IntrinsicLowering.cpp revision 92b33088469bee2ea489b79574d26cd3847220ac
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace llvm;
25
26template <class ArgIt>
27static void EnsureFunctionExists(Module &M, const char *Name,
28                                 ArgIt ArgBegin, ArgIt ArgEnd,
29                                 const Type *RetTy) {
30  // Insert a correctly-typed definition now.
31  std::vector<const Type *> ParamTys;
32  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
33    ParamTys.push_back(I->getType());
34  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
35}
36
37/// ReplaceCallWith - This function is used when we want to lower an intrinsic
38/// call to a call of an external function.  This handles hard cases such as
39/// when there was already a prototype for the external function, and if that
40/// prototype doesn't match the arguments we expect to pass in.
41template <class ArgIt>
42static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
43                                 ArgIt ArgBegin, ArgIt ArgEnd,
44                                 const Type *RetTy, Constant *&FCache) {
45  if (!FCache) {
46    // If we haven't already looked up this function, check to see if the
47    // program already contains a function with this name.
48    Module *M = CI->getParent()->getParent()->getParent();
49    // Get or insert the definition now.
50    std::vector<const Type *> ParamTys;
51    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
52      ParamTys.push_back((*I)->getType());
53    FCache = M->getOrInsertFunction(NewFn,
54                                    FunctionType::get(RetTy, ParamTys, false));
55  }
56
57  SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
58  CallInst *NewCI = CallInst::Create(FCache, Args.begin(), Args.end(),
59                                     CI->getName(), CI);
60  if (!CI->use_empty())
61    CI->replaceAllUsesWith(NewCI);
62  return NewCI;
63}
64
65void IntrinsicLowering::AddPrototypes(Module &M) {
66  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
67    if (I->isDeclaration() && !I->use_empty())
68      switch (I->getIntrinsicID()) {
69      default: break;
70      case Intrinsic::setjmp:
71        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
72                             Type::Int32Ty);
73        break;
74      case Intrinsic::longjmp:
75        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
76                             Type::VoidTy);
77        break;
78      case Intrinsic::siglongjmp:
79        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
80                             Type::VoidTy);
81        break;
82      case Intrinsic::memcpy_i32:
83      case Intrinsic::memcpy_i64:
84        M.getOrInsertFunction("memcpy", PointerType::getUnqual(Type::Int8Ty),
85                              PointerType::getUnqual(Type::Int8Ty),
86                              PointerType::getUnqual(Type::Int8Ty),
87                              TD.getIntPtrType(), (Type *)0);
88        break;
89      case Intrinsic::memmove_i32:
90      case Intrinsic::memmove_i64:
91        M.getOrInsertFunction("memmove", PointerType::getUnqual(Type::Int8Ty),
92                              PointerType::getUnqual(Type::Int8Ty),
93                              PointerType::getUnqual(Type::Int8Ty),
94                              TD.getIntPtrType(), (Type *)0);
95        break;
96      case Intrinsic::memset_i32:
97      case Intrinsic::memset_i64:
98        M.getOrInsertFunction("memset", PointerType::getUnqual(Type::Int8Ty),
99                              PointerType::getUnqual(Type::Int8Ty),
100                              Type::Int32Ty,
101                              TD.getIntPtrType(), (Type *)0);
102        break;
103      case Intrinsic::sqrt:
104        switch((int)I->arg_begin()->getType()->getTypeID()) {
105        case Type::FloatTyID:
106          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
107                               Type::FloatTy);
108        case Type::DoubleTyID:
109          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
110                               Type::DoubleTy);
111        case Type::X86_FP80TyID:
112        case Type::FP128TyID:
113        case Type::PPC_FP128TyID:
114          EnsureFunctionExists(M, "sqrtl", I->arg_begin(), I->arg_end(),
115                               I->arg_begin()->getType());
116        }
117        break;
118      case Intrinsic::sin:
119        switch((int)I->arg_begin()->getType()->getTypeID()) {
120        case Type::FloatTyID:
121          EnsureFunctionExists(M, "sinf", I->arg_begin(), I->arg_end(),
122                               Type::FloatTy);
123        case Type::DoubleTyID:
124          EnsureFunctionExists(M, "sin", I->arg_begin(), I->arg_end(),
125                               Type::DoubleTy);
126        case Type::X86_FP80TyID:
127        case Type::FP128TyID:
128        case Type::PPC_FP128TyID:
129          EnsureFunctionExists(M, "sinl", I->arg_begin(), I->arg_end(),
130                               I->arg_begin()->getType());
131        }
132        break;
133      case Intrinsic::cos:
134        switch((int)I->arg_begin()->getType()->getTypeID()) {
135        case Type::FloatTyID:
136          EnsureFunctionExists(M, "cosf", I->arg_begin(), I->arg_end(),
137                               Type::FloatTy);
138        case Type::DoubleTyID:
139          EnsureFunctionExists(M, "cos", I->arg_begin(), I->arg_end(),
140                               Type::DoubleTy);
141        case Type::X86_FP80TyID:
142        case Type::FP128TyID:
143        case Type::PPC_FP128TyID:
144          EnsureFunctionExists(M, "cosl", I->arg_begin(), I->arg_end(),
145                               I->arg_begin()->getType());
146        }
147        break;
148      case Intrinsic::pow:
149        switch((int)I->arg_begin()->getType()->getTypeID()) {
150        case Type::FloatTyID:
151          EnsureFunctionExists(M, "powf", I->arg_begin(), I->arg_end(),
152                               Type::FloatTy);
153        case Type::DoubleTyID:
154          EnsureFunctionExists(M, "pow", I->arg_begin(), I->arg_end(),
155                               Type::DoubleTy);
156        case Type::X86_FP80TyID:
157        case Type::FP128TyID:
158        case Type::PPC_FP128TyID:
159          EnsureFunctionExists(M, "powl", I->arg_begin(), I->arg_end(),
160                               I->arg_begin()->getType());
161        }
162        break;
163      case Intrinsic::log:
164        switch((int)I->arg_begin()->getType()->getTypeID()) {
165        case Type::FloatTyID:
166          EnsureFunctionExists(M, "logf", I->arg_begin(), I->arg_end(),
167                               Type::FloatTy);
168        case Type::DoubleTyID:
169          EnsureFunctionExists(M, "log", I->arg_begin(), I->arg_end(),
170                               Type::DoubleTy);
171        case Type::X86_FP80TyID:
172        case Type::FP128TyID:
173        case Type::PPC_FP128TyID:
174          EnsureFunctionExists(M, "logl", I->arg_begin(), I->arg_end(),
175                               I->arg_begin()->getType());
176        }
177        break;
178      case Intrinsic::log2:
179        switch((int)I->arg_begin()->getType()->getTypeID()) {
180        case Type::FloatTyID:
181          EnsureFunctionExists(M, "log2f", I->arg_begin(), I->arg_end(),
182                               Type::FloatTy);
183        case Type::DoubleTyID:
184          EnsureFunctionExists(M, "log2", I->arg_begin(), I->arg_end(),
185                               Type::DoubleTy);
186        case Type::X86_FP80TyID:
187        case Type::FP128TyID:
188        case Type::PPC_FP128TyID:
189          EnsureFunctionExists(M, "log2l", I->arg_begin(), I->arg_end(),
190                               I->arg_begin()->getType());
191        }
192        break;
193      case Intrinsic::log10:
194        switch((int)I->arg_begin()->getType()->getTypeID()) {
195        case Type::FloatTyID:
196          EnsureFunctionExists(M, "log10f", I->arg_begin(), I->arg_end(),
197                               Type::FloatTy);
198        case Type::DoubleTyID:
199          EnsureFunctionExists(M, "log10", I->arg_begin(), I->arg_end(),
200                               Type::DoubleTy);
201        case Type::X86_FP80TyID:
202        case Type::FP128TyID:
203        case Type::PPC_FP128TyID:
204          EnsureFunctionExists(M, "log10l", I->arg_begin(), I->arg_end(),
205                               I->arg_begin()->getType());
206        }
207        break;
208      case Intrinsic::exp:
209        switch((int)I->arg_begin()->getType()->getTypeID()) {
210        case Type::FloatTyID:
211          EnsureFunctionExists(M, "expf", I->arg_begin(), I->arg_end(),
212                               Type::FloatTy);
213        case Type::DoubleTyID:
214          EnsureFunctionExists(M, "exp", I->arg_begin(), I->arg_end(),
215                               Type::DoubleTy);
216        case Type::X86_FP80TyID:
217        case Type::FP128TyID:
218        case Type::PPC_FP128TyID:
219          EnsureFunctionExists(M, "expl", I->arg_begin(), I->arg_end(),
220                               I->arg_begin()->getType());
221        }
222        break;
223      case Intrinsic::exp2:
224        switch((int)I->arg_begin()->getType()->getTypeID()) {
225        case Type::FloatTyID:
226          EnsureFunctionExists(M, "exp2f", I->arg_begin(), I->arg_end(),
227                               Type::FloatTy);
228        case Type::DoubleTyID:
229          EnsureFunctionExists(M, "exp2", I->arg_begin(), I->arg_end(),
230                               Type::DoubleTy);
231        case Type::X86_FP80TyID:
232        case Type::FP128TyID:
233        case Type::PPC_FP128TyID:
234          EnsureFunctionExists(M, "exp2l", I->arg_begin(), I->arg_end(),
235                               I->arg_begin()->getType());
236        }
237        break;
238      }
239}
240
241/// LowerBSWAP - Emit the code to lower bswap of V before the specified
242/// instruction IP.
243static Value *LowerBSWAP(Value *V, Instruction *IP) {
244  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
245
246  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
247
248  switch(BitSize) {
249  default: assert(0 && "Unhandled type size of value to byteswap!");
250  case 16: {
251    Value *Tmp1 = BinaryOperator::CreateShl(V,
252                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
253    Value *Tmp2 = BinaryOperator::CreateLShr(V,
254                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
255    V = BinaryOperator::CreateOr(Tmp1, Tmp2, "bswap.i16", IP);
256    break;
257  }
258  case 32: {
259    Value *Tmp4 = BinaryOperator::CreateShl(V,
260                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
261    Value *Tmp3 = BinaryOperator::CreateShl(V,
262                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
263    Value *Tmp2 = BinaryOperator::CreateLShr(V,
264                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
265    Value *Tmp1 = BinaryOperator::CreateLShr(V,
266                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
267    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
268                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
269                                     "bswap.and3", IP);
270    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
271                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
272                                     "bswap.and2", IP);
273    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or1", IP);
274    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or2", IP);
275    V = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.i32", IP);
276    break;
277  }
278  case 64: {
279    Value *Tmp8 = BinaryOperator::CreateShl(V,
280                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
281    Value *Tmp7 = BinaryOperator::CreateShl(V,
282                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
283    Value *Tmp6 = BinaryOperator::CreateShl(V,
284                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
285    Value *Tmp5 = BinaryOperator::CreateShl(V,
286                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
287    Value* Tmp4 = BinaryOperator::CreateLShr(V,
288                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
289    Value* Tmp3 = BinaryOperator::CreateLShr(V,
290                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
291    Value* Tmp2 = BinaryOperator::CreateLShr(V,
292                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
293    Value* Tmp1 = BinaryOperator::CreateLShr(V,
294                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
295    Tmp7 = BinaryOperator::CreateAnd(Tmp7,
296                             ConstantInt::get(Type::Int64Ty,
297                               0xFF000000000000ULL),
298                             "bswap.and7", IP);
299    Tmp6 = BinaryOperator::CreateAnd(Tmp6,
300                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
301                             "bswap.and6", IP);
302    Tmp5 = BinaryOperator::CreateAnd(Tmp5,
303                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
304                             "bswap.and5", IP);
305    Tmp4 = BinaryOperator::CreateAnd(Tmp4,
306                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
307                             "bswap.and4", IP);
308    Tmp3 = BinaryOperator::CreateAnd(Tmp3,
309                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
310                             "bswap.and3", IP);
311    Tmp2 = BinaryOperator::CreateAnd(Tmp2,
312                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
313                             "bswap.and2", IP);
314    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp7, "bswap.or1", IP);
315    Tmp6 = BinaryOperator::CreateOr(Tmp6, Tmp5, "bswap.or2", IP);
316    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp3, "bswap.or3", IP);
317    Tmp2 = BinaryOperator::CreateOr(Tmp2, Tmp1, "bswap.or4", IP);
318    Tmp8 = BinaryOperator::CreateOr(Tmp8, Tmp6, "bswap.or5", IP);
319    Tmp4 = BinaryOperator::CreateOr(Tmp4, Tmp2, "bswap.or6", IP);
320    V = BinaryOperator::CreateOr(Tmp8, Tmp4, "bswap.i64", IP);
321    break;
322  }
323  }
324  return V;
325}
326
327/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
328/// instruction IP.
329static Value *LowerCTPOP(Value *V, Instruction *IP) {
330  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
331
332  static const uint64_t MaskValues[6] = {
333    0x5555555555555555ULL, 0x3333333333333333ULL,
334    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
335    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
336  };
337
338  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
339  unsigned WordSize = (BitSize + 63) / 64;
340  Value *Count = ConstantInt::get(V->getType(), 0);
341
342  for (unsigned n = 0; n < WordSize; ++n) {
343    Value *PartValue = V;
344    for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
345         i <<= 1, ++ct) {
346      Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
347      Value *LHS = BinaryOperator::CreateAnd(
348                     PartValue, MaskCst, "cppop.and1", IP);
349      Value *VShift = BinaryOperator::CreateLShr(PartValue,
350                        ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
351      Value *RHS = BinaryOperator::CreateAnd(VShift, MaskCst, "cppop.and2", IP);
352      PartValue = BinaryOperator::CreateAdd(LHS, RHS, "ctpop.step", IP);
353    }
354    Count = BinaryOperator::CreateAdd(PartValue, Count, "ctpop.part", IP);
355    if (BitSize > 64) {
356      V = BinaryOperator::CreateLShr(V, ConstantInt::get(V->getType(), 64),
357                                     "ctpop.part.sh", IP);
358      BitSize -= 64;
359    }
360  }
361
362  return Count;
363}
364
365/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
366/// instruction IP.
367static Value *LowerCTLZ(Value *V, Instruction *IP) {
368
369  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
370  for (unsigned i = 1; i < BitSize; i <<= 1) {
371    Value *ShVal = ConstantInt::get(V->getType(), i);
372    ShVal = BinaryOperator::CreateLShr(V, ShVal, "ctlz.sh", IP);
373    V = BinaryOperator::CreateOr(V, ShVal, "ctlz.step", IP);
374  }
375
376  V = BinaryOperator::CreateNot(V, "", IP);
377  return LowerCTPOP(V, IP);
378}
379
380/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
381/// three integer arguments. The first argument is the Value from which the
382/// bits will be selected. It may be of any bit width. The second and third
383/// arguments specify a range of bits to select with the second argument
384/// specifying the low bit and the third argument specifying the high bit. Both
385/// must be type i32. The result is the corresponding selected bits from the
386/// Value in the same width as the Value (first argument). If the low bit index
387/// is higher than the high bit index then the inverse selection is done and
388/// the bits are returned in inverse order.
389/// @brief Lowering of llvm.part.select intrinsic.
390static Instruction *LowerPartSelect(CallInst *CI) {
391  // Make sure we're dealing with a part select intrinsic here
392  Function *F = CI->getCalledFunction();
393  const FunctionType *FT = F->getFunctionType();
394  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
395      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
396      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
397    return CI;
398
399  // Get the intrinsic implementation function by converting all the . to _
400  // in the intrinsic's function name and then reconstructing the function
401  // declaration.
402  std::string Name(F->getName());
403  for (unsigned i = 4; i < Name.length(); ++i)
404    if (Name[i] == '.')
405      Name[i] = '_';
406  Module* M = F->getParent();
407  F = cast<Function>(M->getOrInsertFunction(Name, FT));
408  F->setLinkage(GlobalValue::WeakLinkage);
409
410  // If we haven't defined the impl function yet, do so now
411  if (F->isDeclaration()) {
412
413    // Get the arguments to the function
414    Function::arg_iterator args = F->arg_begin();
415    Value* Val = args++; Val->setName("Val");
416    Value* Lo = args++; Lo->setName("Lo");
417    Value* Hi = args++; Hi->setName("High");
418
419    // We want to select a range of bits here such that [Hi, Lo] is shifted
420    // down to the low bits. However, it is quite possible that Hi is smaller
421    // than Lo in which case the bits have to be reversed.
422
423    // Create the blocks we will need for the two cases (forward, reverse)
424    BasicBlock* CurBB   = BasicBlock::Create("entry", F);
425    BasicBlock *RevSize = BasicBlock::Create("revsize", CurBB->getParent());
426    BasicBlock *FwdSize = BasicBlock::Create("fwdsize", CurBB->getParent());
427    BasicBlock *Compute = BasicBlock::Create("compute", CurBB->getParent());
428    BasicBlock *Reverse = BasicBlock::Create("reverse", CurBB->getParent());
429    BasicBlock *RsltBlk = BasicBlock::Create("result",  CurBB->getParent());
430
431    // Cast Hi and Lo to the size of Val so the widths are all the same
432    if (Hi->getType() != Val->getType())
433      Hi = CastInst::CreateIntegerCast(Hi, Val->getType(), false,
434                                         "tmp", CurBB);
435    if (Lo->getType() != Val->getType())
436      Lo = CastInst::CreateIntegerCast(Lo, Val->getType(), false,
437                                          "tmp", CurBB);
438
439    // Compute a few things that both cases will need, up front.
440    Constant* Zero = ConstantInt::get(Val->getType(), 0);
441    Constant* One = ConstantInt::get(Val->getType(), 1);
442    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
443
444    // Compare the Hi and Lo bit positions. This is used to determine
445    // which case we have (forward or reverse)
446    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
447    BranchInst::Create(RevSize, FwdSize, Cmp, CurBB);
448
449    // First, copmute the number of bits in the forward case.
450    Instruction* FBitSize =
451      BinaryOperator::CreateSub(Hi, Lo,"fbits", FwdSize);
452    BranchInst::Create(Compute, FwdSize);
453
454    // Second, compute the number of bits in the reverse case.
455    Instruction* RBitSize =
456      BinaryOperator::CreateSub(Lo, Hi, "rbits", RevSize);
457    BranchInst::Create(Compute, RevSize);
458
459    // Now, compute the bit range. Start by getting the bitsize and the shift
460    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
461    // the number of bits we want in the range. We shift the bits down to the
462    // least significant bits, apply the mask to zero out unwanted high bits,
463    // and we have computed the "forward" result. It may still need to be
464    // reversed.
465
466    // Get the BitSize from one of the two subtractions
467    PHINode *BitSize = PHINode::Create(Val->getType(), "bits", Compute);
468    BitSize->reserveOperandSpace(2);
469    BitSize->addIncoming(FBitSize, FwdSize);
470    BitSize->addIncoming(RBitSize, RevSize);
471
472    // Get the ShiftAmount as the smaller of Hi/Lo
473    PHINode *ShiftAmt = PHINode::Create(Val->getType(), "shiftamt", Compute);
474    ShiftAmt->reserveOperandSpace(2);
475    ShiftAmt->addIncoming(Lo, FwdSize);
476    ShiftAmt->addIncoming(Hi, RevSize);
477
478    // Increment the bit size
479    Instruction *BitSizePlusOne =
480      BinaryOperator::CreateAdd(BitSize, One, "bits", Compute);
481
482    // Create a Mask to zero out the high order bits.
483    Instruction* Mask =
484      BinaryOperator::CreateShl(AllOnes, BitSizePlusOne, "mask", Compute);
485    Mask = BinaryOperator::CreateNot(Mask, "mask", Compute);
486
487    // Shift the bits down and apply the mask
488    Instruction* FRes =
489      BinaryOperator::CreateLShr(Val, ShiftAmt, "fres", Compute);
490    FRes = BinaryOperator::CreateAnd(FRes, Mask, "fres", Compute);
491    BranchInst::Create(Reverse, RsltBlk, Cmp, Compute);
492
493    // In the Reverse block we have the mask already in FRes but we must reverse
494    // it by shifting FRes bits right and putting them in RRes by shifting them
495    // in from left.
496
497    // First set up our loop counters
498    PHINode *Count = PHINode::Create(Val->getType(), "count", Reverse);
499    Count->reserveOperandSpace(2);
500    Count->addIncoming(BitSizePlusOne, Compute);
501
502    // Next, get the value that we are shifting.
503    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", Reverse);
504    BitsToShift->reserveOperandSpace(2);
505    BitsToShift->addIncoming(FRes, Compute);
506
507    // Finally, get the result of the last computation
508    PHINode *RRes = PHINode::Create(Val->getType(), "rres", Reverse);
509    RRes->reserveOperandSpace(2);
510    RRes->addIncoming(Zero, Compute);
511
512    // Decrement the counter
513    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "decr", Reverse);
514    Count->addIncoming(Decr, Reverse);
515
516    // Compute the Bit that we want to move
517    Instruction *Bit =
518      BinaryOperator::CreateAnd(BitsToShift, One, "bit", Reverse);
519
520    // Compute the new value for next iteration.
521    Instruction *NewVal =
522      BinaryOperator::CreateLShr(BitsToShift, One, "rshift", Reverse);
523    BitsToShift->addIncoming(NewVal, Reverse);
524
525    // Shift the bit into the low bits of the result.
526    Instruction *NewRes =
527      BinaryOperator::CreateShl(RRes, One, "lshift", Reverse);
528    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "addbit", Reverse);
529    RRes->addIncoming(NewRes, Reverse);
530
531    // Terminate loop if we've moved all the bits.
532    ICmpInst *Cond =
533      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
534    BranchInst::Create(RsltBlk, Reverse, Cond, Reverse);
535
536    // Finally, in the result block, select one of the two results with a PHI
537    // node and return the result;
538    CurBB = RsltBlk;
539    PHINode *BitSelect = PHINode::Create(Val->getType(), "part_select", CurBB);
540    BitSelect->reserveOperandSpace(2);
541    BitSelect->addIncoming(FRes, Compute);
542    BitSelect->addIncoming(NewRes, Reverse);
543    ReturnInst::Create(BitSelect, CurBB);
544  }
545
546  // Return a call to the implementation function
547  Value *Args[] = {
548    CI->getOperand(1),
549    CI->getOperand(2),
550    CI->getOperand(3)
551  };
552  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
553}
554
555/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
556/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
557/// The first two arguments can be any bit width. The result is the same width
558/// as %Value. The operation replaces bits between %Low and %High with the value
559/// in %Replacement. If %Replacement is not the same width, it is truncated or
560/// zero extended as appropriate to fit the bits being replaced. If %Low is
561/// greater than %High then the inverse set of bits are replaced.
562/// @brief Lowering of llvm.bit.part.set intrinsic.
563static Instruction *LowerPartSet(CallInst *CI) {
564  // Make sure we're dealing with a part select intrinsic here
565  Function *F = CI->getCalledFunction();
566  const FunctionType *FT = F->getFunctionType();
567  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
568      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
569      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
570      !FT->getParamType(3)->isInteger())
571    return CI;
572
573  // Get the intrinsic implementation function by converting all the . to _
574  // in the intrinsic's function name and then reconstructing the function
575  // declaration.
576  std::string Name(F->getName());
577  for (unsigned i = 4; i < Name.length(); ++i)
578    if (Name[i] == '.')
579      Name[i] = '_';
580  Module* M = F->getParent();
581  F = cast<Function>(M->getOrInsertFunction(Name, FT));
582  F->setLinkage(GlobalValue::WeakLinkage);
583
584  // If we haven't defined the impl function yet, do so now
585  if (F->isDeclaration()) {
586    // Get the arguments for the function.
587    Function::arg_iterator args = F->arg_begin();
588    Value* Val = args++; Val->setName("Val");
589    Value* Rep = args++; Rep->setName("Rep");
590    Value* Lo  = args++; Lo->setName("Lo");
591    Value* Hi  = args++; Hi->setName("Hi");
592
593    // Get some types we need
594    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
595    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
596    uint32_t ValBits = ValTy->getBitWidth();
597    uint32_t RepBits = RepTy->getBitWidth();
598
599    // Constant Definitions
600    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
601    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
602    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
603    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
604    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
605    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
606    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
607
608    // Basic blocks we fill in below.
609    BasicBlock* entry = BasicBlock::Create("entry", F, 0);
610    BasicBlock* large = BasicBlock::Create("large", F, 0);
611    BasicBlock* small = BasicBlock::Create("small", F, 0);
612    BasicBlock* reverse = BasicBlock::Create("reverse", F, 0);
613    BasicBlock* result = BasicBlock::Create("result", F, 0);
614
615    // BASIC BLOCK: entry
616    // First, get the number of bits that we're placing as an i32
617    ICmpInst* is_forward =
618      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
619    SelectInst* Hi_pn = SelectInst::Create(is_forward, Hi, Lo, "", entry);
620    SelectInst* Lo_pn = SelectInst::Create(is_forward, Lo, Hi, "", entry);
621    BinaryOperator* NumBits = BinaryOperator::CreateSub(Hi_pn, Lo_pn, "",entry);
622    NumBits = BinaryOperator::CreateAdd(NumBits, One, "", entry);
623    // Now, convert Lo and Hi to ValTy bit width
624    if (ValBits > 32) {
625      Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
626    } else if (ValBits < 32) {
627      Lo = new TruncInst(Lo_pn, ValTy, "", entry);
628    }
629    // Determine if the replacement bits are larger than the number of bits we
630    // are replacing and deal with it.
631    ICmpInst* is_large =
632      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
633    BranchInst::Create(large, small, is_large, entry);
634
635    // BASIC BLOCK: large
636    Instruction* MaskBits =
637      BinaryOperator::CreateSub(RepBitWidth, NumBits, "", large);
638    MaskBits = CastInst::CreateIntegerCast(MaskBits, RepMask->getType(),
639                                           false, "", large);
640    BinaryOperator* Mask1 =
641      BinaryOperator::CreateLShr(RepMask, MaskBits, "", large);
642    BinaryOperator* Rep2 = BinaryOperator::CreateAnd(Mask1, Rep, "", large);
643    BranchInst::Create(small, large);
644
645    // BASIC BLOCK: small
646    PHINode* Rep3 = PHINode::Create(RepTy, "", small);
647    Rep3->reserveOperandSpace(2);
648    Rep3->addIncoming(Rep2, large);
649    Rep3->addIncoming(Rep, entry);
650    Value* Rep4 = Rep3;
651    if (ValBits > RepBits)
652      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
653    else if (ValBits < RepBits)
654      Rep4 = new TruncInst(Rep3, ValTy, "", small);
655    BranchInst::Create(result, reverse, is_forward, small);
656
657    // BASIC BLOCK: reverse (reverses the bits of the replacement)
658    // Set up our loop counter as a PHI so we can decrement on each iteration.
659    // We will loop for the number of bits in the replacement value.
660    PHINode *Count = PHINode::Create(Type::Int32Ty, "count", reverse);
661    Count->reserveOperandSpace(2);
662    Count->addIncoming(NumBits, small);
663
664    // Get the value that we are shifting bits out of as a PHI because
665    // we'll change this with each iteration.
666    PHINode *BitsToShift = PHINode::Create(Val->getType(), "val", reverse);
667    BitsToShift->reserveOperandSpace(2);
668    BitsToShift->addIncoming(Rep4, small);
669
670    // Get the result of the last computation or zero on first iteration
671    PHINode *RRes = PHINode::Create(Val->getType(), "rres", reverse);
672    RRes->reserveOperandSpace(2);
673    RRes->addIncoming(ValZero, small);
674
675    // Decrement the loop counter by one
676    Instruction *Decr = BinaryOperator::CreateSub(Count, One, "", reverse);
677    Count->addIncoming(Decr, reverse);
678
679    // Get the bit that we want to move into the result
680    Value *Bit = BinaryOperator::CreateAnd(BitsToShift, ValOne, "", reverse);
681
682    // Compute the new value of the bits to shift for the next iteration.
683    Value *NewVal = BinaryOperator::CreateLShr(BitsToShift, ValOne,"", reverse);
684    BitsToShift->addIncoming(NewVal, reverse);
685
686    // Shift the bit we extracted into the low bit of the result.
687    Instruction *NewRes = BinaryOperator::CreateShl(RRes, ValOne, "", reverse);
688    NewRes = BinaryOperator::CreateOr(NewRes, Bit, "", reverse);
689    RRes->addIncoming(NewRes, reverse);
690
691    // Terminate loop if we've moved all the bits.
692    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
693    BranchInst::Create(result, reverse, Cond, reverse);
694
695    // BASIC BLOCK: result
696    PHINode *Rplcmnt = PHINode::Create(Val->getType(), "", result);
697    Rplcmnt->reserveOperandSpace(2);
698    Rplcmnt->addIncoming(NewRes, reverse);
699    Rplcmnt->addIncoming(Rep4, small);
700    Value* t0   = CastInst::CreateIntegerCast(NumBits,ValTy,false,"",result);
701    Value* t1   = BinaryOperator::CreateShl(ValMask, Lo, "", result);
702    Value* t2   = BinaryOperator::CreateNot(t1, "", result);
703    Value* t3   = BinaryOperator::CreateShl(t1, t0, "", result);
704    Value* t4   = BinaryOperator::CreateOr(t2, t3, "", result);
705    Value* t5   = BinaryOperator::CreateAnd(t4, Val, "", result);
706    Value* t6   = BinaryOperator::CreateShl(Rplcmnt, Lo, "", result);
707    Value* Rslt = BinaryOperator::CreateOr(t5, t6, "part_set", result);
708    ReturnInst::Create(Rslt, result);
709  }
710
711  // Return a call to the implementation function
712  Value *Args[] = {
713    CI->getOperand(1),
714    CI->getOperand(2),
715    CI->getOperand(3),
716    CI->getOperand(4)
717  };
718  return CallInst::Create(F, Args, array_endof(Args), CI->getName(), CI);
719}
720
721
722void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
723  Function *Callee = CI->getCalledFunction();
724  assert(Callee && "Cannot lower an indirect call!");
725
726  switch (Callee->getIntrinsicID()) {
727  case Intrinsic::not_intrinsic:
728    cerr << "Cannot lower a call to a non-intrinsic function '"
729         << Callee->getName() << "'!\n";
730    abort();
731  default:
732    cerr << "Error: Code generator does not support intrinsic function '"
733         << Callee->getName() << "'!\n";
734    abort();
735
736    // The setjmp/longjmp intrinsics should only exist in the code if it was
737    // never optimized (ie, right out of the CFE), or if it has been hacked on
738    // by the lowerinvoke pass.  In both cases, the right thing to do is to
739    // convert the call to an explicit setjmp or longjmp call.
740  case Intrinsic::setjmp: {
741    static Constant *SetjmpFCache = 0;
742    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
743                               Type::Int32Ty, SetjmpFCache);
744    if (CI->getType() != Type::VoidTy)
745      CI->replaceAllUsesWith(V);
746    break;
747  }
748  case Intrinsic::sigsetjmp:
749     if (CI->getType() != Type::VoidTy)
750       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
751     break;
752
753  case Intrinsic::longjmp: {
754    static Constant *LongjmpFCache = 0;
755    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
756                    Type::VoidTy, LongjmpFCache);
757    break;
758  }
759
760  case Intrinsic::siglongjmp: {
761    // Insert the call to abort
762    static Constant *AbortFCache = 0;
763    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
764                    Type::VoidTy, AbortFCache);
765    break;
766  }
767  case Intrinsic::ctpop:
768    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
769    break;
770
771  case Intrinsic::bswap:
772    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
773    break;
774
775  case Intrinsic::ctlz:
776    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
777    break;
778
779  case Intrinsic::cttz: {
780    // cttz(x) -> ctpop(~X & (X-1))
781    Value *Src = CI->getOperand(1);
782    Value *NotSrc = BinaryOperator::CreateNot(Src, Src->getName()+".not", CI);
783    Value *SrcM1 = ConstantInt::get(Src->getType(), 1);
784    SrcM1 = BinaryOperator::CreateSub(Src, SrcM1, "", CI);
785    Src = LowerCTPOP(BinaryOperator::CreateAnd(NotSrc, SrcM1, "", CI), CI);
786    CI->replaceAllUsesWith(Src);
787    break;
788  }
789
790  case Intrinsic::part_select:
791    CI->replaceAllUsesWith(LowerPartSelect(CI));
792    break;
793
794  case Intrinsic::part_set:
795    CI->replaceAllUsesWith(LowerPartSet(CI));
796    break;
797
798  case Intrinsic::stacksave:
799  case Intrinsic::stackrestore: {
800    static bool Warned = false;
801    if (!Warned)
802      cerr << "WARNING: this target does not support the llvm.stack"
803           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
804               "save" : "restore") << " intrinsic.\n";
805    Warned = true;
806    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
807      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
808    break;
809  }
810
811  case Intrinsic::returnaddress:
812  case Intrinsic::frameaddress:
813    cerr << "WARNING: this target does not support the llvm."
814         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
815             "return" : "frame") << "address intrinsic.\n";
816    CI->replaceAllUsesWith(ConstantPointerNull::get(
817                                            cast<PointerType>(CI->getType())));
818    break;
819
820  case Intrinsic::prefetch:
821    break;    // Simply strip out prefetches on unsupported architectures
822
823  case Intrinsic::pcmarker:
824    break;    // Simply strip out pcmarker on unsupported architectures
825  case Intrinsic::readcyclecounter: {
826    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
827         << "ter intrinsic.  It is being lowered to a constant 0\n";
828    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
829    break;
830  }
831
832  case Intrinsic::dbg_stoppoint:
833  case Intrinsic::dbg_region_start:
834  case Intrinsic::dbg_region_end:
835  case Intrinsic::dbg_func_start:
836  case Intrinsic::dbg_declare:
837    break;    // Simply strip out debugging intrinsics
838
839  case Intrinsic::eh_exception:
840  case Intrinsic::eh_selector_i32:
841  case Intrinsic::eh_selector_i64:
842    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
843    break;
844
845  case Intrinsic::eh_typeid_for_i32:
846  case Intrinsic::eh_typeid_for_i64:
847    // Return something different to eh_selector.
848    CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
849    break;
850
851  case Intrinsic::var_annotation:
852    break;   // Strip out annotate intrinsic
853
854  case Intrinsic::memcpy_i32:
855  case Intrinsic::memcpy_i64: {
856    static Constant *MemcpyFCache = 0;
857    Value *Size = CI->getOperand(3);
858    const Type *IntPtr = TD.getIntPtrType();
859    if (Size->getType()->getPrimitiveSizeInBits() <
860        IntPtr->getPrimitiveSizeInBits())
861      Size = new ZExtInst(Size, IntPtr, "", CI);
862    else if (Size->getType()->getPrimitiveSizeInBits() >
863             IntPtr->getPrimitiveSizeInBits())
864      Size = new TruncInst(Size, IntPtr, "", CI);
865    Value *Ops[3];
866    Ops[0] = CI->getOperand(1);
867    Ops[1] = CI->getOperand(2);
868    Ops[2] = Size;
869    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
870                    MemcpyFCache);
871    break;
872  }
873  case Intrinsic::memmove_i32:
874  case Intrinsic::memmove_i64: {
875    static Constant *MemmoveFCache = 0;
876    Value *Size = CI->getOperand(3);
877    const Type *IntPtr = TD.getIntPtrType();
878    if (Size->getType()->getPrimitiveSizeInBits() <
879        IntPtr->getPrimitiveSizeInBits())
880      Size = new ZExtInst(Size, IntPtr, "", CI);
881    else if (Size->getType()->getPrimitiveSizeInBits() >
882             IntPtr->getPrimitiveSizeInBits())
883      Size = new TruncInst(Size, IntPtr, "", CI);
884    Value *Ops[3];
885    Ops[0] = CI->getOperand(1);
886    Ops[1] = CI->getOperand(2);
887    Ops[2] = Size;
888    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
889                    MemmoveFCache);
890    break;
891  }
892  case Intrinsic::memset_i32:
893  case Intrinsic::memset_i64: {
894    static Constant *MemsetFCache = 0;
895    Value *Size = CI->getOperand(3);
896    const Type *IntPtr = TD.getIntPtrType();
897    if (Size->getType()->getPrimitiveSizeInBits() <
898        IntPtr->getPrimitiveSizeInBits())
899      Size = new ZExtInst(Size, IntPtr, "", CI);
900    else if (Size->getType()->getPrimitiveSizeInBits() >
901             IntPtr->getPrimitiveSizeInBits())
902      Size = new TruncInst(Size, IntPtr, "", CI);
903    Value *Ops[3];
904    Ops[0] = CI->getOperand(1);
905    // Extend the amount to i32.
906    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
907    Ops[2] = Size;
908    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
909                    MemsetFCache);
910    break;
911  }
912  case Intrinsic::sqrt: {
913    static Constant *sqrtfFCache = 0;
914    static Constant *sqrtFCache = 0;
915    static Constant *sqrtLDCache = 0;
916    switch (CI->getOperand(1)->getType()->getTypeID()) {
917    default: assert(0 && "Invalid type in sqrt"); abort();
918    case Type::FloatTyID:
919      ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
920                    Type::FloatTy, sqrtfFCache);
921      break;
922    case Type::DoubleTyID:
923      ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
924                    Type::DoubleTy, sqrtFCache);
925      break;
926    case Type::X86_FP80TyID:
927    case Type::FP128TyID:
928    case Type::PPC_FP128TyID:
929      ReplaceCallWith("sqrtl", CI, CI->op_begin()+1, CI->op_end(),
930                    CI->getOperand(1)->getType(), sqrtLDCache);
931      break;
932    }
933    break;
934  }
935  case Intrinsic::log: {
936    static Constant *logfFCache = 0;
937    static Constant *logFCache = 0;
938    static Constant *logLDCache = 0;
939    switch (CI->getOperand(1)->getType()->getTypeID()) {
940    default: assert(0 && "Invalid type in log"); abort();
941    case Type::FloatTyID:
942      ReplaceCallWith("logf", CI, CI->op_begin()+1, CI->op_end(),
943                    Type::FloatTy, logfFCache);
944      break;
945    case Type::DoubleTyID:
946      ReplaceCallWith("log", CI, CI->op_begin()+1, CI->op_end(),
947                    Type::DoubleTy, logFCache);
948      break;
949    case Type::X86_FP80TyID:
950    case Type::FP128TyID:
951    case Type::PPC_FP128TyID:
952      ReplaceCallWith("logl", CI, CI->op_begin()+1, CI->op_end(),
953                    CI->getOperand(1)->getType(), logLDCache);
954      break;
955    }
956    break;
957  }
958  case Intrinsic::log2: {
959    static Constant *log2fFCache = 0;
960    static Constant *log2FCache = 0;
961    static Constant *log2LDCache = 0;
962    switch (CI->getOperand(1)->getType()->getTypeID()) {
963    default: assert(0 && "Invalid type in log2"); abort();
964    case Type::FloatTyID:
965      ReplaceCallWith("log2f", CI, CI->op_begin()+1, CI->op_end(),
966                    Type::FloatTy, log2fFCache);
967      break;
968    case Type::DoubleTyID:
969      ReplaceCallWith("log2", CI, CI->op_begin()+1, CI->op_end(),
970                    Type::DoubleTy, log2FCache);
971      break;
972    case Type::X86_FP80TyID:
973    case Type::FP128TyID:
974    case Type::PPC_FP128TyID:
975      ReplaceCallWith("log2l", CI, CI->op_begin()+1, CI->op_end(),
976                    CI->getOperand(1)->getType(), log2LDCache);
977      break;
978    }
979    break;
980  }
981  case Intrinsic::log10: {
982    static Constant *log10fFCache = 0;
983    static Constant *log10FCache = 0;
984    static Constant *log10LDCache = 0;
985    switch (CI->getOperand(1)->getType()->getTypeID()) {
986    default: assert(0 && "Invalid type in log10"); abort();
987    case Type::FloatTyID:
988      ReplaceCallWith("log10f", CI, CI->op_begin()+1, CI->op_end(),
989                    Type::FloatTy, log10fFCache);
990      break;
991    case Type::DoubleTyID:
992      ReplaceCallWith("log10", CI, CI->op_begin()+1, CI->op_end(),
993                    Type::DoubleTy, log10FCache);
994      break;
995    case Type::X86_FP80TyID:
996    case Type::FP128TyID:
997    case Type::PPC_FP128TyID:
998      ReplaceCallWith("log10l", CI, CI->op_begin()+1, CI->op_end(),
999                    CI->getOperand(1)->getType(), log10LDCache);
1000      break;
1001    }
1002    break;
1003  }
1004  case Intrinsic::exp: {
1005    static Constant *expfFCache = 0;
1006    static Constant *expFCache = 0;
1007    static Constant *expLDCache = 0;
1008    switch (CI->getOperand(1)->getType()->getTypeID()) {
1009    default: assert(0 && "Invalid type in exp"); abort();
1010    case Type::FloatTyID:
1011      ReplaceCallWith("expf", CI, CI->op_begin()+1, CI->op_end(),
1012                    Type::FloatTy, expfFCache);
1013      break;
1014    case Type::DoubleTyID:
1015      ReplaceCallWith("exp", CI, CI->op_begin()+1, CI->op_end(),
1016                    Type::DoubleTy, expFCache);
1017      break;
1018    case Type::X86_FP80TyID:
1019    case Type::FP128TyID:
1020    case Type::PPC_FP128TyID:
1021      ReplaceCallWith("expl", CI, CI->op_begin()+1, CI->op_end(),
1022                    CI->getOperand(1)->getType(), expLDCache);
1023      break;
1024    }
1025    break;
1026  }
1027  case Intrinsic::exp2: {
1028    static Constant *exp2fFCache = 0;
1029    static Constant *exp2FCache = 0;
1030    static Constant *exp2LDCache = 0;
1031    switch (CI->getOperand(1)->getType()->getTypeID()) {
1032    default: assert(0 && "Invalid type in exp2"); abort();
1033    case Type::FloatTyID:
1034      ReplaceCallWith("exp2f", CI, CI->op_begin()+1, CI->op_end(),
1035                    Type::FloatTy, exp2fFCache);
1036      break;
1037    case Type::DoubleTyID:
1038      ReplaceCallWith("exp2", CI, CI->op_begin()+1, CI->op_end(),
1039                    Type::DoubleTy, exp2FCache);
1040      break;
1041    case Type::X86_FP80TyID:
1042    case Type::FP128TyID:
1043    case Type::PPC_FP128TyID:
1044      ReplaceCallWith("exp2l", CI, CI->op_begin()+1, CI->op_end(),
1045                    CI->getOperand(1)->getType(), exp2LDCache);
1046      break;
1047    }
1048    break;
1049  }
1050  case Intrinsic::pow: {
1051    static Constant *powfFCache = 0;
1052    static Constant *powFCache = 0;
1053    static Constant *powLDCache = 0;
1054    switch (CI->getOperand(1)->getType()->getTypeID()) {
1055    default: assert(0 && "Invalid type in pow"); abort();
1056    case Type::FloatTyID:
1057      ReplaceCallWith("powf", CI, CI->op_begin()+1, CI->op_end(),
1058                    Type::FloatTy, powfFCache);
1059      break;
1060    case Type::DoubleTyID:
1061      ReplaceCallWith("pow", CI, CI->op_begin()+1, CI->op_end(),
1062                    Type::DoubleTy, powFCache);
1063      break;
1064    case Type::X86_FP80TyID:
1065    case Type::FP128TyID:
1066    case Type::PPC_FP128TyID:
1067      ReplaceCallWith("powl", CI, CI->op_begin()+1, CI->op_end(),
1068                    CI->getOperand(1)->getType(), powLDCache);
1069      break;
1070    }
1071    break;
1072  }
1073  case Intrinsic::flt_rounds:
1074     // Lower to "round to the nearest"
1075     if (CI->getType() != Type::VoidTy)
1076       CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
1077     break;
1078  }
1079
1080  assert(CI->use_empty() &&
1081         "Lowering should have eliminated any uses of the intrinsic call!");
1082  CI->eraseFromParent();
1083}
1084