IntrinsicLowering.cpp revision 7cbd8a3e92221437048b484d5ef9c0a22d0f8c58
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace llvm;
25
26template <class ArgIt>
27static void EnsureFunctionExists(Module &M, const char *Name,
28                                 ArgIt ArgBegin, ArgIt ArgEnd,
29                                 const Type *RetTy) {
30  // Insert a correctly-typed definition now.
31  std::vector<const Type *> ParamTys;
32  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
33    ParamTys.push_back(I->getType());
34  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
35}
36
37/// ReplaceCallWith - This function is used when we want to lower an intrinsic
38/// call to a call of an external function.  This handles hard cases such as
39/// when there was already a prototype for the external function, and if that
40/// prototype doesn't match the arguments we expect to pass in.
41template <class ArgIt>
42static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
43                                 ArgIt ArgBegin, ArgIt ArgEnd,
44                                 const Type *RetTy, Constant *&FCache) {
45  if (!FCache) {
46    // If we haven't already looked up this function, check to see if the
47    // program already contains a function with this name.
48    Module *M = CI->getParent()->getParent()->getParent();
49    // Get or insert the definition now.
50    std::vector<const Type *> ParamTys;
51    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
52      ParamTys.push_back((*I)->getType());
53    FCache = M->getOrInsertFunction(NewFn,
54                                    FunctionType::get(RetTy, ParamTys, false));
55  }
56
57  SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
58  CallInst *NewCI = CallInst::Create(FCache, Args.begin(), Args.end(),
59                                     CI->getName(), CI);
60  if (!CI->use_empty())
61    CI->replaceAllUsesWith(NewCI);
62  return NewCI;
63}
64
65void IntrinsicLowering::AddPrototypes(Module &M) {
66  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
67    if (I->isDeclaration() && !I->use_empty())
68      switch (I->getIntrinsicID()) {
69      default: break;
70      case Intrinsic::setjmp:
71        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
72                             Type::Int32Ty);
73        break;
74      case Intrinsic::longjmp:
75        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
76                             Type::VoidTy);
77        break;
78      case Intrinsic::siglongjmp:
79        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
80                             Type::VoidTy);
81        break;
82      case Intrinsic::memcpy_i32:
83      case Intrinsic::memcpy_i64:
84        M.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty),
85                              PointerType::getUnqual(Type::Int8Ty),
86                              PointerType::getUnqual(Type::Int8Ty),
87                              TD.getIntPtrType(), (Type *)0);
88        break;
89      case Intrinsic::memmove_i32:
90      case Intrinsic::memmove_i64:
91        M.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty),
92                              PointerType::getUnqual(Type::Int8Ty),
93                              PointerType::getUnqual(Type::Int8Ty),
94                              TD.getIntPtrType(), (Type *)0);
95        break;
96      case Intrinsic::memset_i32:
97      case Intrinsic::memset_i64:
98        M.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty),
99                              PointerType::getUnqual(Type::Int8Ty),
100                              Type::Int32Ty,
101                              TD.getIntPtrType(), (Type *)0);
102        break;
103      case Intrinsic::sqrt:
104        switch((int)I->arg_begin()->getType()->getTypeID()) {
105        case Type::FloatTyID:
106          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
107                               Type::FloatTy);
108        case Type::DoubleTyID:
109          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
110                               Type::DoubleTy);
111        case Type::X86_FP80TyID:
112        case Type::FP128TyID:
113        case Type::PPC_FP128TyID:
114          EnsureFunctionExists(M, "sqrtl", I->arg_begin(), I->arg_end(),
115                               I->arg_begin()->getType());
116        }
117        break;
118      case Intrinsic::sin:
119        switch((int)I->arg_begin()->getType()->getTypeID()) {
120        case Type::FloatTyID:
121          EnsureFunctionExists(M, "sinf", I->arg_begin(), I->arg_end(),
122                               Type::FloatTy);
123        case Type::DoubleTyID:
124          EnsureFunctionExists(M, "sin", I->arg_begin(), I->arg_end(),
125                               Type::DoubleTy);
126        case Type::X86_FP80TyID:
127        case Type::FP128TyID:
128        case Type::PPC_FP128TyID:
129          EnsureFunctionExists(M, "sinl", I->arg_begin(), I->arg_end(),
130                               I->arg_begin()->getType());
131        }
132        break;
133      case Intrinsic::cos:
134        switch((int)I->arg_begin()->getType()->getTypeID()) {
135        case Type::FloatTyID:
136          EnsureFunctionExists(M, "cosf", I->arg_begin(), I->arg_end(),
137                               Type::FloatTy);
138        case Type::DoubleTyID:
139          EnsureFunctionExists(M, "cos", I->arg_begin(), I->arg_end(),
140                               Type::DoubleTy);
141        case Type::X86_FP80TyID:
142        case Type::FP128TyID:
143        case Type::PPC_FP128TyID:
144          EnsureFunctionExists(M, "cosl", I->arg_begin(), I->arg_end(),
145                               I->arg_begin()->getType());
146        }
147        break;
148      case Intrinsic::pow:
149        switch((int)I->arg_begin()->getType()->getTypeID()) {
150        case Type::FloatTyID:
151          EnsureFunctionExists(M, "powf", I->arg_begin(), I->arg_end(),
152                               Type::FloatTy);
153        case Type::DoubleTyID:
154          EnsureFunctionExists(M, "pow", I->arg_begin(), I->arg_end(),
155                               Type::DoubleTy);
156        case Type::X86_FP80TyID:
157        case Type::FP128TyID:
158        case Type::PPC_FP128TyID:
159          EnsureFunctionExists(M, "powl", I->arg_begin(), I->arg_end(),
160                               I->arg_begin()->getType());
161        }
162        break;
163      }
164}
165
166/// LowerBSWAP - Emit the code to lower bswap of V before the specified
167/// instruction IP.
168static Value *LowerBSWAP(Value *V, Instruction *IP) {
169  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
170
171  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
172
173  switch(BitSize) {
174  default: assert(0 && "Unhandled type size of value to byteswap!");
175  case 16: {
176    Value *Tmp1 = BinaryOperator::CreateShl(V,
177                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
178    Value *Tmp2 = BinaryOperator::CreateLShr(V,
179                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
180    V = BinaryOperator::CreateOr(Tmp1, Tmp2, "bswap.i16", IP);
181    break;
182  }
183  case 32: {
184    Value *Tmp4 = BinaryOperator::CreateShl(V,
185                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
186    Value *Tmp3 = BinaryOperator::CreateShl(V,
187                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
188    Value *Tmp2 = BinaryOperator::CreateLShr(V,
189                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
190    Value *Tmp1 = BinaryOperator::CreateLShr(V,
191                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
192    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
193                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
194                                     "bswap.and3", IP);
195    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
196                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
197                                     "bswap.and2", IP);
198    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or1", IP);
199    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or2", IP);
200    V = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.i32", IP);
201    break;
202  }
203  case 64: {
204    Value *Tmp8 = BinaryOperator::CreateShl(V,
205                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
206    Value *Tmp7 = BinaryOperator::CreateShl(V,
207                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
208    Value *Tmp6 = BinaryOperator::CreateShl(V,
209                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
210    Value *Tmp5 = BinaryOperator::CreateShl(V,
211                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
212    Value* Tmp4 = BinaryOperator::CreateLShr(V,
213                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
214    Value* Tmp3 = BinaryOperator::CreateLShr(V,
215                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
216    Value* Tmp2 = BinaryOperator::CreateLShr(V,
217                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
218    Value* Tmp1 = BinaryOperator::CreateLShr(V,
219                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
220    Tmp7 = BinaryOperator::CreateAnd(Tmp7,
221                             ConstantInt::get(Type::Int64Ty,
222                               0xFF000000000000ULL),
223                             "bswap.and7", IP);
224    Tmp6 = BinaryOperator::CreateAnd(Tmp6,
225                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
226                             "bswap.and6", IP);
227    Tmp5 = BinaryOperator::CreateAnd(Tmp5,
228                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
229                             "bswap.and5", IP);
230    Tmp4 = BinaryOperator::CreateAnd(Tmp4,
231                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
232                             "bswap.and4", IP);
233    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
234                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
235                             "bswap.and3", IP);
236    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
237                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
238                             "bswap.and2", IP);
239    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp7, "bswap.or1", IP);
240    Tmp6 = BinaryOperator::CreateOr(Tmp6, Tmp5, "bswap.or2", IP);
241    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or3", IP);
242    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or4", IP);
243    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp6, "bswap.or5", IP);
244    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.or6", IP);
245    V = BinaryOperator::CreateOr(Tmp8, Tmp4, "bswap.i64", IP);
246    break;
247  }
248  }
249  return V;
250}
251
252/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
253/// instruction IP.
254static Value *LowerCTPOP(Value *V, Instruction *IP) {
255  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
256
257  static const uint64_t MaskValues[6] = {
258    0x5555555555555555ULL, 0x3333333333333333ULL,
259    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
260    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
261  };
262
263  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
264  unsigned WordSize = (BitSize + 63) / 64;
265  Value *Count = ConstantInt::get(V->getType(), 0);
266
267  for (unsigned n = 0; n < WordSize; ++n) {
268    Value *PartValue = V;
269    for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
270         i <<= 1, ++ct) {
271      Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
272      Value *LHS = BinaryOperator::CreateAnd(
273                     PartValue, MaskCst, "cppop.and1", IP);
274      Value *VShift = BinaryOperator::CreateLShr(PartValue,
275                        ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
276      Value *RHS = BinaryOperator::CreateAnd(VShift, MaskCst, "cppop.and2", IP);
277      PartValue = BinaryOperator::CreateAdd(LHS, RHS, "ctpop.step", IP);
278    }
279    Count = BinaryOperator::CreateAdd(PartValue, Count, "ctpop.part", IP);
280    if (BitSize > 64) {
281      V = BinaryOperator::CreateLShr(V, ConstantInt::get(V->getType(), 64),
282                                     "ctpop.part.sh", IP);
283      BitSize -= 64;
284    }
285  }
286
287  return Count;
288}
289
290/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
291/// instruction IP.
292static Value *LowerCTLZ(Value *V, Instruction *IP) {
293
294  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
295  for (unsigned i = 1; i < BitSize; i <<= 1) {
296    Value *ShVal = ConstantInt::get(V->getType(), i);
297    ShVal = BinaryOperator::CreateLShr(V, ShVal, "ctlz.sh", IP);
298    V = BinaryOperator::CreateOr(V, ShVal, "ctlz.step", IP);
299  }
300
301  V = BinaryOperator::CreateNot(V, "", IP);
302  return LowerCTPOP(V, IP);
303}
304
305/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
306/// three integer arguments. The first argument is the Value from which the
307/// bits will be selected. It may be of any bit width. The second and third
308/// arguments specify a range of bits to select with the second argument
309/// specifying the low bit and the third argument specifying the high bit. Both
310/// must be type i32. The result is the corresponding selected bits from the
311/// Value in the same width as the Value (first argument). If the low bit index
312/// is higher than the high bit index then the inverse selection is done and
313/// the bits are returned in inverse order.
314/// @brief Lowering of llvm.part.select intrinsic.
315static Instruction *LowerPartSelect(CallInst *CI) {
316  // Make sure we're dealing with a part select intrinsic here
317  Function *F = CI->getCalledFunction();
318  const FunctionType *FT = F->getFunctionType();
319  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
320      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
321      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
322    return CI;
323
324  // Get the intrinsic implementation function by converting all the . to _
325  // in the intrinsic's function name and then reconstructing the function
326  // declaration.
327  std::string Name(F->getName());
328  for (unsigned i = 4; i < Name.length(); ++i)
329    if (Name[i] == '.')
330      Name[i] = '_';
331  Module* M = F->getParent();
332  F = cast<Function>(M->getOrInsertFunction(Name, FT));
333  F->setLinkage(GlobalValue::WeakLinkage);
334
335  // If we haven't defined the impl function yet, do so now
336  if (F->isDeclaration()) {
337
338    // Get the arguments to the function
339    Function::arg_iterator args = F->arg_begin();
340    Value* Val = args++; Val->setName("Val");
341    Value* Lo = args++; Lo->setName("Lo");
342    Value* Hi = args++; Hi->setName("High");
343
344    // We want to select a range of bits here such that [Hi, Lo] is shifted
345    // down to the low bits. However, it is quite possible that Hi is smaller
346    // than Lo in which case the bits have to be reversed.
347
348    // Create the blocks we will need for the two cases (forward, reverse)
349    BasicBlock* CurBB   = BasicBlock::Create("entry", F);
350    BasicBlock *RevSize = BasicBlock::Create("revsize", CurBB->getParent());
351    BasicBlock *FwdSize = BasicBlock::Create("fwdsize", CurBB->getParent());
352    BasicBlock *Compute = BasicBlock::Create("compute", CurBB->getParent());
353    BasicBlock *Reverse = BasicBlock::Create("reverse", CurBB->getParent());
354    BasicBlock *RsltBlk = BasicBlock::Create("result",  CurBB->getParent());
355
356    // Cast Hi and Lo to the size of Val so the widths are all the same
357    if (Hi->getType() != Val->getType())
358      Hi = CastInst::CreateIntegerCast(Hi, Val->getType(), false,
359                                         "tmp", CurBB);
360    if (Lo->getType() != Val->getType())
361      Lo = CastInst::CreateIntegerCast(Lo, Val->getType(), false,
362                                          "tmp", CurBB);
363
364    // Compute a few things that both cases will need, up front.
365    Constant* Zero = ConstantInt::get(Val->getType(), 0);
366    Constant* One = ConstantInt::get(Val->getType(), 1);
367    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
368
369    // Compare the Hi and Lo bit positions. This is used to determine
370    // which case we have (forward or reverse)
371    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
372    BranchInst::Create(RevSize, FwdSize, Cmp, CurBB);
373
374    // First, copmute the number of bits in the forward case.
375    Instruction* FBitSize =
376      BinaryOperator::CreateSub(Hi, Lo,"fbits", FwdSize);
377    BranchInst::Create(Compute, FwdSize);
378
379    // Second, compute the number of bits in the reverse case.
380    Instruction* RBitSize =
381      BinaryOperator::CreateSub(Lo, Hi, "rbits", RevSize);
382    BranchInst::Create(Compute, RevSize);
383
384    // Now, compute the bit range. Start by getting the bitsize and the shift
385    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
386    // the number of bits we want in the range. We shift the bits down to the
387    // least significant bits, apply the mask to zero out unwanted high bits,
388    // and we have computed the "forward" result. It may still need to be
389    // reversed.
390
391    // Get the BitSize from one of the two subtractions
392    PHINode *BitSize = PHINode::Create(Val->getType(), "bits", Compute);
393    BitSize->reserveOperandSpace(2);
394    BitSize->addIncoming(FBitSize, FwdSize);
395    BitSize->addIncoming(RBitSize, RevSize);
396
397    // Get the ShiftAmount as the smaller of Hi/Lo
398    PHINode *ShiftAmt = PHINode::Create(Val->getType(), "shiftamt", Compute);
399    ShiftAmt->reserveOperandSpace(2);
400    ShiftAmt->addIncoming(Lo, FwdSize);
401    ShiftAmt->addIncoming(Hi, RevSize);
402
403    // Increment the bit size
404    Instruction *BitSizePlusOne =
405      BinaryOperator::CreateAdd(BitSize, One, "bits", Compute);
406
407    // Create a Mask to zero out the high order bits.
408    Instruction* Mask =
409      BinaryOperator::CreateShl(AllOnes, BitSizePlusOne, "mask", Compute);
410    Mask = BinaryOperator::CreateNot(Mask, "mask", Compute);
411
412    // Shift the bits down and apply the mask
413    Instruction* FRes =
414      BinaryOperator::CreateLShr(Val, ShiftAmt, "fres", Compute);
415    FRes = BinaryOperator::CreateAnd(FRes, Mask, "fres", Compute);
416    BranchInst::Create(Reverse, RsltBlk, Cmp, Compute);
417
418    // In the Reverse block we have the mask already in FRes but we must reverse
419    // it by shifting FRes bits right and putting them in RRes by shifting them
420    // in from left.
421
422    // First set up our loop counters
423    PHINode *Count = PHINode::Create(Val->getType(), "count", Reverse);
424    Count->reserveOperandSpace(2);
425    Count->addIncoming(BitSizePlusOne, Compute);
426
427    // Next, get the value that we are shifting.
428    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", Reverse);
429    BitsToShift->reserveOperandSpace(2);
430    BitsToShift->addIncoming(FRes, Compute);
431
432    // Finally, get the result of the last computation
433    PHINode *RRes = PHINode::Create(Val->getType(), "rres", Reverse);
434    RRes->reserveOperandSpace(2);
435    RRes->addIncoming(Zero, Compute);
436
437    // Decrement the counter
438    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "decr", Reverse);
439    Count->addIncoming(Decr, Reverse);
440
441    // Compute the Bit that we want to move
442    Instruction *Bit =
443      BinaryOperator::CreateAnd(BitsToShift, One, "bit", Reverse);
444
445    // Compute the new value for next iteration.
446    Instruction *NewVal =
447      BinaryOperator::CreateLShr(BitsToShift, One, "rshift", Reverse);
448    BitsToShift->addIncoming(NewVal, Reverse);
449
450    // Shift the bit into the low bits of the result.
451    Instruction *NewRes =
452      BinaryOperator::CreateShl(RRes, One, "lshift", Reverse);
453    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "addbit", Reverse);
454    RRes->addIncoming(NewRes, Reverse);
455
456    // Terminate loop if we've moved all the bits.
457    ICmpInst *Cond =
458      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
459    BranchInst::Create(RsltBlk, Reverse, Cond, Reverse);
460
461    // Finally, in the result block, select one of the two results with a PHI
462    // node and return the result;
463    CurBB = RsltBlk;
464    PHINode *BitSelect = PHINode::Create(Val->getType(), "part_select", CurBB);
465    BitSelect->reserveOperandSpace(2);
466    BitSelect->addIncoming(FRes, Compute);
467    BitSelect->addIncoming(NewRes, Reverse);
468    ReturnInst::Create(BitSelect, CurBB);
469  }
470
471  // Return a call to the implementation function
472  Value *Args[] = {
473    CI->getOperand(1),
474    CI->getOperand(2),
475    CI->getOperand(3)
476  };
477  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
478}
479
480/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
481/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
482/// The first two arguments can be any bit width. The result is the same width
483/// as %Value. The operation replaces bits between %Low and %High with the value
484/// in %Replacement. If %Replacement is not the same width, it is truncated or
485/// zero extended as appropriate to fit the bits being replaced. If %Low is
486/// greater than %High then the inverse set of bits are replaced.
487/// @brief Lowering of llvm.bit.part.set intrinsic.
488static Instruction *LowerPartSet(CallInst *CI) {
489  // Make sure we're dealing with a part select intrinsic here
490  Function *F = CI->getCalledFunction();
491  const FunctionType *FT = F->getFunctionType();
492  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
493      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
494      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
495      !FT->getParamType(3)->isInteger())
496    return CI;
497
498  // Get the intrinsic implementation function by converting all the . to _
499  // in the intrinsic's function name and then reconstructing the function
500  // declaration.
501  std::string Name(F->getName());
502  for (unsigned i = 4; i < Name.length(); ++i)
503    if (Name[i] == '.')
504      Name[i] = '_';
505  Module* M = F->getParent();
506  F = cast<Function>(M->getOrInsertFunction(Name, FT));
507  F->setLinkage(GlobalValue::WeakLinkage);
508
509  // If we haven't defined the impl function yet, do so now
510  if (F->isDeclaration()) {
511    // Get the arguments for the function.
512    Function::arg_iterator args = F->arg_begin();
513    Value* Val = args++; Val->setName("Val");
514    Value* Rep = args++; Rep->setName("Rep");
515    Value* Lo  = args++; Lo->setName("Lo");
516    Value* Hi  = args++; Hi->setName("Hi");
517
518    // Get some types we need
519    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
520    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
521    uint32_t ValBits = ValTy->getBitWidth();
522    uint32_t RepBits = RepTy->getBitWidth();
523
524    // Constant Definitions
525    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
526    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
527    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
528    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
529    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
530    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
531    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
532
533    // Basic blocks we fill in below.
534    BasicBlock* entry = BasicBlock::Create("entry", F, 0);
535    BasicBlock* large = BasicBlock::Create("large", F, 0);
536    BasicBlock* small = BasicBlock::Create("small", F, 0);
537    BasicBlock* reverse = BasicBlock::Create("reverse", F, 0);
538    BasicBlock* result = BasicBlock::Create("result", F, 0);
539
540    // BASIC BLOCK: entry
541    // First, get the number of bits that we're placing as an i32
542    ICmpInst* is_forward =
543      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
544    SelectInst* Hi_pn = SelectInst::Create(is_forward, Hi, Lo, "", entry);
545    SelectInst* Lo_pn = SelectInst::Create(is_forward, Lo, Hi, "", entry);
546    BinaryOperator* NumBits = BinaryOperator::CreateSub(Hi_pn, Lo_pn, "",entry);
547    NumBits = BinaryOperator::CreateAdd(NumBits, One, "", entry);
548    // Now, convert Lo and Hi to ValTy bit width
549    if (ValBits > 32) {
550      Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
551    } else if (ValBits < 32) {
552      Lo = new TruncInst(Lo_pn, ValTy, "", entry);
553    }
554    // Determine if the replacement bits are larger than the number of bits we
555    // are replacing and deal with it.
556    ICmpInst* is_large =
557      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
558    BranchInst::Create(large, small, is_large, entry);
559
560    // BASIC BLOCK: large
561    Instruction* MaskBits =
562      BinaryOperator::CreateSub(RepBitWidth, NumBits, "", large);
563    MaskBits = CastInst::CreateIntegerCast(MaskBits, RepMask->getType(),
564                                           false, "", large);
565    BinaryOperator* Mask1 =
566      BinaryOperator::CreateLShr(RepMask, MaskBits, "", large);
567    BinaryOperator* Rep2 = BinaryOperator::CreateAnd(Mask1, Rep, "", large);
568    BranchInst::Create(small, large);
569
570    // BASIC BLOCK: small
571    PHINode* Rep3 = PHINode::Create(RepTy, "", small);
572    Rep3->reserveOperandSpace(2);
573    Rep3->addIncoming(Rep2, large);
574    Rep3->addIncoming(Rep, entry);
575    Value* Rep4 = Rep3;
576    if (ValBits > RepBits)
577      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
578    else if (ValBits < RepBits)
579      Rep4 = new TruncInst(Rep3, ValTy, "", small);
580    BranchInst::Create(result, reverse, is_forward, small);
581
582    // BASIC BLOCK: reverse (reverses the bits of the replacement)
583    // Set up our loop counter as a PHI so we can decrement on each iteration.
584    // We will loop for the number of bits in the replacement value.
585    PHINode *Count = PHINode::Create(Type::Int32Ty, "count", reverse);
586    Count->reserveOperandSpace(2);
587    Count->addIncoming(NumBits, small);
588
589    // Get the value that we are shifting bits out of as a PHI because
590    // we'll change this with each iteration.
591    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", reverse);
592    BitsToShift->reserveOperandSpace(2);
593    BitsToShift->addIncoming(Rep4, small);
594
595    // Get the result of the last computation or zero on first iteration
596    PHINode *RRes = PHINode::Create(Val->getType(), "rres", reverse);
597    RRes->reserveOperandSpace(2);
598    RRes->addIncoming(ValZero, small);
599
600    // Decrement the loop counter by one
601    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "", reverse);
602    Count->addIncoming(Decr, reverse);
603
604    // Get the bit that we want to move into the result
605    Value *Bit = BinaryOperator::CreateAnd(BitsToShift, ValOne, "", reverse);
606
607    // Compute the new value of the bits to shift for the next iteration.
608    Value *NewVal = BinaryOperator::CreateLShr(BitsToShift, ValOne,"", reverse);
609    BitsToShift->addIncoming(NewVal, reverse);
610
611    // Shift the bit we extracted into the low bit of the result.
612    Instruction *NewRes = BinaryOperator::CreateShl(RRes, ValOne, "", reverse);
613    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "", reverse);
614    RRes->addIncoming(NewRes, reverse);
615
616    // Terminate loop if we've moved all the bits.
617    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
618    BranchInst::Create(result, reverse, Cond, reverse);
619
620    // BASIC BLOCK: result
621    PHINode *Rplcmnt = PHINode::Create(Val->getType(), "", result);
622    Rplcmnt->reserveOperandSpace(2);
623    Rplcmnt->addIncoming(NewRes, reverse);
624    Rplcmnt->addIncoming(Rep4, small);
625    Value* t0   = CastInst::CreateIntegerCast(NumBits,ValTy,false,"",result);
626    Value* t1   = BinaryOperator::CreateShl(ValMask, Lo, "", result);
627    Value* t2   = BinaryOperator::CreateNot(t1, "", result);
628    Value* t3   = BinaryOperator::CreateShl(t1, t0, "", result);
629    Value* t4   = BinaryOperator::CreateOr(t2, t3, "", result);
630    Value* t5   = BinaryOperator::CreateAnd(t4, Val, "", result);
631    Value* t6   = BinaryOperator::CreateShl(Rplcmnt, Lo, "", result);
632    Value* Rslt = BinaryOperator::CreateOr(t5, t6, "part_set", result);
633    ReturnInst::Create(Rslt, result);
634  }
635
636  // Return a call to the implementation function
637  Value *Args[] = {
638    CI->getOperand(1),
639    CI->getOperand(2),
640    CI->getOperand(3),
641    CI->getOperand(4)
642  };
643  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
644}
645
646
647void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
648  Function *Callee = CI->getCalledFunction();
649  assert(Callee && "Cannot lower an indirect call!");
650
651  switch (Callee->getIntrinsicID()) {
652  case Intrinsic::not_intrinsic:
653    cerr << "Cannot lower a call to a non-intrinsic function '"
654         << Callee->getName() << "'!\n";
655    abort();
656  default:
657    cerr << "Error: Code generator does not support intrinsic function '"
658         << Callee->getName() << "'!\n";
659    abort();
660
661    // The setjmp/longjmp intrinsics should only exist in the code if it was
662    // never optimized (ie, right out of the CFE), or if it has been hacked on
663    // by the lowerinvoke pass.  In both cases, the right thing to do is to
664    // convert the call to an explicit setjmp or longjmp call.
665  case Intrinsic::setjmp: {
666    static Constant *SetjmpFCache = 0;
667    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
668                               Type::Int32Ty, SetjmpFCache);
669    if (CI->getType() != Type::VoidTy)
670      CI->replaceAllUsesWith(V);
671    break;
672  }
673  case Intrinsic::sigsetjmp:
674     if (CI->getType() != Type::VoidTy)
675       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
676     break;
677
678  case Intrinsic::longjmp: {
679    static Constant *LongjmpFCache = 0;
680    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
681                    Type::VoidTy, LongjmpFCache);
682    break;
683  }
684
685  case Intrinsic::siglongjmp: {
686    // Insert the call to abort
687    static Constant *AbortFCache = 0;
688    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
689                    Type::VoidTy, AbortFCache);
690    break;
691  }
692  case Intrinsic::ctpop:
693    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
694    break;
695
696  case Intrinsic::bswap:
697    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
698    break;
699
700  case Intrinsic::ctlz:
701    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
702    break;
703
704  case Intrinsic::cttz: {
705    // cttz(x) -> ctpop(~X & (X-1))
706    Value *Src = CI->getOperand(1);
707    Value *NotSrc = BinaryOperator::CreateNot(Src, Src->getName()+".not", CI);
708    Value *SrcM1 = ConstantInt::get(Src->getType(), 1);
709    SrcM1 = BinaryOperator::CreateSub(Src, SrcM1, "", CI);
710    Src = LowerCTPOP(BinaryOperator::CreateAnd(NotSrc, SrcM1, "", CI), CI);
711    CI->replaceAllUsesWith(Src);
712    break;
713  }
714
715  case Intrinsic::part_select:
716    CI->replaceAllUsesWith(LowerPartSelect(CI));
717    break;
718
719  case Intrinsic::part_set:
720    CI->replaceAllUsesWith(LowerPartSet(CI));
721    break;
722
723  case Intrinsic::stacksave:
724  case Intrinsic::stackrestore: {
725    static bool Warned = false;
726    if (!Warned)
727      cerr << "WARNING: this target does not support the llvm.stack"
728           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
729               "save" : "restore") << " intrinsic.\n";
730    Warned = true;
731    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
732      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
733    break;
734  }
735
736  case Intrinsic::returnaddress:
737  case Intrinsic::frameaddress:
738    cerr << "WARNING: this target does not support the llvm."
739         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
740             "return" : "frame") << "address intrinsic.\n";
741    CI->replaceAllUsesWith(ConstantPointerNull::get(
742                                            cast<PointerType>(CI->getType())));
743    break;
744
745  case Intrinsic::prefetch:
746    break;    // Simply strip out prefetches on unsupported architectures
747
748  case Intrinsic::pcmarker:
749    break;    // Simply strip out pcmarker on unsupported architectures
750  case Intrinsic::readcyclecounter: {
751    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
752         << "ter intrinsic.  It is being lowered to a constant 0\n";
753    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
754    break;
755  }
756
757  case Intrinsic::dbg_stoppoint:
758  case Intrinsic::dbg_region_start:
759  case Intrinsic::dbg_region_end:
760  case Intrinsic::dbg_func_start:
761  case Intrinsic::dbg_declare:
762    break;    // Simply strip out debugging intrinsics
763
764  case Intrinsic::eh_exception:
765  case Intrinsic::eh_selector_i32:
766  case Intrinsic::eh_selector_i64:
767    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
768    break;
769
770  case Intrinsic::eh_typeid_for_i32:
771  case Intrinsic::eh_typeid_for_i64:
772    // Return something different to eh_selector.
773    CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
774    break;
775
776  case Intrinsic::var_annotation:
777    break;   // Strip out annotate intrinsic
778
779  case Intrinsic::memcpy_i32:
780  case Intrinsic::memcpy_i64: {
781    static Constant *MemcpyFCache = 0;
782    Value *Size = CI->getOperand(3);
783    const Type *IntPtr = TD.getIntPtrType();
784    if (Size->getType()->getPrimitiveSizeInBits() <
785        IntPtr->getPrimitiveSizeInBits())
786      Size = new ZExtInst(Size, IntPtr, "", CI);
787    else if (Size->getType()->getPrimitiveSizeInBits() >
788             IntPtr->getPrimitiveSizeInBits())
789      Size = new TruncInst(Size, IntPtr, "", CI);
790    Value *Ops[3];
791    Ops[0] = CI->getOperand(1);
792    Ops[1] = CI->getOperand(2);
793    Ops[2] = Size;
794    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
795                    MemcpyFCache);
796    break;
797  }
798  case Intrinsic::memmove_i32:
799  case Intrinsic::memmove_i64: {
800    static Constant *MemmoveFCache = 0;
801    Value *Size = CI->getOperand(3);
802    const Type *IntPtr = TD.getIntPtrType();
803    if (Size->getType()->getPrimitiveSizeInBits() <
804        IntPtr->getPrimitiveSizeInBits())
805      Size = new ZExtInst(Size, IntPtr, "", CI);
806    else if (Size->getType()->getPrimitiveSizeInBits() >
807             IntPtr->getPrimitiveSizeInBits())
808      Size = new TruncInst(Size, IntPtr, "", CI);
809    Value *Ops[3];
810    Ops[0] = CI->getOperand(1);
811    Ops[1] = CI->getOperand(2);
812    Ops[2] = Size;
813    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
814                    MemmoveFCache);
815    break;
816  }
817  case Intrinsic::memset_i32:
818  case Intrinsic::memset_i64: {
819    static Constant *MemsetFCache = 0;
820    Value *Size = CI->getOperand(3);
821    const Type *IntPtr = TD.getIntPtrType();
822    if (Size->getType()->getPrimitiveSizeInBits() <
823        IntPtr->getPrimitiveSizeInBits())
824      Size = new ZExtInst(Size, IntPtr, "", CI);
825    else if (Size->getType()->getPrimitiveSizeInBits() >
826             IntPtr->getPrimitiveSizeInBits())
827      Size = new TruncInst(Size, IntPtr, "", CI);
828    Value *Ops[3];
829    Ops[0] = CI->getOperand(1);
830    // Extend the amount to i32.
831    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
832    Ops[2] = Size;
833    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
834                    MemsetFCache);
835    break;
836  }
837  case Intrinsic::sqrt: {
838    static Constant *sqrtfFCache = 0;
839    static Constant *sqrtFCache = 0;
840    static Constant *sqrtLDCache = 0;
841    switch (CI->getOperand(1)->getType()->getTypeID()) {
842    default: assert(0 && "Invalid type in sqrt"); abort();
843    case Type::FloatTyID:
844      ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
845                    Type::FloatTy, sqrtfFCache);
846      break;
847    case Type::DoubleTyID:
848      ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
849                    Type::DoubleTy, sqrtFCache);
850      break;
851    case Type::X86_FP80TyID:
852    case Type::FP128TyID:
853    case Type::PPC_FP128TyID:
854      ReplaceCallWith("sqrtl", CI, CI->op_begin()+1, CI->op_end(),
855                    CI->getOperand(1)->getType(), sqrtLDCache);
856      break;
857    }
858    break;
859  }
860  case Intrinsic::flt_rounds:
861     // Lower to "round to the nearest"
862     if (CI->getType() != Type::VoidTy)
863       CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
864     break;
865  }
866
867  assert(CI->use_empty() &&
868         "Lowering should have eliminated any uses of the intrinsic call!");
869  CI->eraseFromParent();
870}
871