaryOperator::CreateLShr(V,
195                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
196    Value *Tmp1 = BinaryOperator::CreateLShr(V,
197                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
198    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
199                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
200                                     "bswap.and3", IP);
201    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
202                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
203                                     "bswap.and2", IP);
204    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or1", IP);
205    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or2", IP);
206    V = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.i32", IP);
207    break;
208  }
209  case 64: {
210    Value *Tmp8 = BinaryOperator::CreateShl(V,
211                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
212    Value *Tmp7 = BinaryOperator::CreateShl(V,
213                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
214    Value *Tmp6 = BinaryOperator::CreateShl(V,
215                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
216    Value *Tmp5 = BinaryOperator::CreateShl(V,
217                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
218    Value* Tmp4 = BinaryOperator::CreateLShr(V,
219                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
220    Value* Tmp3 = BinaryOperator::CreateLShr(V,
221                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
222    Value* Tmp2 = BinaryOperator::CreateLShr(V,
223                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
224    Value* Tmp1 = BinaryOperator::CreateLShr(V,
225                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
226    Tmp7 = BinaryOperator::CreateAnd(Tmp7,
227                             ConstantInt::get(Type::Int64Ty,
228                               0xFF000000000000ULL),
229                             "bswap.and7", IP);
230    Tmp6 = BinaryOperator::CreateAnd(Tmp6,
231                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
232                             "bswap.and6", IP);
233    Tmp5 = BinaryOperator::CreateAnd(Tmp5,
234                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
235                             "bswap.and5", IP);
236    Tmp4 = BinaryOperator::CreateAnd(Tmp4,
237                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
238                             "bswap.and4", IP);
239    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
240                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
241                             "bswap.and3", IP);
242    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
243                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
244                             "bswap.and2", IP);
245    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp7, "bswap.or1", IP);
246    Tmp6 = BinaryOperator::CreateOr(Tmp6, Tmp5, "bswap.or2", IP);
247    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or3", IP);
248    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or4", IP);
249    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp6, "bswap.or5", IP);
250    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.or6", IP);
251    V = BinaryOperator::CreateOr(Tmp8, Tmp4, "bswap.i64", IP);
252    break;
253  }
254  }
255  return V;
256}
257
258/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
259/// instruction IP.
260static Value *LowerCTPOP(Value *V, Instruction *IP) {
261  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
262
263  static const uint64_t MaskValues[6] = {
264    0x5555555555555555ULL, 0x3333333333333333ULL,
265    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
266    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
267  };
268
269  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
270  unsigned WordSize = (BitSize + 63) / 64;
271  Value *Count = ConstantInt::get(V->getType(), 0);
272
273  for (unsigned n = 0; n < WordSize; ++n) {
274    Value *PartValue = V;
275    for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
276         i <<= 1, ++ct) {
277      Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
278      Value *LHS = BinaryOperator::CreateAnd(
279                     PartValue, MaskCst, "cppop.and1", IP);
280      Value *VShift = BinaryOperator::CreateLShr(PartValue,
281                        ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
282      Value *RHS = BinaryOperator::CreateAnd(VShift, MaskCst, "cppop.and2", IP);
283      PartValue = BinaryOperator::CreateAdd(LHS, RHS, "ctpop.step", IP);
284    }
285    Count = BinaryOperator::CreateAdd(PartValue, Count, "ctpop.part", IP);
286    if (BitSize > 64) {
287      V = BinaryOperator::CreateLShr(V, ConstantInt::get(V->getType(), 64),
288                                     "ctpop.part.sh", IP);
289      BitSize -= 64;
290    }
291  }
292
293  return Count;
294}
295
296/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
297/// instruction IP.
298static Value *LowerCTLZ(Value *V, Instruction *IP) {
299
300  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
301  for (unsigned i = 1; i < BitSize; i <<= 1) {
302    Value *ShVal = ConstantInt::get(V->getType(), i);
303    ShVal = BinaryOperator::CreateLShr(V, ShVal, "ctlz.sh", IP);
304    V = BinaryOperator::CreateOr(V, ShVal, "ctlz.step", IP);
305  }
306
307  V = BinaryOperator::CreateNot(V, "", IP);
308  return LowerCTPOP(V, IP);
309}
310
311/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
312/// three integer arguments. The first argument is the Value from which the
313/// bits will be selected. It may be of any bit width. The second and third
314/// arguments specify a range of bits to select with the second argument
315/// specifying the low bit and the third argument specifying the high bit. Both
316/// must be type i32. The result is the corresponding selected bits from the
317/// Value in the same width as the Value (first argument). If the low bit index
318/// is higher than the high bit index then the inverse selection is done and
319/// the bits are returned in inverse order.
320/// @brief Lowering of llvm.part.select intrinsic.
321static Instruction *LowerPartSelect(CallInst *CI) {
322  // Make sure we're dealing with a part select intrinsic here
323  Function *F = CI->getCalledFunction();
324  const FunctionType *FT = F->getFunctionType();
325  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
326      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
327      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
328    return CI;
329
330  // Get the intrinsic implementation function by converting all the . to _
331  // in the intrinsic's function name and then reconstructing the function
332  // declaration.
333  std::string Name(F->getName());
334  for (unsigned i = 4; i < Name.length(); ++i)
335    if (Name[i] == '.')
336      Name[i] = '_';
337  Module* M = F->getParent();
338  F = cast<Function>(M->getOrInsertFunction(Name, FT));
339  F->setLinkage(GlobalValue::WeakAnyLinkage);
340
341  // If we haven't defined the impl function yet, do so now
342  if (F->isDeclaration()) {
343
344    // Get the arguments to the function
345    Function::arg_iterator args = F->arg_begin();
346    Value* Val = args++; Val->setName("Val");
347    Value* Lo = args++; Lo->setName("Lo");
348    Value* Hi = args++; Hi->setName("High");
349
350    // We want to select a range of bits here such that [Hi, Lo] is shifted
351    // down to the low bits. However, it is quite possible that Hi is smaller
352    // than Lo in which case the bits have to be reversed.
353
354    // Create the blocks we will need for the two cases (forward, reverse)
355    BasicBlock* CurBB   = BasicBlock::Create("entry", F);
356    BasicBlock *RevSize = BasicBlock::Create("revsize", CurBB->getParent());
357    BasicBlock *FwdSize = BasicBlock::Create("fwdsize", CurBB->getParent());
358    BasicBlock *Compute = BasicBlock::Create("compute", CurBB->getParent());
359    BasicBlock *Reverse = BasicBlock::Create("reverse", CurBB->getParent());
360    BasicBlock *RsltBlk = BasicBlock::Create("result",  CurBB->getParent());
361
362    // Cast Hi and Lo to the size of Val so the widths are all the same
363    if (Hi->getType() != Val->getType())
364      Hi = CastInst::CreateIntegerCast(Hi, Val->getType(), false,
365                                         "tmp", CurBB);
366    if (Lo->getType() != Val->getType())
367      Lo = CastInst::CreateIntegerCast(Lo, Val->getType(), false,
368                                          "tmp", CurBB);
369
370    // Compute a few things that both cases will need, up front.
371    Constant* Zero = ConstantInt::get(Val->getType(), 0);
372    Constant* One = ConstantInt::get(Val->getType(), 1);
373    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
374
375    // Compare the Hi and Lo bit positions. This is used to determine
376    // which case we have (forward or reverse)
377    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
378    BranchInst::Create(RevSize, FwdSize, Cmp, CurBB);
379
380    // First, copmute the number of bits in the forward case.
381    Instruction* FBitSize =
382      BinaryOperator::CreateSub(Hi, Lo,"fbits", FwdSize);
383    BranchInst::Create(Compute, FwdSize);
384
385    // Second, compute the number of bits in the reverse case.
386    Instruction* RBitSize =
387      BinaryOperator::CreateSub(Lo, Hi, "rbits", RevSize);
388    BranchInst::Create(Compute, RevSize);
389
390    // Now, compute the bit range. Start by getting the bitsize and the shift
391    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
392    // the number of bits we want in the range. We shift the bits down to the
393    // least significant bits, apply the mask to zero out unwanted high bits,
394    // and we have computed the "forward" result. It may still need to be
395    // reversed.
396
397    // Get the BitSize from one of the two subtractions
398    PHINode *BitSize = PHINode::Create(Val->getType(), "bits", Compute);
399    BitSize->reserveOperandSpace(2);
400    BitSize->addIncoming(FBitSize, FwdSize);
401    BitSize->addIncoming(RBitSize, RevSize);
402
403    // Get the ShiftAmount as the smaller of Hi/Lo
404    PHINode *ShiftAmt = PHINode::Create(Val->getType(), "shiftamt", Compute);
405    ShiftAmt->reserveOperandSpace(2);
406    ShiftAmt->addIncoming(Lo, FwdSize);
407    ShiftAmt->addIncoming(Hi, RevSize);
408
409    // Increment the bit size
410    Instruction *BitSizePlusOne =
411      BinaryOperator::CreateAdd(BitSize, One, "bits", Compute);
412
413    // Create a Mask to zero out the high order bits.
414    Instruction* Mask =
415      BinaryOperator::CreateShl(AllOnes, BitSizePlusOne, "mask", Compute);
416    Mask = BinaryOperator::CreateNot(Mask, "mask", Compute);
417
418    // Shift the bits down and apply the mask
419    Instruction* FRes =
420      BinaryOperator::CreateLShr(Val, ShiftAmt, "fres", Compute);
421    FRes = BinaryOperator::CreateAnd(FRes, Mask, "fres", Compute);
422    BranchInst::Create(Reverse, RsltBlk, Cmp, Compute);
423
424    // In the Reverse block we have the mask already in FRes but we must reverse
425    // it by shifting FRes bits right and putting them in RRes by shifting them
426    // in from left.
427
428    // First set up our loop counters
429    PHINode *Count = PHINode::Create(Val->getType(), "count", Reverse);
430    Count->reserveOperandSpace(2);
431    Count->addIncoming(BitSizePlusOne, Compute);
432
433    // Next, get the value that we are shifting.
434    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", Reverse);
435    BitsToShift->reserveOperandSpace(2);
436    BitsToShift->addIncoming(FRes, Compute);
437
438    // Finally, get the result of the last computation
439    PHINode *RRes = PHINode::Create(Val->getType(), "rres", Reverse);
440    RRes->reserveOperandSpace(2);
441    RRes->addIncoming(Zero, Compute);
442
443    // Decrement the counter
444    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "decr", Reverse);
445    Count->addIncoming(Decr, Reverse);
446
447    // Compute the Bit that we want to move
448    Instruction *Bit =
449      BinaryOperator::CreateAnd(BitsToShift, One, "bit", Reverse);
450
451    // Compute the new value for next iteration.
452    Instruction *NewVal =
453      BinaryOperator::CreateLShr(BitsToShift, One, "rshift", Reverse);
454    BitsToShift->addIncoming(NewVal, Reverse);
455
456    // Shift the bit into the low bits of the result.
457    Instruction *NewRes =
458      BinaryOperator::CreateShl(RRes, One, "lshift", Reverse);
459    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "addbit", Reverse);
460    RRes->addIncoming(NewRes, Reverse);
461
462    // Terminate loop if we've moved all the bits.
463    ICmpInst *Cond =
464      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
465    BranchInst::Create(RsltBlk, Reverse, Cond, Reverse);
466
467    // Finally, in the result block, select one of the two results with a PHI
468    // node and return the result;
469    CurBB = RsltBlk;
470    PHINode *BitSelect = PHINode::Create(Val->getType(), "part_select", CurBB);
471    BitSelect->reserveOperandSpace(2);
472    BitSelect->addIncoming(FRes, Compute);
473    BitSelect->addIncoming(NewRes, Reverse);
474    ReturnInst::Create(BitSelect, CurBB);
475  }
476
477  // Return a call to the implementation function
478  Value *Args[] = {
479    CI->getOperand(1),
480    CI->getOperand(2),
481    CI->getOperand(3)
482  };
483  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
484}
485
486/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
487/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
488/// The first two arguments can be any bit width. The result is the same width
489/// as %Value. The operation replaces bits between %Low and %High with the value
490/// in %Replacement. If %Replacement is not the same width, it is truncated or
491/// zero extended as appropriate to fit the bits being replaced. If %Low is
492/// greater than %High then the inverse set of bits are replaced.
493/// @brief Lowering of llvm.bit.part.set intrinsic.
494static Instruction *LowerPartSet(CallInst *CI) {
495  // Make sure we're dealing with a part select intrinsic here
496  Function *F = CI->getCalledFunction();
497  const FunctionType *FT = F->getFunctionType();
498  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
499      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
500      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
501      !FT->getParamType(3)->isInteger())
502    return CI;
503
504  // Get the intrinsic implementation function by converting all the . to _
505  // in the intrinsic's function name and then reconstructing the function
506  // declaration.
507  std::string Name(F->getName());
508  for (unsigned i = 4; i < Name.length(); ++i)
509    if (Name[i] == '.')
510      Name[i] = '_';
511  Module* M = F->getParent();
512  F = cast<Function>(M->getOrInsertFunction(Name, FT));
513  F->setLinkage(GlobalValue::WeakAnyLinkage);
514
515  // If we haven't defined the impl function yet, do so now
516  if (F->isDeclaration()) {
517    // Get the arguments for the function.
518    Function::arg_iterator args = F->arg_begin();
519    Value* Val = args++; Val->setName("Val");
520    Value* Rep = args++; Rep->setName("Rep");
521    Value* Lo  = args++; Lo->setName("Lo");
522    Value* Hi  = args++; Hi->setName("Hi");
523
524    // Get some types we need
525    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
526    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
527    uint32_t RepBits = RepTy->getBitWidth();
528
529    // Constant Definitions
530    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
531    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
532    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
533    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
534    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
535    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
536    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
537
538    // Basic blocks we fill in below.
539    BasicBlock* entry = BasicBlock::Create("entry", F, 0);
540    BasicBlock* large = BasicBlock::Create("large", F, 0);
541    BasicBlock* small = BasicBlock::Create("small", F, 0);
542    BasicBlock* reverse = BasicBlock::Create("reverse", F, 0);
543    BasicBlock* result = BasicBlock::Create("result", F, 0);
544
545    // BASIC BLOCK: entry
546    // First, get the number of bits that we're placing as an i32
547    ICmpInst* is_forward =
548      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
549    SelectInst* Hi_pn = SelectInst::Create(is_forward, Hi, Lo, "", entry);
550    SelectInst* Lo_pn = SelectInst::Create(is_forward, Lo, Hi, "", entry);
551    BinaryOperator* NumBits = BinaryOperator::CreateSub(Hi_pn, Lo_pn, "",entry);
552    NumBits = BinaryOperator::CreateAdd(NumBits, One, "", entry);
553    // Now, convert Lo and Hi to ValTy bit width
554    Lo = getZExtOrTrunc(Lo_pn, ValTy, entry);
555    // Determine if the replacement bits are larger than the number of bits we
556    // are replacing and deal with it.
557    ICmpInst* is_large =
558      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
559    BranchInst::Create(large, small, is_large, entry);
560
561    // BASIC BLOCK: large
562    Instruction* MaskBits =
563      BinaryOperator::CreateSub(RepBitWidth, NumBits, "", large);
564    MaskBits = CastInst::CreateIntegerCast(MaskBits, RepMask->getType(),
565                                           false, "", large);
566    BinaryOperator* Mask1 =
567      BinaryOperator::CreateLShr(RepMask, MaskBits, "", large);
568    BinaryOperator* Rep2 = BinaryOperator::CreateAnd(Mask1, Rep, "", large);
569    BranchInst::Create(small, large);
570
571    // BASIC BLOCK: small
572    PHINode* Rep3 = PHINode::Create(RepTy, "", small);
573    Rep3->reserveOperandSpace(2);
574    Rep3->addIncoming(Rep2, large);
575    Rep3->addIncoming(Rep, entry);
576    Value* Rep4 = getZExtOrTrunc(Rep3, ValTy, small);
577    BranchInst::Create(result, reverse, is_forward, small);
578
579    // BASIC BLOCK: reverse (reverses the bits of the replacement)
580    // Set up our loop counter as a PHI so we can decrement on each iteration.
581    // We will loop for the number of bits in the replacement value.
582    PHINode *Count = PHINode::Create(Type::Int32Ty, "count", reverse);
583    Count->reserveOperandSpace(2);
584    Count->addIncoming(NumBits, small);
585
586    // Get the value that we are shifting bits out of as a PHI because
587    // we'll change this with each iteration.
588    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", reverse);
589    BitsToShift->reserveOperandSpace(2);
590    BitsToShift->addIncoming(Rep4, small);
591
592    // Get the result of the last computation or zero on first iteration
593    PHINode *RRes = PHINode::Create(Val->getType(), "rres", reverse);
594    RRes->reserveOperandSpace(2);
595    RRes->addIncoming(ValZero, small);
596
597    // Decrement the loop counter by one
598    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "", reverse);
599    Count->addIncoming(Decr, reverse);
600
601    // Get the bit that we want to move into the result
602    Value *Bit = BinaryOperator::CreateAnd(BitsToShift, ValOne, "", reverse);
603
604    // Compute the new value of the bits to shift for the next iteration.
605    Value *NewVal = BinaryOperator::CreateLShr(BitsToShift, ValOne,"", reverse);
606    BitsToShift->addIncoming(NewVal, reverse);
607
608    // Shift the bit we extracted into the low bit of the result.
609    Instruction *NewRes = BinaryOperator::CreateShl(RRes, ValOne, "", reverse);
610    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "", reverse);
611    RRes->addIncoming(NewRes, reverse);
612
613    // Terminate loop if we've moved all the bits.
614    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
615    BranchInst::Create(result, reverse, Cond, reverse);
616
617    // BASIC BLOCK: result
618    PHINode *Rplcmnt = PHINode::Create(Val->getType(), "", result);
619    Rplcmnt->reserveOperandSpace(2);
620    Rplcmnt->addIncoming(NewRes, reverse);
621    Rplcmnt->addIncoming(Rep4, small);
622    Value* t0   = CastInst::CreateIntegerCast(NumBits,ValTy,false,"",result);
623    Value* t1   = BinaryOperator::CreateShl(ValMask, Lo, "", result);
624    Value* t2   = BinaryOperator::CreateNot(t1, "", result);
625    Value* t3   = BinaryOperator::CreateShl(t1, t0, "", result);
626    Value* t4   = BinaryOperator::CreateOr(t2, t3, "", result);
627    Value* t5   = BinaryOperator::CreateAnd(t4, Val, "", result);
628    Value* t6   = BinaryOperator::CreateShl(Rplcmnt, Lo, "", result);
629    Value* Rslt = BinaryOperator::CreateOr(t5, t6, "part_set", result);
630    ReturnInst::Create(Rslt, result);
631  }
632
633  // Return a call to the implementation function
634  Value *Args[] = {
635    CI->getOperand(1),
636    CI->getOperand(2),
637    CI->getOperand(3),
638    CI->getOperand(4)
639  };
640  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
641}
642
643static void ReplaceFPIntrinsicWithCall(CallInst *CI, Constant *FCache,
644                                       Constant *DCache, Constant *LDCache,
645                                       const char *Fname, const char *Dname,
646                                       const char *LDname) {
647  switch (CI->getOperand(1)->getType()->getTypeID()) {
648  default: assert(0 && "Invalid type in intrinsic"); abort();
649  case Type::FloatTyID:
650    ReplaceCallWith(Fname, CI, CI->op_begin()+1, CI->op_end(),
651                  Type::FloatTy, FCache);
652    break;
653  case Type::DoubleTyID:
654    ReplaceCallWith(Dname, CI, CI->op_begin()+1, CI->op_end(),
655                  Type::DoubleTy, DCache);
656    break;
657  case Type::X86_FP80TyID:
658  case Type::FP128TyID:
659  case Type::PPC_FP128TyID:
660    ReplaceCallWith(LDname, CI, CI->op_begin()+1, CI->op_end(),
661                  CI->getOperand(1)->getType(), LDCache);
662    break;
663  }
664}
665
666void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
667  Function *Callee = CI->getCalledFunction();
668  assert(Callee && "Cannot lower an indirect call!");
669
670  switch (Callee->getIntrinsicID()) {
671  case Intrinsic::not_intrinsic:
672    cerr << "Cannot lower a call to a non-intrinsic function '"
673         << Callee->getName() << "'!\n";
674    abort();
675  default:
676    cerr << "Error: Code generator does not support intrinsic function '"
677         << Callee->getName() << "'!\n";
678    abort();
679
680    // The setjmp/longjmp intrinsics should only exist in the code if it was
681    // never optimized (ie, right out of the CFE), or if it has been hacked on
682    // by the lowerinvoke pass.  In both cases, the right thing to do is to
683    // convert the call to an explicit setjmp or longjmp call.
684  case Intrinsic::setjmp: {
685    static Constant *SetjmpFCache = 0;
686    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
687                               Type::Int32Ty, SetjmpFCache);
688    if (CI->getType() != Type::VoidTy)
689      CI->replaceAllUsesWith(V);
690    break;
691  }
692  case Intrinsic::sigsetjmp:
693     if (CI->getType() != Type::VoidTy)
694       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
695     break;
696
697  case Intrinsic::longjmp: {
698    static Constant *LongjmpFCache = 0;
699    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
700                    Type::VoidTy, LongjmpFCache);
701    break;
702  }
703
704  case Intrinsic::siglongjmp: {
705    // Insert the call to abort
706    static Constant *AbortFCache = 0;
707    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
708                    Type::VoidTy, AbortFCache);
709    break;
710  }
711  case Intrinsic::ctpop:
712    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
713    break;
714
715  case Intrinsic::bswap:
716    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
717    break;
718
719  case Intrinsic::ctlz:
720    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
721    break;
722
723  case Intrinsic::cttz: {
724    // cttz(x) -> ctpop(~X & (X-1))
725    Value *Src = CI->getOperand(1);
726    Value *NotSrc = BinaryOperator::CreateNot(Src, Src->getName()+".not", CI);
727    Value *SrcM1 = ConstantInt::get(Src->getType(), 1);
728    SrcM1 = BinaryOperator::CreateSub(Src, SrcM1, "", CI);
729    Src = LowerCTPOP(BinaryOperator::CreateAnd(NotSrc, SrcM1, "", CI), CI);
730    CI->replaceAllUsesWith(Src);
731    break;
732  }
733
734  case Intrinsic::part_select:
735    CI->replaceAllUsesWith(LowerPartSelect(CI));
736    break;
737
738  case Intrinsic::part_set:
739    CI->replaceAllUsesWith(LowerPartSet(CI));
740    break;
741
742  case Intrinsic::stacksave:
743  case Intrinsic::stackrestore: {
744    static bool Warned = false;
745    if (!Warned)
746      cerr << "WARNING: this target does not support the llvm.stack"
747           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
748               "save" : "restore") << " intrinsic.\n";
749    Warned = true;
750    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
751      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
752    break;
753  }
754
755  case Intrinsic::returnaddress:
756  case Intrinsic::frameaddress:
757    cerr << "WARNING: this target does not support the llvm."
758         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
759             "return" : "frame") << "address intrinsic.\n";
760    CI->replaceAllUsesWith(ConstantPointerNull::get(
761                                            cast<PointerType>(CI->getType())));
762    break;
763
764  case Intrinsic::prefetch:
765    break;    // Simply strip out prefetches on unsupported architectures
766
767  case Intrinsic::pcmarker:
768    break;    // Simply strip out pcmarker on unsupported architectures
769  case Intrinsic::readcyclecounter: {
770    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
771         << "ter intrinsic.  It is being lowered to a constant 0\n";
772    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
773    break;
774  }
775
776  case Intrinsic::dbg_stoppoint:
777  case Intrinsic::dbg_region_start:
778  case Intrinsic::dbg_region_end:
779  case Intrinsic::dbg_func_start:
780  case Intrinsic::dbg_declare:
781    break;    // Simply strip out debugging intrinsics
782
783  case Intrinsic::eh_exception:
784  case Intrinsic::eh_selector_i32:
785  case Intrinsic::eh_selector_i64:
786    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
787    break;
788
789  case Intrinsic::eh_typeid_for_i32:
790  case Intrinsic::eh_typeid_for_i64:
791    // Return something different to eh_selector.
792    CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
793    break;
794
795  case Intrinsic::var_annotation:
796    break;   // Strip out annotate intrinsic
797
798  case Intrinsic::memcpy: {
799    static Constant *MemcpyFCache = 0;
800    const IntegerType *IntPtr = TD.getIntPtrType();
801    Value *Size = getZExtOrTrunc(CI->getOperand(3), IntPtr, CI);
802    Value *Ops[3];
803    Ops[0] = CI->getOperand(1);
804    Ops[1] = CI->getOperand(2);
805    Ops[2] = Size;
806    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
807                    MemcpyFCache);
808    break;
809  }
810  case Intrinsic::memmove: {
811    static Constant *MemmoveFCache = 0;
812    const IntegerType *IntPtr = TD.getIntPtrType();
813    Value *Size = getZExtOrTrunc(CI->getOperand(3), IntPtr, CI);
814    Value *Ops[3];
815    Ops[0] = CI->getOperand(1);
816    Ops[1] = CI->getOperand(2);
817    Ops[2] = Size;
818    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
819                    MemmoveFCache);
820    break;
821  }
822  case Intrinsic::memset: {
823    static Constant *MemsetFCache = 0;
824    const IntegerType *IntPtr = TD.getIntPtrType();
825    Value *Size = getZExtOrTrunc(CI->getOperand(3), IntPtr, CI);
826    Value *Ops[3];
827    Ops[0] = CI->getOperand(1);
828    // Extend the amount to i32.
829    Ops[1] = getZExtOrTrunc(CI->getOperand(2), Type::Int32Ty, CI);
830    Ops[2] = Size;
831    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
832                    MemsetFCache);
833    break;
834  }
835  case Intrinsic::sqrt: {
836    static Constant *sqrtFCache = 0;
837    static Constant *sqrtDCache = 0;
838    static Constant *sqrtLDCache = 0;
839    ReplaceFPIntrinsicWithCall(CI, sqrtFCache, sqrtDCache, sqrtLDCache,
840                               "sqrtf", "sqrt", "sqrtl");
841    break;
842  }
843  case Intrinsic::log: {
844    static Constant *logFCache = 0;
845    static Constant *logDCache = 0;
846    static Constant *logLDCache = 0;
847    ReplaceFPIntrinsicWithCall(CI, logFCache, logDCache, logLDCache,
848                               "logf", "log", "logl");
849    break;
850  }
851  case Intrinsic::log2: {
852    static Constant *log2FCache = 0;
853    static Constant *log2DCache = 0;
854    static Constant *log2LDCache = 0;
855    ReplaceFPIntrinsicWithCall(CI, log2FCache, log2DCache, log2LDCache,
856                               "log2f", "log2", "log2l");
857    break;
858  }
859  case Intrinsic::log10: {
860    static Constant *log10FCache = 0;
861    static Constant *log10DCache = 0;
862    static Constant *log10LDCache = 0;
863    ReplaceFPIntrinsicWithCall(CI, log10FCache, log10DCache, log10LDCache,
864                               "log10f", "log10", "log10l");
865    break;
866  }
867  case Intrinsic::exp: {
868    static Constant *expFCache = 0;
869    static Constant *expDCache = 0;
870    static Constant *expLDCache = 0;
871    ReplaceFPIntrinsicWithCall(CI, expFCache, expDCache, expLDCache,
872                               "expf", "exp", "expl");
873    break;
874  }
875  case Intrinsic::exp2: {
876    static Constant *exp2FCache = 0;
877    static Constant *exp2DCache = 0;
878    static Constant *exp2LDCache = 0;
879    ReplaceFPIntrinsicWithCall(CI, exp2FCache, exp2DCache, exp2LDCache,
880                               "exp2f", "exp2", "exp2l");
881    break;
882  }
883  case Intrinsic::pow: {
884    static Constant *powFCache = 0;
885    static Constant *powDCache = 0;
886    static Constant *powLDCache = 0;
887    ReplaceFPIntrinsicWithCall(CI, powFCache, powDCache, powLDCache,
888                               "powf", "pow", "powl");
889    break;
890  }
891  case Intrinsic::flt_rounds:
892     // Lower to "round to the nearest"
893     if (CI->getType() != Type::VoidTy)
894       CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
895     break;
896  }
897
898  assert(CI->use_empty() &&
899         "Lowering should have eliminated any uses of the intrinsic call!");
900  CI->eraseFromParent();
901}
902