IntrinsicLowering.cpp revision c4c966012901691fff21eed02d72a3de44dd47f1
1//===-- IntrinsicLowering.cpp - Intrinsic Lowering default implementation -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the IntrinsicLowering class.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Constants.h"
15#include "llvm/DerivedTypes.h"
16#include "llvm/Module.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/CodeGen/IntrinsicLowering.h"
20#include "llvm/Support/Streams.h"
21#include "llvm/Target/TargetData.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/STLExtras.h"
24using namespace llvm;
25
26template <class ArgIt>
27static void EnsureFunctionExists(Module &M, const char *Name,
28                                 ArgIt ArgBegin, ArgIt ArgEnd,
29                                 const Type *RetTy) {
30  // Insert a correctly-typed definition now.
31  std::vector<const Type *> ParamTys;
32  for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
33    ParamTys.push_back(I->getType());
34  M.getOrInsertFunction(Name, FunctionType::get(RetTy, ParamTys, false));
35}
36
37/// ReplaceCallWith - This function is used when we want to lower an intrinsic
38/// call to a call of an external function.  This handles hard cases such as
39/// when there was already a prototype for the external function, and if that
40/// prototype doesn't match the arguments we expect to pass in.
41template <class ArgIt>
42static CallInst *ReplaceCallWith(const char *NewFn, CallInst *CI,
43                                 ArgIt ArgBegin, ArgIt ArgEnd,
44                                 const Type *RetTy, Constant *&FCache) {
45  if (!FCache) {
46    // If we haven't already looked up this function, check to see if the
47    // program already contains a function with this name.
48    Module *M = CI->getParent()->getParent()->getParent();
49    // Get or insert the definition now.
50    std::vector<const Type *> ParamTys;
51    for (ArgIt I = ArgBegin; I != ArgEnd; ++I)
52      ParamTys.push_back((*I)->getType());
53    FCache = M->getOrInsertFunction(NewFn,
54                                    FunctionType::get(RetTy, ParamTys, false));
55  }
56
57  SmallVector<Value *, 8> Args(ArgBegin, ArgEnd);
58  CallInst *NewCI = new CallInst(FCache, Args.begin(), Args.end(),
59                                 CI->getName(), CI);
60  if (!CI->use_empty())
61    CI->replaceAllUsesWith(NewCI);
62  return NewCI;
63}
64
65void IntrinsicLowering::AddPrototypes(Module &M) {
66  for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
67    if (I->isDeclaration() && !I->use_empty())
68      switch (I->getIntrinsicID()) {
69      default: break;
70      case Intrinsic::setjmp:
71        EnsureFunctionExists(M, "setjmp", I->arg_begin(), I->arg_end(),
72                             Type::Int32Ty);
73        break;
74      case Intrinsic::longjmp:
75        EnsureFunctionExists(M, "longjmp", I->arg_begin(), I->arg_end(),
76                             Type::VoidTy);
77        break;
78      case Intrinsic::siglongjmp:
79        EnsureFunctionExists(M, "abort", I->arg_end(), I->arg_end(),
80                             Type::VoidTy);
81        break;
82      case Intrinsic::memcpy_i32:
83      case Intrinsic::memcpy_i64:
84        M.getOrInsertFunction("memcpy", PointerType::get(Type::Int8Ty),
85                              PointerType::get(Type::Int8Ty),
86                              PointerType::get(Type::Int8Ty),
87                              TD.getIntPtrType(), (Type *)0);
88        break;
89      case Intrinsic::memmove_i32:
90      case Intrinsic::memmove_i64:
91        M.getOrInsertFunction("memmove", PointerType::get(Type::Int8Ty),
92                              PointerType::get(Type::Int8Ty),
93                              PointerType::get(Type::Int8Ty),
94                              TD.getIntPtrType(), (Type *)0);
95        break;
96      case Intrinsic::memset_i32:
97      case Intrinsic::memset_i64:
98        M.getOrInsertFunction("memset", PointerType::get(Type::Int8Ty),
99                              PointerType::get(Type::Int8Ty), Type::Int32Ty,
100                              TD.getIntPtrType(), (Type *)0);
101        break;
102      case Intrinsic::sqrt:
103        switch((int)I->arg_begin()->getType()->getTypeID()) {
104        case Type::FloatTyID:
105          EnsureFunctionExists(M, "sqrtf", I->arg_begin(), I->arg_end(),
106                               Type::FloatTy);
107        case Type::DoubleTyID:
108          EnsureFunctionExists(M, "sqrt", I->arg_begin(), I->arg_end(),
109                               Type::DoubleTy);
110        case Type::X86_FP80TyID:
111        case Type::FP128TyID:
112        case Type::PPC_FP128TyID:
113          EnsureFunctionExists(M, "sqrtl", I->arg_begin(), I->arg_end(),
114                               I->arg_begin()->getType());
115        }
116        break;
117      case Intrinsic::sin:
118        switch((int)I->arg_begin()->getType()->getTypeID()) {
119        case Type::FloatTyID:
120          EnsureFunctionExists(M, "sinf", I->arg_begin(), I->arg_end(),
121                               Type::FloatTy);
122        case Type::DoubleTyID:
123          EnsureFunctionExists(M, "sin", I->arg_begin(), I->arg_end(),
124                               Type::DoubleTy);
125        case Type::X86_FP80TyID:
126        case Type::FP128TyID:
127        case Type::PPC_FP128TyID:
128          EnsureFunctionExists(M, "sinl", I->arg_begin(), I->arg_end(),
129                               I->arg_begin()->getType());
130        }
131        break;
132      case Intrinsic::cos:
133        switch((int)I->arg_begin()->getType()->getTypeID()) {
134        case Type::FloatTyID:
135          EnsureFunctionExists(M, "cosf", I->arg_begin(), I->arg_end(),
136                               Type::FloatTy);
137        case Type::DoubleTyID:
138          EnsureFunctionExists(M, "cos", I->arg_begin(), I->arg_end(),
139                               Type::DoubleTy);
140        case Type::X86_FP80TyID:
141        case Type::FP128TyID:
142        case Type::PPC_FP128TyID:
143          EnsureFunctionExists(M, "cosl", I->arg_begin(), I->arg_end(),
144                               I->arg_begin()->getType());
145        }
146        break;
147      case Intrinsic::pow:
148        switch((int)I->arg_begin()->getType()->getTypeID()) {
149        case Type::FloatTyID:
150          EnsureFunctionExists(M, "powf", I->arg_begin(), I->arg_end(),
151                               Type::FloatTy);
152        case Type::DoubleTyID:
153          EnsureFunctionExists(M, "pow", I->arg_begin(), I->arg_end(),
154                               Type::DoubleTy);
155        case Type::X86_FP80TyID:
156        case Type::FP128TyID:
157        case Type::PPC_FP128TyID:
158          EnsureFunctionExists(M, "powl", I->arg_begin(), I->arg_end(),
159                               I->arg_begin()->getType());
160        }
161        break;
162      }
163}
164
165/// LowerBSWAP - Emit the code to lower bswap of V before the specified
166/// instruction IP.
167static Value *LowerBSWAP(Value *V, Instruction *IP) {
168  assert(V->getType()->isInteger() && "Can't bswap a non-integer type!");
169
170  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
171
172  switch(BitSize) {
173  default: assert(0 && "Unhandled type size of value to byteswap!");
174  case 16: {
175    Value *Tmp1 = BinaryOperator::createShl(V,
176                                ConstantInt::get(V->getType(),8),"bswap.2",IP);
177    Value *Tmp2 = BinaryOperator::createLShr(V,
178                                ConstantInt::get(V->getType(),8),"bswap.1",IP);
179    V = BinaryOperator::createOr(Tmp1, Tmp2, "bswap.i16", IP);
180    break;
181  }
182  case 32: {
183    Value *Tmp4 = BinaryOperator::createShl(V,
184                              ConstantInt::get(V->getType(),24),"bswap.4", IP);
185    Value *Tmp3 = BinaryOperator::createShl(V,
186                              ConstantInt::get(V->getType(),8),"bswap.3",IP);
187    Value *Tmp2 = BinaryOperator::createLShr(V,
188                              ConstantInt::get(V->getType(),8),"bswap.2",IP);
189    Value *Tmp1 = BinaryOperator::createLShr(V,
190                              ConstantInt::get(V->getType(),24),"bswap.1", IP);
191    Tmp3 = BinaryOperator::createAnd(Tmp3,
192                                     ConstantInt::get(Type::Int32Ty, 0xFF0000),
193                                     "bswap.and3", IP);
194    Tmp2 = BinaryOperator::createAnd(Tmp2,
195                                     ConstantInt::get(Type::Int32Ty, 0xFF00),
196                                     "bswap.and2", IP);
197    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or1", IP);
198    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or2", IP);
199    V = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.i32", IP);
200    break;
201  }
202  case 64: {
203    Value *Tmp8 = BinaryOperator::createShl(V,
204                              ConstantInt::get(V->getType(),56),"bswap.8", IP);
205    Value *Tmp7 = BinaryOperator::createShl(V,
206                              ConstantInt::get(V->getType(),40),"bswap.7", IP);
207    Value *Tmp6 = BinaryOperator::createShl(V,
208                              ConstantInt::get(V->getType(),24),"bswap.6", IP);
209    Value *Tmp5 = BinaryOperator::createShl(V,
210                              ConstantInt::get(V->getType(),8),"bswap.5", IP);
211    Value* Tmp4 = BinaryOperator::createLShr(V,
212                              ConstantInt::get(V->getType(),8),"bswap.4", IP);
213    Value* Tmp3 = BinaryOperator::createLShr(V,
214                              ConstantInt::get(V->getType(),24),"bswap.3", IP);
215    Value* Tmp2 = BinaryOperator::createLShr(V,
216                              ConstantInt::get(V->getType(),40),"bswap.2", IP);
217    Value* Tmp1 = BinaryOperator::createLShr(V,
218                              ConstantInt::get(V->getType(),56),"bswap.1", IP);
219    Tmp7 = BinaryOperator::createAnd(Tmp7,
220                             ConstantInt::get(Type::Int64Ty,
221                               0xFF000000000000ULL),
222                             "bswap.and7", IP);
223    Tmp6 = BinaryOperator::createAnd(Tmp6,
224                             ConstantInt::get(Type::Int64Ty, 0xFF0000000000ULL),
225                             "bswap.and6", IP);
226    Tmp5 = BinaryOperator::createAnd(Tmp5,
227                             ConstantInt::get(Type::Int64Ty, 0xFF00000000ULL),
228                             "bswap.and5", IP);
229    Tmp4 = BinaryOperator::createAnd(Tmp4,
230                             ConstantInt::get(Type::Int64Ty, 0xFF000000ULL),
231                             "bswap.and4", IP);
232    Tmp3 = BinaryOperator::createAnd(Tmp3,
233                             ConstantInt::get(Type::Int64Ty, 0xFF0000ULL),
234                             "bswap.and3", IP);
235    Tmp2 = BinaryOperator::createAnd(Tmp2,
236                             ConstantInt::get(Type::Int64Ty, 0xFF00ULL),
237                             "bswap.and2", IP);
238    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp7, "bswap.or1", IP);
239    Tmp6 = BinaryOperator::createOr(Tmp6, Tmp5, "bswap.or2", IP);
240    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp3, "bswap.or3", IP);
241    Tmp2 = BinaryOperator::createOr(Tmp2, Tmp1, "bswap.or4", IP);
242    Tmp8 = BinaryOperator::createOr(Tmp8, Tmp6, "bswap.or5", IP);
243    Tmp4 = BinaryOperator::createOr(Tmp4, Tmp2, "bswap.or6", IP);
244    V = BinaryOperator::createOr(Tmp8, Tmp4, "bswap.i64", IP);
245    break;
246  }
247  }
248  return V;
249}
250
251/// LowerCTPOP - Emit the code to lower ctpop of V before the specified
252/// instruction IP.
253static Value *LowerCTPOP(Value *V, Instruction *IP) {
254  assert(V->getType()->isInteger() && "Can't ctpop a non-integer type!");
255
256  static const uint64_t MaskValues[6] = {
257    0x5555555555555555ULL, 0x3333333333333333ULL,
258    0x0F0F0F0F0F0F0F0FULL, 0x00FF00FF00FF00FFULL,
259    0x0000FFFF0000FFFFULL, 0x00000000FFFFFFFFULL
260  };
261
262  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
263  unsigned WordSize = (BitSize + 63) / 64;
264  Value *Count = ConstantInt::get(V->getType(), 0);
265
266  for (unsigned n = 0; n < WordSize; ++n) {
267    Value *PartValue = V;
268    for (unsigned i = 1, ct = 0; i < (BitSize>64 ? 64 : BitSize);
269         i <<= 1, ++ct) {
270      Value *MaskCst = ConstantInt::get(V->getType(), MaskValues[ct]);
271      Value *LHS = BinaryOperator::createAnd(
272                     PartValue, MaskCst, "cppop.and1", IP);
273      Value *VShift = BinaryOperator::createLShr(PartValue,
274                        ConstantInt::get(V->getType(), i), "ctpop.sh", IP);
275      Value *RHS = BinaryOperator::createAnd(VShift, MaskCst, "cppop.and2", IP);
276      PartValue = BinaryOperator::createAdd(LHS, RHS, "ctpop.step", IP);
277    }
278    Count = BinaryOperator::createAdd(PartValue, Count, "ctpop.part", IP);
279    if (BitSize > 64) {
280      V = BinaryOperator::createLShr(V, ConstantInt::get(V->getType(), 64),
281                                     "ctpop.part.sh", IP);
282      BitSize -= 64;
283    }
284  }
285
286  return Count;
287}
288
289/// LowerCTLZ - Emit the code to lower ctlz of V before the specified
290/// instruction IP.
291static Value *LowerCTLZ(Value *V, Instruction *IP) {
292
293  unsigned BitSize = V->getType()->getPrimitiveSizeInBits();
294  for (unsigned i = 1; i < BitSize; i <<= 1) {
295    Value *ShVal = ConstantInt::get(V->getType(), i);
296    ShVal = BinaryOperator::createLShr(V, ShVal, "ctlz.sh", IP);
297    V = BinaryOperator::createOr(V, ShVal, "ctlz.step", IP);
298  }
299
300  V = BinaryOperator::createNot(V, "", IP);
301  return LowerCTPOP(V, IP);
302}
303
304/// Convert the llvm.part.select.iX.iY intrinsic. This intrinsic takes
305/// three integer arguments. The first argument is the Value from which the
306/// bits will be selected. It may be of any bit width. The second and third
307/// arguments specify a range of bits to select with the second argument
308/// specifying the low bit and the third argument specifying the high bit. Both
309/// must be type i32. The result is the corresponding selected bits from the
310/// Value in the same width as the Value (first argument). If the low bit index
311/// is higher than the high bit index then the inverse selection is done and
312/// the bits are returned in inverse order.
313/// @brief Lowering of llvm.part.select intrinsic.
314static Instruction *LowerPartSelect(CallInst *CI) {
315  // Make sure we're dealing with a part select intrinsic here
316  Function *F = CI->getCalledFunction();
317  const FunctionType *FT = F->getFunctionType();
318  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
319      FT->getNumParams() != 3 || !FT->getParamType(0)->isInteger() ||
320      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger())
321    return CI;
322
323  // Get the intrinsic implementation function by converting all the . to _
324  // in the intrinsic's function name and then reconstructing the function
325  // declaration.
326  std::string Name(F->getName());
327  for (unsigned i = 4; i < Name.length(); ++i)
328    if (Name[i] == '.')
329      Name[i] = '_';
330  Module* M = F->getParent();
331  F = cast<Function>(M->getOrInsertFunction(Name, FT));
332  F->setLinkage(GlobalValue::WeakLinkage);
333
334  // If we haven't defined the impl function yet, do so now
335  if (F->isDeclaration()) {
336
337    // Get the arguments to the function
338    Function::arg_iterator args = F->arg_begin();
339    Value* Val = args++; Val->setName("Val");
340    Value* Lo = args++; Lo->setName("Lo");
341    Value* Hi  = args++; Hi->setName("High");
342
343    // We want to select a range of bits here such that [Hi, Lo] is shifted
344    // down to the low bits. However, it is quite possible that Hi is smaller
345    // than Lo in which case the bits have to be reversed.
346
347    // Create the blocks we will need for the two cases (forward, reverse)
348    BasicBlock* CurBB   = new BasicBlock("entry", F);
349    BasicBlock *RevSize = new BasicBlock("revsize", CurBB->getParent());
350    BasicBlock *FwdSize = new BasicBlock("fwdsize", CurBB->getParent());
351    BasicBlock *Compute = new BasicBlock("compute", CurBB->getParent());
352    BasicBlock *Reverse = new BasicBlock("reverse", CurBB->getParent());
353    BasicBlock *RsltBlk = new BasicBlock("result",  CurBB->getParent());
354
355    // Cast Hi and Lo to the size of Val so the widths are all the same
356    if (Hi->getType() != Val->getType())
357      Hi = CastInst::createIntegerCast(Hi, Val->getType(), false,
358                                         "tmp", CurBB);
359    if (Lo->getType() != Val->getType())
360      Lo = CastInst::createIntegerCast(Lo, Val->getType(), false,
361                                          "tmp", CurBB);
362
363    // Compute a few things that both cases will need, up front.
364    Constant* Zero = ConstantInt::get(Val->getType(), 0);
365    Constant* One = ConstantInt::get(Val->getType(), 1);
366    Constant* AllOnes = ConstantInt::getAllOnesValue(Val->getType());
367
368    // Compare the Hi and Lo bit positions. This is used to determine
369    // which case we have (forward or reverse)
370    ICmpInst *Cmp = new ICmpInst(ICmpInst::ICMP_ULT, Hi, Lo, "less",CurBB);
371    new BranchInst(RevSize, FwdSize, Cmp, CurBB);
372
373    // First, copmute the number of bits in the forward case.
374    Instruction* FBitSize =
375      BinaryOperator::createSub(Hi, Lo,"fbits", FwdSize);
376    new BranchInst(Compute, FwdSize);
377
378    // Second, compute the number of bits in the reverse case.
379    Instruction* RBitSize =
380      BinaryOperator::createSub(Lo, Hi, "rbits", RevSize);
381    new BranchInst(Compute, RevSize);
382
383    // Now, compute the bit range. Start by getting the bitsize and the shift
384    // amount (either Hi or Lo) from PHI nodes. Then we compute a mask for
385    // the number of bits we want in the range. We shift the bits down to the
386    // least significant bits, apply the mask to zero out unwanted high bits,
387    // and we have computed the "forward" result. It may still need to be
388    // reversed.
389
390    // Get the BitSize from one of the two subtractions
391    PHINode *BitSize = new PHINode(Val->getType(), "bits", Compute);
392    BitSize->reserveOperandSpace(2);
393    BitSize->addIncoming(FBitSize, FwdSize);
394    BitSize->addIncoming(RBitSize, RevSize);
395
396    // Get the ShiftAmount as the smaller of Hi/Lo
397    PHINode *ShiftAmt = new PHINode(Val->getType(), "shiftamt", Compute);
398    ShiftAmt->reserveOperandSpace(2);
399    ShiftAmt->addIncoming(Lo, FwdSize);
400    ShiftAmt->addIncoming(Hi, RevSize);
401
402    // Increment the bit size
403    Instruction *BitSizePlusOne =
404      BinaryOperator::createAdd(BitSize, One, "bits", Compute);
405
406    // Create a Mask to zero out the high order bits.
407    Instruction* Mask =
408      BinaryOperator::createShl(AllOnes, BitSizePlusOne, "mask", Compute);
409    Mask = BinaryOperator::createNot(Mask, "mask", Compute);
410
411    // Shift the bits down and apply the mask
412    Instruction* FRes =
413      BinaryOperator::createLShr(Val, ShiftAmt, "fres", Compute);
414    FRes = BinaryOperator::createAnd(FRes, Mask, "fres", Compute);
415    new BranchInst(Reverse, RsltBlk, Cmp, Compute);
416
417    // In the Reverse block we have the mask already in FRes but we must reverse
418    // it by shifting FRes bits right and putting them in RRes by shifting them
419    // in from left.
420
421    // First set up our loop counters
422    PHINode *Count = new PHINode(Val->getType(), "count", Reverse);
423    Count->reserveOperandSpace(2);
424    Count->addIncoming(BitSizePlusOne, Compute);
425
426    // Next, get the value that we are shifting.
427    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", Reverse);
428    BitsToShift->reserveOperandSpace(2);
429    BitsToShift->addIncoming(FRes, Compute);
430
431    // Finally, get the result of the last computation
432    PHINode *RRes  = new PHINode(Val->getType(), "rres", Reverse);
433    RRes->reserveOperandSpace(2);
434    RRes->addIncoming(Zero, Compute);
435
436    // Decrement the counter
437    Instruction *Decr = BinaryOperator::createSub(Count, One, "decr", Reverse);
438    Count->addIncoming(Decr, Reverse);
439
440    // Compute the Bit that we want to move
441    Instruction *Bit =
442      BinaryOperator::createAnd(BitsToShift, One, "bit", Reverse);
443
444    // Compute the new value for next iteration.
445    Instruction *NewVal =
446      BinaryOperator::createLShr(BitsToShift, One, "rshift", Reverse);
447    BitsToShift->addIncoming(NewVal, Reverse);
448
449    // Shift the bit into the low bits of the result.
450    Instruction *NewRes =
451      BinaryOperator::createShl(RRes, One, "lshift", Reverse);
452    NewRes = BinaryOperator::createOr(NewRes, Bit, "addbit", Reverse);
453    RRes->addIncoming(NewRes, Reverse);
454
455    // Terminate loop if we've moved all the bits.
456    ICmpInst *Cond =
457      new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "cond", Reverse);
458    new BranchInst(RsltBlk, Reverse, Cond, Reverse);
459
460    // Finally, in the result block, select one of the two results with a PHI
461    // node and return the result;
462    CurBB = RsltBlk;
463    PHINode *BitSelect = new PHINode(Val->getType(), "part_select", CurBB);
464    BitSelect->reserveOperandSpace(2);
465    BitSelect->addIncoming(FRes, Compute);
466    BitSelect->addIncoming(NewRes, Reverse);
467    new ReturnInst(BitSelect, CurBB);
468  }
469
470  // Return a call to the implementation function
471  Value *Args[] = {
472    CI->getOperand(1),
473    CI->getOperand(2),
474    CI->getOperand(3)
475  };
476  return new CallInst(F, Args, array_endof(Args), CI->getName(), CI);
477}
478
479/// Convert the llvm.part.set.iX.iY.iZ intrinsic. This intrinsic takes
480/// four integer arguments (iAny %Value, iAny %Replacement, i32 %Low, i32 %High)
481/// The first two arguments can be any bit width. The result is the same width
482/// as %Value. The operation replaces bits between %Low and %High with the value
483/// in %Replacement. If %Replacement is not the same width, it is truncated or
484/// zero extended as appropriate to fit the bits being replaced. If %Low is
485/// greater than %High then the inverse set of bits are replaced.
486/// @brief Lowering of llvm.bit.part.set intrinsic.
487static Instruction *LowerPartSet(CallInst *CI) {
488  // Make sure we're dealing with a part select intrinsic here
489  Function *F = CI->getCalledFunction();
490  const FunctionType *FT = F->getFunctionType();
491  if (!F->isDeclaration() || !FT->getReturnType()->isInteger() ||
492      FT->getNumParams() != 4 || !FT->getParamType(0)->isInteger() ||
493      !FT->getParamType(1)->isInteger() || !FT->getParamType(2)->isInteger() ||
494      !FT->getParamType(3)->isInteger())
495    return CI;
496
497  // Get the intrinsic implementation function by converting all the . to _
498  // in the intrinsic's function name and then reconstructing the function
499  // declaration.
500  std::string Name(F->getName());
501  for (unsigned i = 4; i < Name.length(); ++i)
502    if (Name[i] == '.')
503      Name[i] = '_';
504  Module* M = F->getParent();
505  F = cast<Function>(M->getOrInsertFunction(Name, FT));
506  F->setLinkage(GlobalValue::WeakLinkage);
507
508  // If we haven't defined the impl function yet, do so now
509  if (F->isDeclaration()) {
510    // Get the arguments for the function.
511    Function::arg_iterator args = F->arg_begin();
512    Value* Val = args++; Val->setName("Val");
513    Value* Rep = args++; Rep->setName("Rep");
514    Value* Lo  = args++; Lo->setName("Lo");
515    Value* Hi  = args++; Hi->setName("Hi");
516
517    // Get some types we need
518    const IntegerType* ValTy = cast<IntegerType>(Val->getType());
519    const IntegerType* RepTy = cast<IntegerType>(Rep->getType());
520    uint32_t ValBits = ValTy->getBitWidth();
521    uint32_t RepBits = RepTy->getBitWidth();
522
523    // Constant Definitions
524    ConstantInt* RepBitWidth = ConstantInt::get(Type::Int32Ty, RepBits);
525    ConstantInt* RepMask = ConstantInt::getAllOnesValue(RepTy);
526    ConstantInt* ValMask = ConstantInt::getAllOnesValue(ValTy);
527    ConstantInt* One = ConstantInt::get(Type::Int32Ty, 1);
528    ConstantInt* ValOne = ConstantInt::get(ValTy, 1);
529    ConstantInt* Zero = ConstantInt::get(Type::Int32Ty, 0);
530    ConstantInt* ValZero = ConstantInt::get(ValTy, 0);
531
532    // Basic blocks we fill in below.
533    BasicBlock* entry = new BasicBlock("entry", F, 0);
534    BasicBlock* large = new BasicBlock("large", F, 0);
535    BasicBlock* small = new BasicBlock("small", F, 0);
536    BasicBlock* reverse = new BasicBlock("reverse", F, 0);
537    BasicBlock* result = new BasicBlock("result", F, 0);
538
539    // BASIC BLOCK: entry
540    // First, get the number of bits that we're placing as an i32
541    ICmpInst* is_forward =
542      new ICmpInst(ICmpInst::ICMP_ULT, Lo, Hi, "", entry);
543    SelectInst* Hi_pn = new SelectInst(is_forward, Hi, Lo, "", entry);
544    SelectInst* Lo_pn = new SelectInst(is_forward, Lo, Hi, "", entry);
545    BinaryOperator* NumBits = BinaryOperator::createSub(Hi_pn, Lo_pn, "",entry);
546    NumBits = BinaryOperator::createAdd(NumBits, One, "", entry);
547    // Now, convert Lo and Hi to ValTy bit width
548    if (ValBits > 32) {
549      Lo = new ZExtInst(Lo_pn, ValTy, "", entry);
550    } else if (ValBits < 32) {
551      Lo = new TruncInst(Lo_pn, ValTy, "", entry);
552    }
553    // Determine if the replacement bits are larger than the number of bits we
554    // are replacing and deal with it.
555    ICmpInst* is_large =
556      new ICmpInst(ICmpInst::ICMP_ULT, NumBits, RepBitWidth, "", entry);
557    new BranchInst(large, small, is_large, entry);
558
559    // BASIC BLOCK: large
560    Instruction* MaskBits =
561      BinaryOperator::createSub(RepBitWidth, NumBits, "", large);
562    MaskBits = CastInst::createIntegerCast(MaskBits, RepMask->getType(),
563                                           false, "", large);
564    BinaryOperator* Mask1 =
565      BinaryOperator::createLShr(RepMask, MaskBits, "", large);
566    BinaryOperator* Rep2 = BinaryOperator::createAnd(Mask1, Rep, "", large);
567    new BranchInst(small, large);
568
569    // BASIC BLOCK: small
570    PHINode* Rep3 = new PHINode(RepTy, "", small);
571    Rep3->reserveOperandSpace(2);
572    Rep3->addIncoming(Rep2, large);
573    Rep3->addIncoming(Rep, entry);
574    Value* Rep4 = Rep3;
575    if (ValBits > RepBits)
576      Rep4 = new ZExtInst(Rep3, ValTy, "", small);
577    else if (ValBits < RepBits)
578      Rep4 = new TruncInst(Rep3, ValTy, "", small);
579    new BranchInst(result, reverse, is_forward, small);
580
581    // BASIC BLOCK: reverse (reverses the bits of the replacement)
582    // Set up our loop counter as a PHI so we can decrement on each iteration.
583    // We will loop for the number of bits in the replacement value.
584    PHINode *Count = new PHINode(Type::Int32Ty, "count", reverse);
585    Count->reserveOperandSpace(2);
586    Count->addIncoming(NumBits, small);
587
588    // Get the value that we are shifting bits out of as a PHI because
589    // we'll change this with each iteration.
590    PHINode *BitsToShift   = new PHINode(Val->getType(), "val", reverse);
591    BitsToShift->reserveOperandSpace(2);
592    BitsToShift->addIncoming(Rep4, small);
593
594    // Get the result of the last computation or zero on first iteration
595    PHINode *RRes  = new PHINode(Val->getType(), "rres", reverse);
596    RRes->reserveOperandSpace(2);
597    RRes->addIncoming(ValZero, small);
598
599    // Decrement the loop counter by one
600    Instruction *Decr = BinaryOperator::createSub(Count, One, "", reverse);
601    Count->addIncoming(Decr, reverse);
602
603    // Get the bit that we want to move into the result
604    Value *Bit = BinaryOperator::createAnd(BitsToShift, ValOne, "", reverse);
605
606    // Compute the new value of the bits to shift for the next iteration.
607    Value *NewVal = BinaryOperator::createLShr(BitsToShift, ValOne,"", reverse);
608    BitsToShift->addIncoming(NewVal, reverse);
609
610    // Shift the bit we extracted into the low bit of the result.
611    Instruction *NewRes = BinaryOperator::createShl(RRes, ValOne, "", reverse);
612    NewRes = BinaryOperator::createOr(NewRes, Bit, "", reverse);
613    RRes->addIncoming(NewRes, reverse);
614
615    // Terminate loop if we've moved all the bits.
616    ICmpInst *Cond = new ICmpInst(ICmpInst::ICMP_EQ, Decr, Zero, "", reverse);
617    new BranchInst(result, reverse, Cond, reverse);
618
619    // BASIC BLOCK: result
620    PHINode *Rplcmnt  = new PHINode(Val->getType(), "", result);
621    Rplcmnt->reserveOperandSpace(2);
622    Rplcmnt->addIncoming(NewRes, reverse);
623    Rplcmnt->addIncoming(Rep4, small);
624    Value* t0   = CastInst::createIntegerCast(NumBits,ValTy,false,"",result);
625    Value* t1   = BinaryOperator::createShl(ValMask, Lo, "", result);
626    Value* t2   = BinaryOperator::createNot(t1, "", result);
627    Value* t3   = BinaryOperator::createShl(t1, t0, "", result);
628    Value* t4   = BinaryOperator::createOr(t2, t3, "", result);
629    Value* t5   = BinaryOperator::createAnd(t4, Val, "", result);
630    Value* t6   = BinaryOperator::createShl(Rplcmnt, Lo, "", result);
631    Value* Rslt = BinaryOperator::createOr(t5, t6, "part_set", result);
632    new ReturnInst(Rslt, result);
633  }
634
635  // Return a call to the implementation function
636  Value *Args[] = {
637    CI->getOperand(1),
638    CI->getOperand(2),
639    CI->getOperand(3),
640    CI->getOperand(4)
641  };
642  return new CallInst(F, Args, array_endof(Args), CI->getName(), CI);
643}
644
645
646void IntrinsicLowering::LowerIntrinsicCall(CallInst *CI) {
647  Function *Callee = CI->getCalledFunction();
648  assert(Callee && "Cannot lower an indirect call!");
649
650  switch (Callee->getIntrinsicID()) {
651  case Intrinsic::not_intrinsic:
652    cerr << "Cannot lower a call to a non-intrinsic function '"
653         << Callee->getName() << "'!\n";
654    abort();
655  default:
656    cerr << "Error: Code generator does not support intrinsic function '"
657         << Callee->getName() << "'!\n";
658    abort();
659
660    // The setjmp/longjmp intrinsics should only exist in the code if it was
661    // never optimized (ie, right out of the CFE), or if it has been hacked on
662    // by the lowerinvoke pass.  In both cases, the right thing to do is to
663    // convert the call to an explicit setjmp or longjmp call.
664  case Intrinsic::setjmp: {
665    static Constant *SetjmpFCache = 0;
666    Value *V = ReplaceCallWith("setjmp", CI, CI->op_begin()+1, CI->op_end(),
667                               Type::Int32Ty, SetjmpFCache);
668    if (CI->getType() != Type::VoidTy)
669      CI->replaceAllUsesWith(V);
670    break;
671  }
672  case Intrinsic::sigsetjmp:
673     if (CI->getType() != Type::VoidTy)
674       CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
675     break;
676
677  case Intrinsic::longjmp: {
678    static Constant *LongjmpFCache = 0;
679    ReplaceCallWith("longjmp", CI, CI->op_begin()+1, CI->op_end(),
680                    Type::VoidTy, LongjmpFCache);
681    break;
682  }
683
684  case Intrinsic::siglongjmp: {
685    // Insert the call to abort
686    static Constant *AbortFCache = 0;
687    ReplaceCallWith("abort", CI, CI->op_end(), CI->op_end(),
688                    Type::VoidTy, AbortFCache);
689    break;
690  }
691  case Intrinsic::ctpop:
692    CI->replaceAllUsesWith(LowerCTPOP(CI->getOperand(1), CI));
693    break;
694
695  case Intrinsic::bswap:
696    CI->replaceAllUsesWith(LowerBSWAP(CI->getOperand(1), CI));
697    break;
698
699  case Intrinsic::ctlz:
700    CI->replaceAllUsesWith(LowerCTLZ(CI->getOperand(1), CI));
701    break;
702
703  case Intrinsic::cttz: {
704    // cttz(x) -> ctpop(~X & (X-1))
705    Value *Src = CI->getOperand(1);
706    Value *NotSrc = BinaryOperator::createNot(Src, Src->getName()+".not", CI);
707    Value *SrcM1  = ConstantInt::get(Src->getType(), 1);
708    SrcM1 = BinaryOperator::createSub(Src, SrcM1, "", CI);
709    Src = LowerCTPOP(BinaryOperator::createAnd(NotSrc, SrcM1, "", CI), CI);
710    CI->replaceAllUsesWith(Src);
711    break;
712  }
713
714  case Intrinsic::part_select:
715    CI->replaceAllUsesWith(LowerPartSelect(CI));
716    break;
717
718  case Intrinsic::part_set:
719    CI->replaceAllUsesWith(LowerPartSet(CI));
720    break;
721
722  case Intrinsic::stacksave:
723  case Intrinsic::stackrestore: {
724    static bool Warned = false;
725    if (!Warned)
726      cerr << "WARNING: this target does not support the llvm.stack"
727           << (Callee->getIntrinsicID() == Intrinsic::stacksave ?
728               "save" : "restore") << " intrinsic.\n";
729    Warned = true;
730    if (Callee->getIntrinsicID() == Intrinsic::stacksave)
731      CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
732    break;
733  }
734
735  case Intrinsic::returnaddress:
736  case Intrinsic::frameaddress:
737    cerr << "WARNING: this target does not support the llvm."
738         << (Callee->getIntrinsicID() == Intrinsic::returnaddress ?
739             "return" : "frame") << "address intrinsic.\n";
740    CI->replaceAllUsesWith(ConstantPointerNull::get(
741                                            cast<PointerType>(CI->getType())));
742    break;
743
744  case Intrinsic::prefetch:
745    break;    // Simply strip out prefetches on unsupported architectures
746
747  case Intrinsic::pcmarker:
748    break;    // Simply strip out pcmarker on unsupported architectures
749  case Intrinsic::readcyclecounter: {
750    cerr << "WARNING: this target does not support the llvm.readcyclecoun"
751         << "ter intrinsic.  It is being lowered to a constant 0\n";
752    CI->replaceAllUsesWith(ConstantInt::get(Type::Int64Ty, 0));
753    break;
754  }
755
756  case Intrinsic::dbg_stoppoint:
757  case Intrinsic::dbg_region_start:
758  case Intrinsic::dbg_region_end:
759  case Intrinsic::dbg_func_start:
760  case Intrinsic::dbg_declare:
761    break;    // Simply strip out debugging intrinsics
762
763  case Intrinsic::eh_exception:
764  case Intrinsic::eh_selector_i32:
765  case Intrinsic::eh_selector_i64:
766    CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
767    break;
768
769  case Intrinsic::eh_typeid_for_i32:
770  case Intrinsic::eh_typeid_for_i64:
771    // Return something different to eh_selector.
772    CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1));
773    break;
774
775  case Intrinsic::var_annotation:
776    break;   // Strip out annotate intrinsic
777
778  case Intrinsic::memcpy_i32:
779  case Intrinsic::memcpy_i64: {
780    static Constant *MemcpyFCache = 0;
781    Value *Size = CI->getOperand(3);
782    const Type *IntPtr = TD.getIntPtrType();
783    if (Size->getType()->getPrimitiveSizeInBits() <
784        IntPtr->getPrimitiveSizeInBits())
785      Size = new ZExtInst(Size, IntPtr, "", CI);
786    else if (Size->getType()->getPrimitiveSizeInBits() >
787             IntPtr->getPrimitiveSizeInBits())
788      Size = new TruncInst(Size, IntPtr, "", CI);
789    Value *Ops[3];
790    Ops[0] = CI->getOperand(1);
791    Ops[1] = CI->getOperand(2);
792    Ops[2] = Size;
793    ReplaceCallWith("memcpy", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
794                    MemcpyFCache);
795    break;
796  }
797  case Intrinsic::memmove_i32:
798  case Intrinsic::memmove_i64: {
799    static Constant *MemmoveFCache = 0;
800    Value *Size = CI->getOperand(3);
801    const Type *IntPtr = TD.getIntPtrType();
802    if (Size->getType()->getPrimitiveSizeInBits() <
803        IntPtr->getPrimitiveSizeInBits())
804      Size = new ZExtInst(Size, IntPtr, "", CI);
805    else if (Size->getType()->getPrimitiveSizeInBits() >
806             IntPtr->getPrimitiveSizeInBits())
807      Size = new TruncInst(Size, IntPtr, "", CI);
808    Value *Ops[3];
809    Ops[0] = CI->getOperand(1);
810    Ops[1] = CI->getOperand(2);
811    Ops[2] = Size;
812    ReplaceCallWith("memmove", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
813                    MemmoveFCache);
814    break;
815  }
816  case Intrinsic::memset_i32:
817  case Intrinsic::memset_i64: {
818    static Constant *MemsetFCache = 0;
819    Value *Size = CI->getOperand(3);
820    const Type *IntPtr = TD.getIntPtrType();
821    if (Size->getType()->getPrimitiveSizeInBits() <
822        IntPtr->getPrimitiveSizeInBits())
823      Size = new ZExtInst(Size, IntPtr, "", CI);
824    else if (Size->getType()->getPrimitiveSizeInBits() >
825             IntPtr->getPrimitiveSizeInBits())
826      Size = new TruncInst(Size, IntPtr, "", CI);
827    Value *Ops[3];
828    Ops[0] = CI->getOperand(1);
829    // Extend the amount to i32.
830    Ops[1] = new ZExtInst(CI->getOperand(2), Type::Int32Ty, "", CI);
831    Ops[2] = Size;
832    ReplaceCallWith("memset", CI, Ops, Ops+3, CI->getOperand(1)->getType(),
833                    MemsetFCache);
834    break;
835  }
836  case Intrinsic::sqrt: {
837    static Constant *sqrtfFCache = 0;
838    static Constant *sqrtFCache = 0;
839    static Constant *sqrtLDCache = 0;
840    switch (CI->getOperand(1)->getType()->getTypeID()) {
841    default: assert(0 && "Invalid type in sqrt"); abort();
842    case Type::FloatTyID:
843      ReplaceCallWith("sqrtf", CI, CI->op_begin()+1, CI->op_end(),
844                    Type::FloatTy, sqrtfFCache);
845      break;
846    case Type::DoubleTyID:
847      ReplaceCallWith("sqrt", CI, CI->op_begin()+1, CI->op_end(),
848                    Type::DoubleTy, sqrtFCache);
849      break;
850    case Type::X86_FP80TyID:
851    case Type::FP128TyID:
852    case Type::PPC_FP128TyID:
853      ReplaceCallWith("sqrtl", CI, CI->op_begin()+1, CI->op_end(),
854                    CI->getOperand(1)->getType(), sqrtLDCache);
855      break;
856    }
857    break;
858  }
859  }
860
861  assert(CI->use_empty() &&
862         "Lowering should have eliminated any uses of the intrinsic call!");
863  CI->eraseFromParent();
864}
865