LiveInterval.cpp revision 331de11a0acc6a095b98914b5f05ff242c9d7819
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval class.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live interval for register v if there is no instruction with number j' > j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation intervals can have holes,
15// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
16// individual segment is represented as an instance of Segment, and the whole
17// range is represented as an instance of LiveInterval.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22#include "RegisterCoalescer.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/CodeGen/LiveIntervalAnalysis.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/Support/Debug.h"
29#include "llvm/Support/raw_ostream.h"
30#include "llvm/Target/TargetRegisterInfo.h"
31#include <algorithm>
32using namespace llvm;
33
34LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
35  // This algorithm is basically std::upper_bound.
36  // Unfortunately, std::upper_bound cannot be used with mixed types until we
37  // adopt C++0x. Many libraries can do it, but not all.
38  if (empty() || Pos >= endIndex())
39    return end();
40  iterator I = begin();
41  size_t Len = size();
42  do {
43    size_t Mid = Len >> 1;
44    if (Pos < I[Mid].end)
45      Len = Mid;
46    else
47      I += Mid + 1, Len -= Mid + 1;
48  } while (Len);
49  return I;
50}
51
52VNInfo *LiveInterval::createDeadDef(SlotIndex Def,
53                                    VNInfo::Allocator &VNInfoAllocator) {
54  assert(!Def.isDead() && "Cannot define a value at the dead slot");
55  iterator I = find(Def);
56  if (I == end()) {
57    VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
58    segments.push_back(Segment(Def, Def.getDeadSlot(), VNI));
59    return VNI;
60  }
61  if (SlotIndex::isSameInstr(Def, I->start)) {
62    assert(I->valno->def == I->start && "Inconsistent existing value def");
63
64    // It is possible to have both normal and early-clobber defs of the same
65    // register on an instruction. It doesn't make a lot of sense, but it is
66    // possible to specify in inline assembly.
67    //
68    // Just convert everything to early-clobber.
69    Def = std::min(Def, I->start);
70    if (Def != I->start)
71      I->start = I->valno->def = Def;
72    return I->valno;
73  }
74  assert(SlotIndex::isEarlierInstr(Def, I->start) && "Already live at def");
75  VNInfo *VNI = getNextValue(Def, VNInfoAllocator);
76  segments.insert(I, Segment(Def, Def.getDeadSlot(), VNI));
77  return VNI;
78}
79
80// overlaps - Return true if the intersection of the two live intervals is
81// not empty.
82//
83// An example for overlaps():
84//
85// 0: A = ...
86// 4: B = ...
87// 8: C = A + B ;; last use of A
88//
89// The live intervals should look like:
90//
91// A = [3, 11)
92// B = [7, x)
93// C = [11, y)
94//
95// A->overlaps(C) should return false since we want to be able to join
96// A and C.
97//
98bool LiveInterval::overlapsFrom(const LiveInterval& other,
99                                const_iterator StartPos) const {
100  assert(!empty() && "empty interval");
101  const_iterator i = begin();
102  const_iterator ie = end();
103  const_iterator j = StartPos;
104  const_iterator je = other.end();
105
106  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
107         StartPos != other.end() && "Bogus start position hint!");
108
109  if (i->start < j->start) {
110    i = std::upper_bound(i, ie, j->start);
111    if (i != begin()) --i;
112  } else if (j->start < i->start) {
113    ++StartPos;
114    if (StartPos != other.end() && StartPos->start <= i->start) {
115      assert(StartPos < other.end() && i < end());
116      j = std::upper_bound(j, je, i->start);
117      if (j != other.begin()) --j;
118    }
119  } else {
120    return true;
121  }
122
123  if (j == je) return false;
124
125  while (i != ie) {
126    if (i->start > j->start) {
127      std::swap(i, j);
128      std::swap(ie, je);
129    }
130
131    if (i->end > j->start)
132      return true;
133    ++i;
134  }
135
136  return false;
137}
138
139bool LiveInterval::overlaps(const LiveInterval &Other,
140                            const CoalescerPair &CP,
141                            const SlotIndexes &Indexes) const {
142  assert(!empty() && "empty interval");
143  if (Other.empty())
144    return false;
145
146  // Use binary searches to find initial positions.
147  const_iterator I = find(Other.beginIndex());
148  const_iterator IE = end();
149  if (I == IE)
150    return false;
151  const_iterator J = Other.find(I->start);
152  const_iterator JE = Other.end();
153  if (J == JE)
154    return false;
155
156  for (;;) {
157    // J has just been advanced to satisfy:
158    assert(J->end >= I->start);
159    // Check for an overlap.
160    if (J->start < I->end) {
161      // I and J are overlapping. Find the later start.
162      SlotIndex Def = std::max(I->start, J->start);
163      // Allow the overlap if Def is a coalescable copy.
164      if (Def.isBlock() ||
165          !CP.isCoalescable(Indexes.getInstructionFromIndex(Def)))
166        return true;
167    }
168    // Advance the iterator that ends first to check for more overlaps.
169    if (J->end > I->end) {
170      std::swap(I, J);
171      std::swap(IE, JE);
172    }
173    // Advance J until J->end >= I->start.
174    do
175      if (++J == JE)
176        return false;
177    while (J->end < I->start);
178  }
179}
180
181/// overlaps - Return true if the live interval overlaps a segment specified
182/// by [Start, End).
183bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
184  assert(Start < End && "Invalid range");
185  const_iterator I = std::lower_bound(begin(), end(), End);
186  return I != begin() && (--I)->end > Start;
187}
188
189
190/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
191/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
192/// it can be nuked later.
193void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
194  if (ValNo->id == getNumValNums()-1) {
195    do {
196      valnos.pop_back();
197    } while (!valnos.empty() && valnos.back()->isUnused());
198  } else {
199    ValNo->markUnused();
200  }
201}
202
203/// RenumberValues - Renumber all values in order of appearance and delete the
204/// remaining unused values.
205void LiveInterval::RenumberValues() {
206  SmallPtrSet<VNInfo*, 8> Seen;
207  valnos.clear();
208  for (const_iterator I = begin(), E = end(); I != E; ++I) {
209    VNInfo *VNI = I->valno;
210    if (!Seen.insert(VNI))
211      continue;
212    assert(!VNI->isUnused() && "Unused valno used by live segment");
213    VNI->id = (unsigned)valnos.size();
214    valnos.push_back(VNI);
215  }
216}
217
218/// This method is used when we want to extend the segment specified by I to end
219/// at the specified endpoint.  To do this, we should merge and eliminate all
220/// segments that this will overlap with.  The iterator is not invalidated.
221void LiveInterval::extendSegmentEndTo(iterator I, SlotIndex NewEnd) {
222  assert(I != end() && "Not a valid segment!");
223  VNInfo *ValNo = I->valno;
224
225  // Search for the first segment that we can't merge with.
226  iterator MergeTo = llvm::next(I);
227  for (; MergeTo != end() && NewEnd >= MergeTo->end; ++MergeTo) {
228    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
229  }
230
231  // If NewEnd was in the middle of an segment, make sure to get its endpoint.
232  I->end = std::max(NewEnd, prior(MergeTo)->end);
233
234  // If the newly formed segment now touches the segment after it and if they
235  // have the same value number, merge the two segments into one segment.
236  if (MergeTo != end() && MergeTo->start <= I->end &&
237      MergeTo->valno == ValNo) {
238    I->end = MergeTo->end;
239    ++MergeTo;
240  }
241
242  // Erase any dead segments.
243  segments.erase(llvm::next(I), MergeTo);
244}
245
246
247/// This method is used when we want to extend the segment specified by I to
248/// start at the specified endpoint.  To do this, we should merge and eliminate
249/// all segments that this will overlap with.
250LiveInterval::iterator
251LiveInterval::extendSegmentStartTo(iterator I, SlotIndex NewStart) {
252  assert(I != end() && "Not a valid segment!");
253  VNInfo *ValNo = I->valno;
254
255  // Search for the first segment that we can't merge with.
256  iterator MergeTo = I;
257  do {
258    if (MergeTo == begin()) {
259      I->start = NewStart;
260      segments.erase(MergeTo, I);
261      return I;
262    }
263    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
264    --MergeTo;
265  } while (NewStart <= MergeTo->start);
266
267  // If we start in the middle of another segment, just delete a range and
268  // extend that segment.
269  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
270    MergeTo->end = I->end;
271  } else {
272    // Otherwise, extend the segment right after.
273    ++MergeTo;
274    MergeTo->start = NewStart;
275    MergeTo->end = I->end;
276  }
277
278  segments.erase(llvm::next(MergeTo), llvm::next(I));
279  return MergeTo;
280}
281
282LiveInterval::iterator
283LiveInterval::addSegmentFrom(Segment S, iterator From) {
284  SlotIndex Start = S.start, End = S.end;
285  iterator it = std::upper_bound(From, end(), Start);
286
287  // If the inserted segment starts in the middle or right at the end of
288  // another segment, just extend that segment to contain the segment of S.
289  if (it != begin()) {
290    iterator B = prior(it);
291    if (S.valno == B->valno) {
292      if (B->start <= Start && B->end >= Start) {
293        extendSegmentEndTo(B, End);
294        return B;
295      }
296    } else {
297      // Check to make sure that we are not overlapping two live segments with
298      // different valno's.
299      assert(B->end <= Start &&
300             "Cannot overlap two segments with differing ValID's"
301             " (did you def the same reg twice in a MachineInstr?)");
302    }
303  }
304
305  // Otherwise, if this segment ends in the middle of, or right next to, another
306  // segment, merge it into that segment.
307  if (it != end()) {
308    if (S.valno == it->valno) {
309      if (it->start <= End) {
310        it = extendSegmentStartTo(it, Start);
311
312        // If S is a complete superset of a segment, we may need to grow its
313        // endpoint as well.
314        if (End > it->end)
315          extendSegmentEndTo(it, End);
316        return it;
317      }
318    } else {
319      // Check to make sure that we are not overlapping two live segments with
320      // different valno's.
321      assert(it->start >= End &&
322             "Cannot overlap two segments with differing ValID's");
323    }
324  }
325
326  // Otherwise, this is just a new segment that doesn't interact with anything.
327  // Insert it.
328  return segments.insert(it, S);
329}
330
331/// extendInBlock - If this interval is live before Kill in the basic
332/// block that starts at StartIdx, extend it to be live up to Kill and return
333/// the value. If there is no segment before Kill, return NULL.
334VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
335  if (empty())
336    return 0;
337  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
338  if (I == begin())
339    return 0;
340  --I;
341  if (I->end <= StartIdx)
342    return 0;
343  if (I->end < Kill)
344    extendSegmentEndTo(I, Kill);
345  return I->valno;
346}
347
348/// Remove the specified segment from this interval.  Note that the segment must
349/// be in a single Segment in its entirety.
350void LiveInterval::removeSegment(SlotIndex Start, SlotIndex End,
351                                 bool RemoveDeadValNo) {
352  // Find the Segment containing this span.
353  iterator I = find(Start);
354  assert(I != end() && "Segment is not in interval!");
355  assert(I->containsInterval(Start, End)
356         && "Segment is not entirely in interval!");
357
358  // If the span we are removing is at the start of the Segment, adjust it.
359  VNInfo *ValNo = I->valno;
360  if (I->start == Start) {
361    if (I->end == End) {
362      if (RemoveDeadValNo) {
363        // Check if val# is dead.
364        bool isDead = true;
365        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
366          if (II != I && II->valno == ValNo) {
367            isDead = false;
368            break;
369          }
370        if (isDead) {
371          // Now that ValNo is dead, remove it.
372          markValNoForDeletion(ValNo);
373        }
374      }
375
376      segments.erase(I);  // Removed the whole Segment.
377    } else
378      I->start = End;
379    return;
380  }
381
382  // Otherwise if the span we are removing is at the end of the Segment,
383  // adjust the other way.
384  if (I->end == End) {
385    I->end = Start;
386    return;
387  }
388
389  // Otherwise, we are splitting the Segment into two pieces.
390  SlotIndex OldEnd = I->end;
391  I->end = Start;   // Trim the old interval.
392
393  // Insert the new one.
394  segments.insert(llvm::next(I), Segment(End, OldEnd, ValNo));
395}
396
397/// removeValNo - Remove all the segments defined by the specified value#.
398/// Also remove the value# from value# list.
399void LiveInterval::removeValNo(VNInfo *ValNo) {
400  if (empty()) return;
401  iterator I = end();
402  iterator E = begin();
403  do {
404    --I;
405    if (I->valno == ValNo)
406      segments.erase(I);
407  } while (I != E);
408  // Now that ValNo is dead, remove it.
409  markValNoForDeletion(ValNo);
410}
411
412/// join - Join two live intervals (this, and other) together.  This applies
413/// mappings to the value numbers in the LHS/RHS intervals as specified.  If
414/// the intervals are not joinable, this aborts.
415void LiveInterval::join(LiveInterval &Other,
416                        const int *LHSValNoAssignments,
417                        const int *RHSValNoAssignments,
418                        SmallVectorImpl<VNInfo *> &NewVNInfo) {
419  verify();
420
421  // Determine if any of our values are mapped.  This is uncommon, so we want
422  // to avoid the interval scan if not.
423  bool MustMapCurValNos = false;
424  unsigned NumVals = getNumValNums();
425  unsigned NumNewVals = NewVNInfo.size();
426  for (unsigned i = 0; i != NumVals; ++i) {
427    unsigned LHSValID = LHSValNoAssignments[i];
428    if (i != LHSValID ||
429        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
430      MustMapCurValNos = true;
431      break;
432    }
433  }
434
435  // If we have to apply a mapping to our base interval assignment, rewrite it
436  // now.
437  if (MustMapCurValNos && !empty()) {
438    // Map the first live range.
439
440    iterator OutIt = begin();
441    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
442    for (iterator I = llvm::next(OutIt), E = end(); I != E; ++I) {
443      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
444      assert(nextValNo != 0 && "Huh?");
445
446      // If this live range has the same value # as its immediate predecessor,
447      // and if they are neighbors, remove one Segment.  This happens when we
448      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
449      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
450        OutIt->end = I->end;
451      } else {
452        // Didn't merge. Move OutIt to the next interval,
453        ++OutIt;
454        OutIt->valno = nextValNo;
455        if (OutIt != I) {
456          OutIt->start = I->start;
457          OutIt->end = I->end;
458        }
459      }
460    }
461    // If we merge some segments, chop off the end.
462    ++OutIt;
463    segments.erase(OutIt, end());
464  }
465
466  // Rewrite Other values before changing the VNInfo ids.
467  // This can leave Other in an invalid state because we're not coalescing
468  // touching segments that now have identical values. That's OK since Other is
469  // not supposed to be valid after calling join();
470  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
471    I->valno = NewVNInfo[RHSValNoAssignments[I->valno->id]];
472
473  // Update val# info. Renumber them and make sure they all belong to this
474  // LiveInterval now. Also remove dead val#'s.
475  unsigned NumValNos = 0;
476  for (unsigned i = 0; i < NumNewVals; ++i) {
477    VNInfo *VNI = NewVNInfo[i];
478    if (VNI) {
479      if (NumValNos >= NumVals)
480        valnos.push_back(VNI);
481      else
482        valnos[NumValNos] = VNI;
483      VNI->id = NumValNos++;  // Renumber val#.
484    }
485  }
486  if (NumNewVals < NumVals)
487    valnos.resize(NumNewVals);  // shrinkify
488
489  // Okay, now insert the RHS live segments into the LHS.
490  LiveRangeUpdater Updater(this);
491  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
492    Updater.add(*I);
493}
494
495/// Merge all of the segments in RHS into this live interval as the specified
496/// value number.  The segments in RHS are allowed to overlap with segments in
497/// the current interval, but only if the overlapping segments have the
498/// specified value number.
499void LiveInterval::MergeSegmentsInAsValue(const LiveInterval &RHS,
500                                          VNInfo *LHSValNo) {
501  LiveRangeUpdater Updater(this);
502  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
503    Updater.add(I->start, I->end, LHSValNo);
504}
505
506/// MergeValueInAsValue - Merge all of the live segments of a specific val#
507/// in RHS into this live interval as the specified value number.
508/// The segments in RHS are allowed to overlap with segments in the
509/// current interval, it will replace the value numbers of the overlaped
510/// segments with the specified value number.
511void LiveInterval::MergeValueInAsValue(const LiveInterval &RHS,
512                                       const VNInfo *RHSValNo,
513                                       VNInfo *LHSValNo) {
514  LiveRangeUpdater Updater(this);
515  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I)
516    if (I->valno == RHSValNo)
517      Updater.add(I->start, I->end, LHSValNo);
518}
519
520/// MergeValueNumberInto - This method is called when two value nubmers
521/// are found to be equivalent.  This eliminates V1, replacing all
522/// segments with the V1 value number with the V2 value number.  This can
523/// cause merging of V1/V2 values numbers and compaction of the value space.
524VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
525  assert(V1 != V2 && "Identical value#'s are always equivalent!");
526
527  // This code actually merges the (numerically) larger value number into the
528  // smaller value number, which is likely to allow us to compactify the value
529  // space.  The only thing we have to be careful of is to preserve the
530  // instruction that defines the result value.
531
532  // Make sure V2 is smaller than V1.
533  if (V1->id < V2->id) {
534    V1->copyFrom(*V2);
535    std::swap(V1, V2);
536  }
537
538  // Merge V1 segments into V2.
539  for (iterator I = begin(); I != end(); ) {
540    iterator S = I++;
541    if (S->valno != V1) continue;  // Not a V1 Segment.
542
543    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
544    // range, extend it.
545    if (S != begin()) {
546      iterator Prev = S-1;
547      if (Prev->valno == V2 && Prev->end == S->start) {
548        Prev->end = S->end;
549
550        // Erase this live-range.
551        segments.erase(S);
552        I = Prev+1;
553        S = Prev;
554      }
555    }
556
557    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
558    // Ensure that it is a V2 live-range.
559    S->valno = V2;
560
561    // If we can merge it into later V2 segments, do so now.  We ignore any
562    // following V1 segments, as they will be merged in subsequent iterations
563    // of the loop.
564    if (I != end()) {
565      if (I->start == S->end && I->valno == V2) {
566        S->end = I->end;
567        segments.erase(I);
568        I = S+1;
569      }
570    }
571  }
572
573  // Now that V1 is dead, remove it.
574  markValNoForDeletion(V1);
575
576  return V2;
577}
578
579unsigned LiveInterval::getSize() const {
580  unsigned Sum = 0;
581  for (const_iterator I = begin(), E = end(); I != E; ++I)
582    Sum += I->start.distance(I->end);
583  return Sum;
584}
585
586raw_ostream& llvm::operator<<(raw_ostream& os, const LiveInterval::Segment &S) {
587  return os << '[' << S.start << ',' << S.end << ':' << S.valno->id << ")";
588}
589
590#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
591void LiveInterval::Segment::dump() const {
592  dbgs() << *this << "\n";
593}
594#endif
595
596void LiveInterval::print(raw_ostream &OS) const {
597  if (empty())
598    OS << "EMPTY";
599  else {
600    for (const_iterator I = begin(), E = end(); I != E; ++I) {
601      OS << *I;
602      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
603    }
604  }
605
606  // Print value number info.
607  if (getNumValNums()) {
608    OS << "  ";
609    unsigned vnum = 0;
610    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
611         ++i, ++vnum) {
612      const VNInfo *vni = *i;
613      if (vnum) OS << " ";
614      OS << vnum << "@";
615      if (vni->isUnused()) {
616        OS << "x";
617      } else {
618        OS << vni->def;
619        if (vni->isPHIDef())
620          OS << "-phi";
621      }
622    }
623  }
624}
625
626#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
627void LiveInterval::dump() const {
628  dbgs() << *this << "\n";
629}
630#endif
631
632#ifndef NDEBUG
633void LiveInterval::verify() const {
634  for (const_iterator I = begin(), E = end(); I != E; ++I) {
635    assert(I->start.isValid());
636    assert(I->end.isValid());
637    assert(I->start < I->end);
638    assert(I->valno != 0);
639    assert(I->valno == valnos[I->valno->id]);
640    if (llvm::next(I) != E) {
641      assert(I->end <= llvm::next(I)->start);
642      if (I->end == llvm::next(I)->start)
643        assert(I->valno != llvm::next(I)->valno);
644    }
645  }
646}
647#endif
648
649
650//===----------------------------------------------------------------------===//
651//                           LiveRangeUpdater class
652//===----------------------------------------------------------------------===//
653//
654// The LiveRangeUpdater class always maintains these invariants:
655//
656// - When LastStart is invalid, Spills is empty and the iterators are invalid.
657//   This is the initial state, and the state created by flush().
658//   In this state, isDirty() returns false.
659//
660// Otherwise, segments are kept in three separate areas:
661//
662// 1. [begin; WriteI) at the front of LI.
663// 2. [ReadI; end) at the back of LI.
664// 3. Spills.
665//
666// - LI.begin() <= WriteI <= ReadI <= LI.end().
667// - Segments in all three areas are fully ordered and coalesced.
668// - Segments in area 1 precede and can't coalesce with segments in area 2.
669// - Segments in Spills precede and can't coalesce with segments in area 2.
670// - No coalescing is possible between segments in Spills and segments in area
671//   1, and there are no overlapping segments.
672//
673// The segments in Spills are not ordered with respect to the segments in area
674// 1. They need to be merged.
675//
676// When they exist, Spills.back().start <= LastStart,
677//                 and WriteI[-1].start <= LastStart.
678
679void LiveRangeUpdater::print(raw_ostream &OS) const {
680  if (!isDirty()) {
681    if (LI)
682      OS << "Clean " << PrintReg(LI->reg) << " updater: " << *LI << '\n';
683    else
684      OS << "Null updater.\n";
685    return;
686  }
687  assert(LI && "Can't have null LI in dirty updater.");
688  OS << PrintReg(LI->reg) << " updater with gap = " << (ReadI - WriteI)
689     << ", last start = " << LastStart
690     << ":\n  Area 1:";
691  for (LiveInterval::const_iterator I = LI->begin(); I != WriteI; ++I)
692    OS << ' ' << *I;
693  OS << "\n  Spills:";
694  for (unsigned I = 0, E = Spills.size(); I != E; ++I)
695    OS << ' ' << Spills[I];
696  OS << "\n  Area 2:";
697  for (LiveInterval::const_iterator I = ReadI, E = LI->end(); I != E; ++I)
698    OS << ' ' << *I;
699  OS << '\n';
700}
701
702void LiveRangeUpdater::dump() const
703{
704  print(errs());
705}
706
707// Determine if A and B should be coalesced.
708static inline bool coalescable(const LiveInterval::Segment &A,
709                               const LiveInterval::Segment &B) {
710  assert(A.start <= B.start && "Unordered live segments.");
711  if (A.end == B.start)
712    return A.valno == B.valno;
713  if (A.end < B.start)
714    return false;
715  assert(A.valno == B.valno && "Cannot overlap different values");
716  return true;
717}
718
719void LiveRangeUpdater::add(LiveInterval::Segment Seg) {
720  assert(LI && "Cannot add to a null destination");
721
722  // Flush the state if Start moves backwards.
723  if (!LastStart.isValid() || LastStart > Seg.start) {
724    if (isDirty())
725      flush();
726    // This brings us to an uninitialized state. Reinitialize.
727    assert(Spills.empty() && "Leftover spilled segments");
728    WriteI = ReadI = LI->begin();
729  }
730
731  // Remember start for next time.
732  LastStart = Seg.start;
733
734  // Advance ReadI until it ends after Seg.start.
735  LiveInterval::iterator E = LI->end();
736  if (ReadI != E && ReadI->end <= Seg.start) {
737    // First try to close the gap between WriteI and ReadI with spills.
738    if (ReadI != WriteI)
739      mergeSpills();
740    // Then advance ReadI.
741    if (ReadI == WriteI)
742      ReadI = WriteI = LI->find(Seg.start);
743    else
744      while (ReadI != E && ReadI->end <= Seg.start)
745        *WriteI++ = *ReadI++;
746  }
747
748  assert(ReadI == E || ReadI->end > Seg.start);
749
750  // Check if the ReadI segment begins early.
751  if (ReadI != E && ReadI->start <= Seg.start) {
752    assert(ReadI->valno == Seg.valno && "Cannot overlap different values");
753    // Bail if Seg is completely contained in ReadI.
754    if (ReadI->end >= Seg.end)
755      return;
756    // Coalesce into Seg.
757    Seg.start = ReadI->start;
758    ++ReadI;
759  }
760
761  // Coalesce as much as possible from ReadI into Seg.
762  while (ReadI != E && coalescable(Seg, *ReadI)) {
763    Seg.end = std::max(Seg.end, ReadI->end);
764    ++ReadI;
765  }
766
767  // Try coalescing Spills.back() into Seg.
768  if (!Spills.empty() && coalescable(Spills.back(), Seg)) {
769    Seg.start = Spills.back().start;
770    Seg.end = std::max(Spills.back().end, Seg.end);
771    Spills.pop_back();
772  }
773
774  // Try coalescing Seg into WriteI[-1].
775  if (WriteI != LI->begin() && coalescable(WriteI[-1], Seg)) {
776    WriteI[-1].end = std::max(WriteI[-1].end, Seg.end);
777    return;
778  }
779
780  // Seg doesn't coalesce with anything, and needs to be inserted somewhere.
781  if (WriteI != ReadI) {
782    *WriteI++ = Seg;
783    return;
784  }
785
786  // Finally, append to LI or Spills.
787  if (WriteI == E) {
788    LI->segments.push_back(Seg);
789    WriteI = ReadI = LI->end();
790  } else
791    Spills.push_back(Seg);
792}
793
794// Merge as many spilled segments as possible into the gap between WriteI
795// and ReadI. Advance WriteI to reflect the inserted instructions.
796void LiveRangeUpdater::mergeSpills() {
797  // Perform a backwards merge of Spills and [SpillI;WriteI).
798  size_t GapSize = ReadI - WriteI;
799  size_t NumMoved = std::min(Spills.size(), GapSize);
800  LiveInterval::iterator Src = WriteI;
801  LiveInterval::iterator Dst = Src + NumMoved;
802  LiveInterval::iterator SpillSrc = Spills.end();
803  LiveInterval::iterator B = LI->begin();
804
805  // This is the new WriteI position after merging spills.
806  WriteI = Dst;
807
808  // Now merge Src and Spills backwards.
809  while (Src != Dst) {
810    if (Src != B && Src[-1].start > SpillSrc[-1].start)
811      *--Dst = *--Src;
812    else
813      *--Dst = *--SpillSrc;
814  }
815  assert(NumMoved == size_t(Spills.end() - SpillSrc));
816  Spills.erase(SpillSrc, Spills.end());
817}
818
819void LiveRangeUpdater::flush() {
820  if (!isDirty())
821    return;
822  // Clear the dirty state.
823  LastStart = SlotIndex();
824
825  assert(LI && "Cannot add to a null destination");
826
827  // Nothing to merge?
828  if (Spills.empty()) {
829    LI->segments.erase(WriteI, ReadI);
830    LI->verify();
831    return;
832  }
833
834  // Resize the WriteI - ReadI gap to match Spills.
835  size_t GapSize = ReadI - WriteI;
836  if (GapSize < Spills.size()) {
837    // The gap is too small. Make some room.
838    size_t WritePos = WriteI - LI->begin();
839    LI->segments.insert(ReadI, Spills.size() - GapSize,
840                        LiveInterval::Segment());
841    // This also invalidated ReadI, but it is recomputed below.
842    WriteI = LI->begin() + WritePos;
843  } else {
844    // Shrink the gap if necessary.
845    LI->segments.erase(WriteI + Spills.size(), ReadI);
846  }
847  ReadI = WriteI + Spills.size();
848  mergeSpills();
849  LI->verify();
850}
851
852unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
853  // Create initial equivalence classes.
854  EqClass.clear();
855  EqClass.grow(LI->getNumValNums());
856
857  const VNInfo *used = 0, *unused = 0;
858
859  // Determine connections.
860  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
861       I != E; ++I) {
862    const VNInfo *VNI = *I;
863    // Group all unused values into one class.
864    if (VNI->isUnused()) {
865      if (unused)
866        EqClass.join(unused->id, VNI->id);
867      unused = VNI;
868      continue;
869    }
870    used = VNI;
871    if (VNI->isPHIDef()) {
872      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
873      assert(MBB && "Phi-def has no defining MBB");
874      // Connect to values live out of predecessors.
875      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
876           PE = MBB->pred_end(); PI != PE; ++PI)
877        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
878          EqClass.join(VNI->id, PVNI->id);
879    } else {
880      // Normal value defined by an instruction. Check for two-addr redef.
881      // FIXME: This could be coincidental. Should we really check for a tied
882      // operand constraint?
883      // Note that VNI->def may be a use slot for an early clobber def.
884      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
885        EqClass.join(VNI->id, UVNI->id);
886    }
887  }
888
889  // Lump all the unused values in with the last used value.
890  if (used && unused)
891    EqClass.join(used->id, unused->id);
892
893  EqClass.compress();
894  return EqClass.getNumClasses();
895}
896
897void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
898                                          MachineRegisterInfo &MRI) {
899  assert(LIV[0] && "LIV[0] must be set");
900  LiveInterval &LI = *LIV[0];
901
902  // Rewrite instructions.
903  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
904       RE = MRI.reg_end(); RI != RE;) {
905    MachineOperand &MO = RI.getOperand();
906    MachineInstr *MI = MO.getParent();
907    ++RI;
908    // DBG_VALUE instructions don't have slot indexes, so get the index of the
909    // instruction before them.
910    // Normally, DBG_VALUE instructions are removed before this function is
911    // called, but it is not a requirement.
912    SlotIndex Idx;
913    if (MI->isDebugValue())
914      Idx = LIS.getSlotIndexes()->getIndexBefore(MI);
915    else
916      Idx = LIS.getInstructionIndex(MI);
917    LiveRangeQuery LRQ(LI, Idx);
918    const VNInfo *VNI = MO.readsReg() ? LRQ.valueIn() : LRQ.valueDefined();
919    // In the case of an <undef> use that isn't tied to any def, VNI will be
920    // NULL. If the use is tied to a def, VNI will be the defined value.
921    if (!VNI)
922      continue;
923    MO.setReg(LIV[getEqClass(VNI)]->reg);
924  }
925
926  // Move runs to new intervals.
927  LiveInterval::iterator J = LI.begin(), E = LI.end();
928  while (J != E && EqClass[J->valno->id] == 0)
929    ++J;
930  for (LiveInterval::iterator I = J; I != E; ++I) {
931    if (unsigned eq = EqClass[I->valno->id]) {
932      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
933             "New intervals should be empty");
934      LIV[eq]->segments.push_back(*I);
935    } else
936      *J++ = *I;
937  }
938  LI.segments.erase(J, E);
939
940  // Transfer VNInfos to their new owners and renumber them.
941  unsigned j = 0, e = LI.getNumValNums();
942  while (j != e && EqClass[j] == 0)
943    ++j;
944  for (unsigned i = j; i != e; ++i) {
945    VNInfo *VNI = LI.getValNumInfo(i);
946    if (unsigned eq = EqClass[i]) {
947      VNI->id = LIV[eq]->getNumValNums();
948      LIV[eq]->valnos.push_back(VNI);
949    } else {
950      VNI->id = j;
951      LI.valnos[j++] = VNI;
952    }
953  }
954  LI.valnos.resize(j);
955}
956