IntrinsicLowering.cpp revision 9bd57b6561abd7701bff5d46bb88fed6b9a8dbb9
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23using namespace llvm;
24
25template <class ArgIt>
26static void EnsureFunctionExists(Module &M, const char *Name,
27                                 ArgIt ArgBegin, ArgIt ArgEnd,
28                                 const Type *RetTy) {
29  // Insert a correctly-typed definition now.
30  std::vector<const Type *> ParamTys;
31  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
32    ParamTys.push_back(I->getType());
33  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
34}
35
36/// ReplaceCallWith - This function is used when we want to lower an intrinsic
37/// call to a call of an external function.  This handles hard cases such as
38/// when there was already a prototype for the external function, and if that
39/// prototype doesn't match the arguments we expect to pass in.
40template <class ArgIt>
41static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
42                                 ArgIt ArgBegin, ArgIt ArgEnd,
43                                 const Type *RetTy, Constant *&FCache) {
44  if (!FCache) {
45    // If we haven't already looked up this function, check to see if the
46    // program already contains a function with this name.
47    Module *M = CI->getParent()->getParent()->getParent();
48    // Get or insert the definition now.
49    std::vector<const Type *> ParamTys;
50    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
51      ParamTys.push_back((*I)->getType());
52    FCache = M->getOrInsertFunction(NewFn,
53                                    FunctionType::get(RetTy, ParamTys, false));
54  }
55
56  SmallVector<Value*, 8> Operands(ArgBegin, ArgEnd);
57  CallInst *NewCI = new CallInst(FCache, &Operands[0], Operands.size(),
58                                 CI->getName(), CI);
59  if (!CI->use_empty())
60    CI->replaceAllUsesWith(NewCI);
61  return NewCI;
62}
63
64void IntrinsicLowering::AddPrototypes(Module &M) {
65  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
66    if (I->isDeclaration() && !I->use_empty())
67      switch (I->getIntrinsicID()) {
68      default: break;
69      case Intrinsic::setjmp:
70        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
71                             Type::Int32Ty);
72        break;
73      case Intrinsic::longjmp:
74        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
75                             Type::VoidTy);
76        break;
77      case Intrinsic::siglongjmp:
78        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
79                             Type::VoidTy);
80        break;
81      case Intrinsic::memcpy_i32:
82      case Intrinsic::memcpy_i64:
83        M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty),
84                              PointerType::get(Type::Int8Ty),
85                              PointerType::get(Type::Int8Ty),
86                              TD.getIntPtrType(), (Type *)0);
87        break;
88      case Intrinsic::memmove_i32:
89      case Intrinsic::memmove_i64:
90        M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty),
91                              PointerType::get(Type::Int8Ty),
92                              PointerType::get(Type::Int8Ty),
93                              TD.getIntPtrType(), (Type *)0);
94        break;
95      case Intrinsic::memset_i32:
96      case Intrinsic::memset_i64:
97        M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty),
98                              PointerType::get(Type::Int8Ty), Type::Int32Ty,
99                              TD.getIntPtrType(), (Type *)0);
100        break;
101      case Intrinsic::sqrt_f32:
102      case Intrinsic::sqrt_f64:
103        if(I->arg_begin()->getType() == Type::FloatTy)
104          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
105                               Type::FloatTy);
106        else
107          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
108                               Type::DoubleTy);
109        break;
110      }
111}
112
113/// LowerBSWAP - Emit the code to lower bswap of V before the specified
114/// instruction IP.
115static Value *LowerBSWAP(Value *V, Instruction *IP) {
116  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
117
118  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
119
120  switch(BitSize) {
121  default: assert(0 && "Unhandled type size of value to byteswap!");
122  case 16: {
123    Value *Tmp1 = BinaryOperator::createShl(V,
124                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
125    Value *Tmp2 = BinaryOperator::createLShr(V,
126                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
127    V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP);
128    break;
129  }
130  case 32: {
131    Value *Tmp4 = BinaryOperator::createShl(V,
132                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
133    Value *Tmp3 = BinaryOperator::createShl(V,
134                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
135    Value *Tmp2 = BinaryOperator::createLShr(V,
136                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
137    Value *Tmp1 = BinaryOperator::createLShr(V,
138                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
139    Tmp3 = BinaryOperator::createAnd(Tmp3,
140                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
141                                     "bswap.and3", IP);
142    Tmp2 = BinaryOperator::createAnd(Tmp2,
143                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
144                                     "bswap.and2", IP);
145    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP);
146    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP);
147    V = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.i32", IP);
148    break;
149  }
150  case 64: {
151    Value *Tmp8 = BinaryOperator::createShl(V,
152                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
153    Value *Tmp7 = BinaryOperator::createShl(V,
154                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
155    Value *Tmp6 = BinaryOperator::createShl(V,
156                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
157    Value *Tmp5 = BinaryOperator::createShl(V,
158                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
159    Value* Tmp4 = BinaryOperator::createLShr(V,
160                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
161    Value* Tmp3 = BinaryOperator::createLShr(V,
162                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
163    Value* Tmp2 = BinaryOperator::createLShr(V,
164                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
165    Value* Tmp1 = BinaryOperator::createLShr(V,
166                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
167    Tmp7 = BinaryOperator::createAnd(Tmp7,
168                             ConstantInt::get(Type::Int64Ty,
169                               0xFF000000000000ULL),
170                             "bswap.and7", IP);
171    Tmp6 = BinaryOperator::createAnd(Tmp6,
172                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
173                             "bswap.and6", IP);
174    Tmp5 = BinaryOperator::createAnd(Tmp5,
175                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
176                             "bswap.and5", IP);
177    Tmp4 = BinaryOperator::createAnd(Tmp4,
178                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
179                             "bswap.and4", IP);
180    Tmp3 = BinaryOperator::createAnd(Tmp3,
181                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
182                             "bswap.and3", IP);
183    Tmp2 = BinaryOperator::createAnd(Tmp2,
184                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
185                             "bswap.and2", IP);
186    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP);
187    Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP);
188    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP);
189    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP);
190    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP);
191    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP);
192    V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP);
193    break;
194  }
195  }
196  return V;
197}
198
199/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
200/// instruction IP.
201static Value *LowerCTPOP(Value *V, Instruction *IP) {
202  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
203
204  static const uint64_t MaskValues[6] = {
205    0x5555555555555555ULL, 0x3333333333333333ULL,
206    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
207    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
208  };
209
210  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
211
212  for (unsigned i = 1, ct = 0; i != BitSize; i <<= 1, ++ct) {
213    Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
214    Value *LHS = BinaryOperator::createAnd(V, MaskCst, "cppop.and1", IP);
215    Value *VShift = BinaryOperator::createLShr(V,
216                      ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
217    Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP);
218    V = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP);
219  }
220
221  return CastInst::createIntegerCast(V, Type::Int32Ty, false, "ctpop", IP);
222}
223
224/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
225/// instruction IP.
226static Value *LowerCTLZ(Value *V, Instruction *IP) {
227
228  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
229  for (unsigned i = 1; i != BitSize; i <<= 1) {
230    Value *ShVal = ConstantInt::get(V->getType(), i);
231    ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP);
232    V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP);
233  }
234
235  V = BinaryOperator::createNot(V, "", IP);
236  return LowerCTPOP(V, IP);
237}
238
239/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
240/// three integer arguments. The first argument is the Value from which the
241/// bits will be selected. It may be of any bit width. The second and third
242/// arguments specify a range of bits to select with the second argument
243/// specifying the low bit and the third argument specifying the high bit. Both
244/// must be type i32. The result is the corresponding selected bits from the
245/// Value in the same width as the Value (first argument). If the low bit index
246/// is higher than the high bit index then the inverse selection is done and
247/// the bits are returned in inverse order.
248/// @brief Lowering of llvm.part.select intrinsic.
249static Instruction *LowerPartSelect(CallInst *CI) {
250  // Make sure we're dealing with a part select intrinsic here
251  Function *F = CI->getCalledFunction();
252  const FunctionType *FT = F->getFunctionType();
253  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
254      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
255      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
256    return CI;
257
258  // Get the intrinsic implementation function by converting all the . to _
259  // in the intrinsic's function name and then reconstructing the function
260  // declaration.
261  std::string Name(F->getName());
262  for (unsigned i = 4; i < Name.length(); ++i)
263    if (Name[i] == '.')
264      Name[i] = '_';
265  Module* M = F->getParent();
266  F = cast<Function>(M->getOrInsertFunction(Name, FT));
267  F->setLinkage(GlobalValue::WeakLinkage);
268
269  // If we haven't defined the impl function yet, do so now
270  if (F->isDeclaration()) {
271
272    // Get the arguments to the function
273    Function::arg_iterator args = F->arg_begin();
274    Value* Val = args++; Val->setName("Val");
275    Value* Lo = args++; Lo->setName("Lo");
276    Value* Hi  = args++; Hi->setName("High");
277
278    // We want to select a range of bits here such that [Hi, Lo] is shifted
279    // down to the low bits. However, it is quite possible that Hi is smaller
280    // than Lo in which case the bits have to be reversed.
281
282    // Create the blocks we will need for the two cases (forward, reverse)
283    BasicBlock* CurBB   = new BasicBlock("entry", F);
284    BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent());
285    BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent());
286    BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent());
287    BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent());
288    BasicBlock *RsltBlk = new BasicBlock("result",  CurBB->getParent());
289
290    // Cast Hi and Lo to the size of Val so the widths are all the same
291    if (Hi->getType() != Val->getType())
292      Hi = CastInst::createIntegerCast(Hi, Val->getType(), false,
293                                         "tmp", CurBB);
294    if (Lo->getType() != Val->getType())
295      Lo = CastInst::createIntegerCast(Lo, Val->getType(), false,
296                                          "tmp", CurBB);
297
298    // Compute a few things that both cases will need, up front.
299    Constant* Zero = ConstantInt::get(Val->getType(), 0);
300    Constant* One = ConstantInt::get(Val->getType(), 1);
301    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
302
303    // Compare the Hi and Lo bit positions. This is used to determine
304    // which case we have (forward or reverse)
305    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
306    new BranchInst(RevSize, FwdSize, Cmp, CurBB);
307
308    // First, copmute the number of bits in the forward case.
309    Instruction* FBitSize =
310      BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize);
311    new BranchInst(Compute, FwdSize);
312
313    // Second, compute the number of bits in the reverse case.
314    Instruction* RBitSize =
315      BinaryOperator::createSub(Lo, Hi, "rbits", RevSize);
316    new BranchInst(Compute, RevSize);
317
318    // Now, compute the bit range. Start by getting the bitsize and the shift
319    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
320    // the number of bits we want in the range. We shift the bits down to the
321    // least significant bits, apply the mask to zero out unwanted high bits,
322    // and we have computed the "forward" result. It may still need to be
323    // reversed.
324
325    // Get the BitSize from one of the two subtractions
326    PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute);
327    BitSize->reserveOperandSpace(2);
328    BitSize->addIncoming(FBitSize, FwdSize);
329    BitSize->addIncoming(RBitSize, RevSize);
330
331    // Get the ShiftAmount as the smaller of Hi/Lo
332    PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute);
333    ShiftAmt->reserveOperandSpace(2);
334    ShiftAmt->addIncoming(Lo, FwdSize);
335    ShiftAmt->addIncoming(Hi, RevSize);
336
337    // Increment the bit size
338    Instruction *BitSizePlusOne =
339      BinaryOperator::createAdd(BitSize, One, "bits", Compute);
340
341    // Create a Mask to zero out the high order bits.
342    Instruction* Mask =
343      BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute);
344    Mask = BinaryOperator::createNot(Mask, "mask", Compute);
345
346    // Shift the bits down and apply the mask
347    Instruction* FRes =
348      BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute);
349    FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute);
350    new BranchInst(Reverse, RsltBlk, Cmp, Compute);
351
352    // In the Reverse block we have the mask already in FRes but we must reverse
353    // it by shifting FRes bits right and putting them in RRes by shifting them
354    // in from left.
355
356    // First set up our loop counters
357    PHINode *Count = new PHINode(Val->getType(), "count", Reverse);
358    Count->reserveOperandSpace(2);
359    Count->addIncoming(BitSizePlusOne, Compute);
360
361    // Next, get the value that we are shifting.
362    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", Reverse);
363    BitsToShift->reserveOperandSpace(2);
364    BitsToShift->addIncoming(FRes, Compute);
365
366    // Finally, get the result of the last computation
367    PHINode *RRes  = new PHINode(Val->getType(), "rres", Reverse);
368    RRes->reserveOperandSpace(2);
369    RRes->addIncoming(Zero, Compute);
370
371    // Decrement the counter
372    Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse);
373    Count->addIncoming(Decr, Reverse);
374
375    // Compute the Bit that we want to move
376    Instruction *Bit =
377      BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse);
378
379    // Compute the new value for next iteration.
380    Instruction *NewVal =
381      BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse);
382    BitsToShift->addIncoming(NewVal, Reverse);
383
384    // Shift the bit into the low bits of the result.
385    Instruction *NewRes =
386      BinaryOperator::createShl(RRes, One, "lshift", Reverse);
387    NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse);
388    RRes->addIncoming(NewRes, Reverse);
389
390    // Terminate loop if we've moved all the bits.
391    ICmpInst *Cond =
392      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
393    new BranchInst(RsltBlk, Reverse, Cond, Reverse);
394
395    // Finally, in the result block, select one of the two results with a PHI
396    // node and return the result;
397    CurBB = RsltBlk;
398    PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB);
399    BitSelect->reserveOperandSpace(2);
400    BitSelect->addIncoming(FRes, Compute);
401    BitSelect->addIncoming(NewRes, Reverse);
402    new ReturnInst(BitSelect, CurBB);
403  }
404
405  // Return a call to the implementation function
406  Value *Args[] = {
407    CI->getOperand(1),
408    CI->getOperand(2),
409    CI->getOperand(3)
410  };
411  return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI);
412}
413
414/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
415/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
416/// The first two arguments can be any bit width. The result is the same width
417/// as %Value. The operation replaces bits between %Low and %High with the value
418/// in %Replacement. If %Replacement is not the same width, it is truncated or
419/// zero extended as appropriate to fit the bits being replaced. If %Low is
420/// greater than %High then the inverse set of bits are replaced.
421/// @brief Lowering of llvm.bit.part.set intrinsic.
422static Instruction *LowerPartSet(CallInst *CI) {
423  // Make sure we're dealing with a part select intrinsic here
424  Function *F = CI->getCalledFunction();
425  const FunctionType *FT = F->getFunctionType();
426  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
427      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
428      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
429      !FT->getParamType(3)->isInteger())
430    return CI;
431
432  // Get the intrinsic implementation function by converting all the . to _
433  // in the intrinsic's function name and then reconstructing the function
434  // declaration.
435  std::string Name(F->getName());
436  for (unsigned i = 4; i < Name.length(); ++i)
437    if (Name[i] == '.')
438      Name[i] = '_';
439  Module* M = F->getParent();
440  F = cast<Function>(M->getOrInsertFunction(Name, FT));
441  F->setLinkage(GlobalValue::WeakLinkage);
442
443  // If we haven't defined the impl function yet, do so now
444  if (F->isDeclaration()) {
445    // Note: the following code is based on code generated by llvm2cpp with
446    // the following input. This is just *one* example of a generated function.
447    // The functions vary by bit width of result and first two arguments.
448    // The generated code has been changed to deal with any bit width not just
449    // the 32/64 bitwidths used in the above sample.
450    //
451    // define i64 @part_set(i64 %Val, i32 %Rep, i32 %Lo, i32 %Hi) {
452    // entry:
453    //   %is_forward = icmp ult i32 %Lo, %Hi
454    //   %Lo.pn = select i1 %is_forward, i32 %Hi, i32 %Lo
455    //   %Hi.pn = select i1 %is_forward, i32 %Lo, i32 %Hi
456    //   %iftmp.16.0 = sub i32 %Lo.pn, %Hi.pn
457    //   icmp ult i32 %iftmp.16.0, 32
458    //   br i1 %1, label %cond_true11, label %cond_next19
459    // cond_true11:
460    //   %tmp13 = sub i32 32, %iftmp.16.0
461    //   %tmp14 = lshr i32 -1, %tmp13
462    //   %tmp16 = and i32 %tmp14, %Rep
463    //   br label %cond_next19
464    // cond_next19:
465    //   %iftmp.17.0 = phi i32 [ %tmp16, %cond_true11 ], [ %Rep, %entry ]
466    //   %tmp2021 = zext i32 %iftmp.17.0 to i64
467    //   icmp ugt i32 %Lo, %Hi
468    //   br i1 %2, label %cond_next60, label %cond_true24
469    // cond_true24:
470    //   %tmp25.cast = zext i32 %Hi to i64
471    //   %tmp26 = lshr i64 -1, %tmp25.cast
472    //   %tmp27.cast = zext i32 %Lo to i64
473    //   %tmp28 = shl i64 %tmp26, %tmp27.cast
474    //   %tmp28not = xor i64 %tmp28, -1
475    //   %tmp31 = shl i64 %tmp2021, %tmp27.cast
476    //   %tmp34 = and i64 %tmp28not, %Val
477    //   %Val_addr.064 = or i64 %tmp31, %tmp34
478    //   ret i64 %Val_addr.064
479    // cond_next60:
480    //   %tmp39.cast = zext i32 %Lo to i64
481    //   %tmp40 = shl i64 -1, %tmp39.cast
482    //   %tmp41.cast = zext i32 %Hi to i64
483    //   %tmp42 = shl i64 -1, %tmp41.cast
484    //   %tmp45.demorgan = or i64 %tmp42, %tmp40
485    //   %tmp45 = xor i64 %tmp45.demorgan, -1
486    //   %tmp47 = and i64 %tmp45, %Val
487    //   %tmp50 = shl i64 %tmp2021, %tmp39.cast
488    //   %tmp52 = sub i32 32, %Hi
489    //   %tmp52.cast = zext i32 %tmp52 to i64
490    //   %tmp54 = lshr i64 %tmp2021, %tmp52.cast
491    //   %tmp57 = or i64 %tmp50, %tmp47
492    //   %Val_addr.0 = or i64 %tmp57, %tmp54
493    //   ret i64 %Val_addr.0
494    // }
495
496    // Get the arguments for the function.
497    Function::arg_iterator args = F->arg_begin();
498    Value* Val = args++; Val->setName("Val");
499    Value* Rep = args++; Rep->setName("Rep");
500    Value* Lo  = args++; Lo->setName("Lo");
501    Value* Hi  = args++; Hi->setName("Hi");
502
503    // Get some types we need
504    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
505    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
506    uint32_t ValBits = ValTy->getBitWidth();
507    uint32_t RepBits = RepTy->getBitWidth();
508
509    // Constant Definitions
510    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
511    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
512    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
513
514    BasicBlock* entry = new BasicBlock("entry",F,0);
515    BasicBlock* large = new BasicBlock("large",F,0);
516    BasicBlock* small = new BasicBlock("small",F,0);
517    BasicBlock* forward = new BasicBlock("forward",F,0);
518    BasicBlock* reverse = new BasicBlock("reverse",F,0);
519
520    // Block entry (entry)
521    // First, get the number of bits that we're placing as an i32
522    ICmpInst* is_forward =
523      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
524    SelectInst* Lo_pn = new SelectInst(is_forward, Hi, Lo, "", entry);
525    SelectInst* Hi_pn = new SelectInst(is_forward, Lo, Hi, "", entry);
526    BinaryOperator* NumBits = BinaryOperator::createSub(Lo_pn, Hi_pn, "",entry);
527    // Now, convert Lo and Hi to ValTy bit width
528    if (ValBits > 32) {
529      Hi = new ZExtInst(Hi, ValTy, "", entry);
530      Lo = new ZExtInst(Lo, ValTy, "", entry);
531    } else if (ValBits < 32) {
532      Hi = new TruncInst(Hi, ValTy, "", entry);
533      Lo = new TruncInst(Lo, ValTy, "", entry);
534    }
535    // Determine if the replacement bits are larger than the number of bits we
536    // are replacing and deal with it.
537    ICmpInst* is_large =
538      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
539    new BranchInst(large, small, is_large, entry);
540
541    // Block "large"
542    Instruction* MaskBits =
543      BinaryOperator::createSub(RepBitWidth, NumBits, "", large);
544    MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(),
545                                           false, "", large);
546    BinaryOperator* Mask1 =
547      BinaryOperator::createLShr(RepMask, MaskBits, "", large);
548    BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large);
549    new BranchInst(small, large);
550
551    // Block "small"
552    PHINode* Rep3 = new PHINode(RepTy, "", small);
553    Rep3->reserveOperandSpace(2);
554    Rep3->addIncoming(Rep2, large);
555    Rep3->addIncoming(Rep, entry);
556    Value* Rep4 = Rep3;
557    if (ValBits > RepBits)
558      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
559    else if (ValBits < RepBits)
560      Rep4 = new TruncInst(Rep3, ValTy, "", small);
561    ICmpInst* is_reverse =
562      new ICmpInst(ICmpInst::ICMP_UGT, Lo, Hi, "", small);
563    new BranchInst(reverse, forward, is_reverse, small);
564
565    // Block "forward"
566    Value* t1    = BinaryOperator::createLShr(ValMask, Hi, "", forward);
567    Value* t2    = BinaryOperator::createShl(t1, Lo, "", forward);
568    Value* nott2 = BinaryOperator::createXor(t2, ValMask, "", forward);
569    Value* t3    = BinaryOperator::createShl(Rep4, Lo, "", forward);
570    Value* t4    = BinaryOperator::createAnd(nott2, Val, "", forward);
571    Value* FRslt = BinaryOperator::createOr(t3, t4, "part_set_fwd", forward);
572    new ReturnInst(FRslt, forward);
573
574    // Block "reverse"
575    Value* t5    = BinaryOperator::createShl(ValMask, Lo, "", reverse);
576    Value* t6    = BinaryOperator::createShl(ValMask, Hi, "", reverse);
577    Value* t7    = BinaryOperator::createOr(t6, t5, "", reverse);
578    Value* t8    = BinaryOperator::createXor(t7, ValMask, "", reverse);
579    Value* t9    = BinaryOperator::createAnd(t8, Val, "", reverse);
580    Value* t10   = BinaryOperator::createShl(Rep4, Lo, "", reverse);
581    if (32 < ValBits)
582      RepBitWidth =
583        cast<ConstantInt>(ConstantExpr::getZExt(RepBitWidth, ValTy));
584    else if (32 > ValBits)
585      RepBitWidth =
586        cast<ConstantInt>(ConstantExpr::getTrunc(RepBitWidth, ValTy));
587    Value* t11   = BinaryOperator::createSub(RepBitWidth, Hi, "", reverse);
588    Value* t13   = BinaryOperator::createLShr(Rep4, t11, "",reverse);
589    Value* t14   = BinaryOperator::createOr(t10, t9, "", reverse);
590    Value* RRslt = BinaryOperator::createOr(t14, t13, "part_set_rvrs", reverse);
591    new ReturnInst(RRslt, reverse);
592  }
593
594  // Return a call to the implementation function
595  Value *Args[] = {
596    CI->getOperand(1),
597    CI->getOperand(2),
598    CI->getOperand(3),
599    CI->getOperand(4)
600  };
601  return new CallInst(F, Args, sizeof(Args)/sizeof(Args[0]), CI->getName(), CI);
602}
603
604
605void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
606  Function *Callee = CI->getCalledFunction();
607  assert(Callee && "Cannot lower an indirect call!");
608
609  switch (Callee->getIntrinsicID()) {
610  case Intrinsic::not_intrinsic:
611    cerr << "Cannot lower a call to a non-intrinsic function '"
612         << Callee->getName() << "'!\n";
613    abort();
614  default:
615    cerr << "Error: Code generator does not support intrinsic function '"
616         << Callee->getName() << "'!\n";
617    abort();
618
619    // The setjmp/longjmp intrinsics should only exist in the code if it was
620    // never optimized (ie, right out of the CFE), or if it has been hacked on
621    // by the lowerinvoke pass.  In both cases, the right thing to do is to
622    // convert the call to an explicit setjmp or longjmp call.
623  case Intrinsic::setjmp: {
624    static Constant *SetjmpFCache = 0;
625    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
626                               Type::Int32Ty, SetjmpFCache);
627    if (CI->getType() != Type::VoidTy)
628      CI->replaceAllUsesWith(V);
629    break;
630  }
631  case Intrinsic::sigsetjmp:
632     if (CI->getType() != Type::VoidTy)
633       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
634     break;
635
636  case Intrinsic::longjmp: {
637    static Constant *LongjmpFCache = 0;
638    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
639                    Type::VoidTy, LongjmpFCache);
640    break;
641  }
642
643  case Intrinsic::siglongjmp: {
644    // Insert the call to abort
645    static Constant *AbortFCache = 0;
646    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
647                    Type::VoidTy, AbortFCache);
648    break;
649  }
650  case Intrinsic::ctpop:
651    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
652    break;
653
654  case Intrinsic::bswap:
655    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
656    break;
657
658  case Intrinsic::ctlz:
659    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
660    break;
661
662  case Intrinsic::cttz: {
663    // cttz(x) -> ctpop(~X & (X-1))
664    Value *Src = CI->getOperand(1);
665    Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI);
666    Value *SrcM1  = ConstantInt::get(Src->getType(), 1);
667    SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI);
668    Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI);
669    CI->replaceAllUsesWith(Src);
670    break;
671  }
672
673  case Intrinsic::part_select:
674    CI->replaceAllUsesWith(LowerPartSelect(CI));
675    break;
676
677  case Intrinsic::part_set:
678    CI->replaceAllUsesWith(LowerPartSet(CI));
679    break;
680
681  case Intrinsic::stacksave:
682  case Intrinsic::stackrestore: {
683    static bool Warned = false;
684    if (!Warned)
685      cerr << "WARNING: this target does not support the llvm.stack"
686           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
687               "save" : "restore") << " intrinsic.\n";
688    Warned = true;
689    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
690      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
691    break;
692  }
693
694  case Intrinsic::returnaddress:
695  case Intrinsic::frameaddress:
696    cerr << "WARNING: this target does not support the llvm."
697         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
698             "return" : "frame") << "address intrinsic.\n";
699    CI->replaceAllUsesWith(ConstantPointerNull::get(
700                                            cast<PointerType>(CI->getType())));
701    break;
702
703  case Intrinsic::prefetch:
704    break;    // Simply strip out prefetches on unsupported architectures
705
706  case Intrinsic::pcmarker:
707    break;    // Simply strip out pcmarker on unsupported architectures
708  case Intrinsic::readcyclecounter: {
709    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
710         << "ter intrinsic.  It is being lowered to a constant 0\n";
711    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
712    break;
713  }
714
715  case Intrinsic::dbg_stoppoint:
716  case Intrinsic::dbg_region_start:
717  case Intrinsic::dbg_region_end:
718  case Intrinsic::dbg_func_start:
719  case Intrinsic::dbg_declare:
720  case Intrinsic::eh_exception:
721  case Intrinsic::eh_selector:
722  case Intrinsic::eh_filter:
723    break;    // Simply strip out debugging and eh intrinsics
724
725  case Intrinsic::memcpy_i32:
726  case Intrinsic::memcpy_i64: {
727    static Constant *MemcpyFCache = 0;
728    Value *Size = CI->getOperand(3);
729    const Type *IntPtr = TD.getIntPtrType();
730    if (Size->getType()->getPrimitiveSizeInBits() <
731        IntPtr->getPrimitiveSizeInBits())
732      Size = new ZExtInst(Size, IntPtr, "", CI);
733    else if (Size->getType()->getPrimitiveSizeInBits() >
734             IntPtr->getPrimitiveSizeInBits())
735      Size = new TruncInst(Size, IntPtr, "", CI);
736    Value *Ops[3];
737    Ops[0] = CI->getOperand(1);
738    Ops[1] = CI->getOperand(2);
739    Ops[2] = Size;
740    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
741                    MemcpyFCache);
742    break;
743  }
744  case Intrinsic::memmove_i32:
745  case Intrinsic::memmove_i64: {
746    static Constant *MemmoveFCache = 0;
747    Value *Size = CI->getOperand(3);
748    const Type *IntPtr = TD.getIntPtrType();
749    if (Size->getType()->getPrimitiveSizeInBits() <
750        IntPtr->getPrimitiveSizeInBits())
751      Size = new ZExtInst(Size, IntPtr, "", CI);
752    else if (Size->getType()->getPrimitiveSizeInBits() >
753             IntPtr->getPrimitiveSizeInBits())
754      Size = new TruncInst(Size, IntPtr, "", CI);
755    Value *Ops[3];
756    Ops[0] = CI->getOperand(1);
757    Ops[1] = CI->getOperand(2);
758    Ops[2] = Size;
759    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
760                    MemmoveFCache);
761    break;
762  }
763  case Intrinsic::memset_i32:
764  case Intrinsic::memset_i64: {
765    static Constant *MemsetFCache = 0;
766    Value *Size = CI->getOperand(3);
767    const Type *IntPtr = TD.getIntPtrType();
768    if (Size->getType()->getPrimitiveSizeInBits() <
769        IntPtr->getPrimitiveSizeInBits())
770      Size = new ZExtInst(Size, IntPtr, "", CI);
771    else if (Size->getType()->getPrimitiveSizeInBits() >
772             IntPtr->getPrimitiveSizeInBits())
773      Size = new TruncInst(Size, IntPtr, "", CI);
774    Value *Ops[3];
775    Ops[0] = CI->getOperand(1);
776    // Extend the amount to i32.
777    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
778    Ops[2] = Size;
779    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
780                    MemsetFCache);
781    break;
782  }
783  case Intrinsic::sqrt_f32: {
784    static Constant *sqrtfFCache = 0;
785    ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
786                    Type::FloatTy, sqrtfFCache);
787    break;
788  }
789  case Intrinsic::sqrt_f64: {
790    static Constant *sqrtFCache = 0;
791    ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
792                    Type::DoubleTy, sqrtFCache);
793    break;
794  }
795  }
796
797  assert(CI->use_empty() &&
798         "Lowering should have eliminated any uses of the intrinsic call!");
799  CI->eraseFromParent();
800}
801