LiveInterval.cpp revision bd6f44a3a2a1404721bcbb67edf92b8480a3e655
1//===-- LiveInterval.cpp - Live Interval Representation -------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveRange and LiveInterval classes.  Given some
11// numbering of each the machine instructions an interval [i, j) is said to be a
12// live interval for register v if there is no instruction with number j' > j
13// such that v is live at j' and there is no instruction with number i' < i such
14// that v is live at i'. In this implementation intervals can have holes,
15// i.e. an interval might look like [1,20), [50,65), [1000,1001).  Each
16// individual range is represented as an instance of LiveRange, and the whole
17// interval is represented as an instance of LiveInterval.
18//
19//===----------------------------------------------------------------------===//
20
21#include "llvm/CodeGen/LiveInterval.h"
22#include "llvm/CodeGen/LiveIntervalAnalysis.h"
23#include "llvm/CodeGen/MachineRegisterInfo.h"
24#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/Support/Debug.h"
28#include "llvm/Support/raw_ostream.h"
29#include "llvm/Target/TargetRegisterInfo.h"
30#include <algorithm>
31using namespace llvm;
32
33LiveInterval::iterator LiveInterval::find(SlotIndex Pos) {
34  // This algorithm is basically std::upper_bound.
35  // Unfortunately, std::upper_bound cannot be used with mixed types until we
36  // adopt C++0x. Many libraries can do it, but not all.
37  if (empty() || Pos >= endIndex())
38    return end();
39  iterator I = begin();
40  size_t Len = ranges.size();
41  do {
42    size_t Mid = Len >> 1;
43    if (Pos < I[Mid].end)
44      Len = Mid;
45    else
46      I += Mid + 1, Len -= Mid + 1;
47  } while (Len);
48  return I;
49}
50
51/// killedInRange - Return true if the interval has kills in [Start,End).
52bool LiveInterval::killedInRange(SlotIndex Start, SlotIndex End) const {
53  Ranges::const_iterator r =
54    std::lower_bound(ranges.begin(), ranges.end(), End);
55
56  // Now r points to the first interval with start >= End, or ranges.end().
57  if (r == ranges.begin())
58    return false;
59
60  --r;
61  // Now r points to the last interval with end <= End.
62  // r->end is the kill point.
63  return r->end >= Start && r->end < End;
64}
65
66// overlaps - Return true if the intersection of the two live intervals is
67// not empty.
68//
69// An example for overlaps():
70//
71// 0: A = ...
72// 4: B = ...
73// 8: C = A + B ;; last use of A
74//
75// The live intervals should look like:
76//
77// A = [3, 11)
78// B = [7, x)
79// C = [11, y)
80//
81// A->overlaps(C) should return false since we want to be able to join
82// A and C.
83//
84bool LiveInterval::overlapsFrom(const LiveInterval& other,
85                                const_iterator StartPos) const {
86  assert(!empty() && "empty interval");
87  const_iterator i = begin();
88  const_iterator ie = end();
89  const_iterator j = StartPos;
90  const_iterator je = other.end();
91
92  assert((StartPos->start <= i->start || StartPos == other.begin()) &&
93         StartPos != other.end() && "Bogus start position hint!");
94
95  if (i->start < j->start) {
96    i = std::upper_bound(i, ie, j->start);
97    if (i != ranges.begin()) --i;
98  } else if (j->start < i->start) {
99    ++StartPos;
100    if (StartPos != other.end() && StartPos->start <= i->start) {
101      assert(StartPos < other.end() && i < end());
102      j = std::upper_bound(j, je, i->start);
103      if (j != other.ranges.begin()) --j;
104    }
105  } else {
106    return true;
107  }
108
109  if (j == je) return false;
110
111  while (i != ie) {
112    if (i->start > j->start) {
113      std::swap(i, j);
114      std::swap(ie, je);
115    }
116
117    if (i->end > j->start)
118      return true;
119    ++i;
120  }
121
122  return false;
123}
124
125/// overlaps - Return true if the live interval overlaps a range specified
126/// by [Start, End).
127bool LiveInterval::overlaps(SlotIndex Start, SlotIndex End) const {
128  assert(Start < End && "Invalid range");
129  const_iterator I = std::lower_bound(begin(), end(), End);
130  return I != begin() && (--I)->end > Start;
131}
132
133
134/// ValNo is dead, remove it.  If it is the largest value number, just nuke it
135/// (and any other deleted values neighboring it), otherwise mark it as ~1U so
136/// it can be nuked later.
137void LiveInterval::markValNoForDeletion(VNInfo *ValNo) {
138  if (ValNo->id == getNumValNums()-1) {
139    do {
140      valnos.pop_back();
141    } while (!valnos.empty() && valnos.back()->isUnused());
142  } else {
143    ValNo->setIsUnused(true);
144  }
145}
146
147/// RenumberValues - Renumber all values in order of appearance and delete the
148/// remaining unused values.
149void LiveInterval::RenumberValues(LiveIntervals &lis) {
150  SmallPtrSet<VNInfo*, 8> Seen;
151  valnos.clear();
152  for (const_iterator I = begin(), E = end(); I != E; ++I) {
153    VNInfo *VNI = I->valno;
154    if (!Seen.insert(VNI))
155      continue;
156    assert(!VNI->isUnused() && "Unused valno used by live range");
157    VNI->id = (unsigned)valnos.size();
158    valnos.push_back(VNI);
159  }
160}
161
162/// extendIntervalEndTo - This method is used when we want to extend the range
163/// specified by I to end at the specified endpoint.  To do this, we should
164/// merge and eliminate all ranges that this will overlap with.  The iterator is
165/// not invalidated.
166void LiveInterval::extendIntervalEndTo(Ranges::iterator I, SlotIndex NewEnd) {
167  assert(I != ranges.end() && "Not a valid interval!");
168  VNInfo *ValNo = I->valno;
169
170  // Search for the first interval that we can't merge with.
171  Ranges::iterator MergeTo = llvm::next(I);
172  for (; MergeTo != ranges.end() && NewEnd >= MergeTo->end; ++MergeTo) {
173    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
174  }
175
176  // If NewEnd was in the middle of an interval, make sure to get its endpoint.
177  I->end = std::max(NewEnd, prior(MergeTo)->end);
178
179  // Erase any dead ranges.
180  ranges.erase(llvm::next(I), MergeTo);
181
182  // If the newly formed range now touches the range after it and if they have
183  // the same value number, merge the two ranges into one range.
184  Ranges::iterator Next = llvm::next(I);
185  if (Next != ranges.end() && Next->start <= I->end && Next->valno == ValNo) {
186    I->end = Next->end;
187    ranges.erase(Next);
188  }
189}
190
191
192/// extendIntervalStartTo - This method is used when we want to extend the range
193/// specified by I to start at the specified endpoint.  To do this, we should
194/// merge and eliminate all ranges that this will overlap with.
195LiveInterval::Ranges::iterator
196LiveInterval::extendIntervalStartTo(Ranges::iterator I, SlotIndex NewStart) {
197  assert(I != ranges.end() && "Not a valid interval!");
198  VNInfo *ValNo = I->valno;
199
200  // Search for the first interval that we can't merge with.
201  Ranges::iterator MergeTo = I;
202  do {
203    if (MergeTo == ranges.begin()) {
204      I->start = NewStart;
205      ranges.erase(MergeTo, I);
206      return I;
207    }
208    assert(MergeTo->valno == ValNo && "Cannot merge with differing values!");
209    --MergeTo;
210  } while (NewStart <= MergeTo->start);
211
212  // If we start in the middle of another interval, just delete a range and
213  // extend that interval.
214  if (MergeTo->end >= NewStart && MergeTo->valno == ValNo) {
215    MergeTo->end = I->end;
216  } else {
217    // Otherwise, extend the interval right after.
218    ++MergeTo;
219    MergeTo->start = NewStart;
220    MergeTo->end = I->end;
221  }
222
223  ranges.erase(llvm::next(MergeTo), llvm::next(I));
224  return MergeTo;
225}
226
227LiveInterval::iterator
228LiveInterval::addRangeFrom(LiveRange LR, iterator From) {
229  SlotIndex Start = LR.start, End = LR.end;
230  iterator it = std::upper_bound(From, ranges.end(), Start);
231
232  // If the inserted interval starts in the middle or right at the end of
233  // another interval, just extend that interval to contain the range of LR.
234  if (it != ranges.begin()) {
235    iterator B = prior(it);
236    if (LR.valno == B->valno) {
237      if (B->start <= Start && B->end >= Start) {
238        extendIntervalEndTo(B, End);
239        return B;
240      }
241    } else {
242      // Check to make sure that we are not overlapping two live ranges with
243      // different valno's.
244      assert(B->end <= Start &&
245             "Cannot overlap two LiveRanges with differing ValID's"
246             " (did you def the same reg twice in a MachineInstr?)");
247    }
248  }
249
250  // Otherwise, if this range ends in the middle of, or right next to, another
251  // interval, merge it into that interval.
252  if (it != ranges.end()) {
253    if (LR.valno == it->valno) {
254      if (it->start <= End) {
255        it = extendIntervalStartTo(it, Start);
256
257        // If LR is a complete superset of an interval, we may need to grow its
258        // endpoint as well.
259        if (End > it->end)
260          extendIntervalEndTo(it, End);
261        return it;
262      }
263    } else {
264      // Check to make sure that we are not overlapping two live ranges with
265      // different valno's.
266      assert(it->start >= End &&
267             "Cannot overlap two LiveRanges with differing ValID's");
268    }
269  }
270
271  // Otherwise, this is just a new range that doesn't interact with anything.
272  // Insert it.
273  return ranges.insert(it, LR);
274}
275
276/// extendInBlock - If this interval is live before Kill in the basic
277/// block that starts at StartIdx, extend it to be live up to Kill and return
278/// the value. If there is no live range before Kill, return NULL.
279VNInfo *LiveInterval::extendInBlock(SlotIndex StartIdx, SlotIndex Kill) {
280  if (empty())
281    return 0;
282  iterator I = std::upper_bound(begin(), end(), Kill.getPrevSlot());
283  if (I == begin())
284    return 0;
285  --I;
286  if (I->end <= StartIdx)
287    return 0;
288  if (I->end < Kill)
289    extendIntervalEndTo(I, Kill);
290  return I->valno;
291}
292
293/// removeRange - Remove the specified range from this interval.  Note that
294/// the range must be in a single LiveRange in its entirety.
295void LiveInterval::removeRange(SlotIndex Start, SlotIndex End,
296                               bool RemoveDeadValNo) {
297  // Find the LiveRange containing this span.
298  Ranges::iterator I = find(Start);
299  assert(I != ranges.end() && "Range is not in interval!");
300  assert(I->containsRange(Start, End) && "Range is not entirely in interval!");
301
302  // If the span we are removing is at the start of the LiveRange, adjust it.
303  VNInfo *ValNo = I->valno;
304  if (I->start == Start) {
305    if (I->end == End) {
306      if (RemoveDeadValNo) {
307        // Check if val# is dead.
308        bool isDead = true;
309        for (const_iterator II = begin(), EE = end(); II != EE; ++II)
310          if (II != I && II->valno == ValNo) {
311            isDead = false;
312            break;
313          }
314        if (isDead) {
315          // Now that ValNo is dead, remove it.
316          markValNoForDeletion(ValNo);
317        }
318      }
319
320      ranges.erase(I);  // Removed the whole LiveRange.
321    } else
322      I->start = End;
323    return;
324  }
325
326  // Otherwise if the span we are removing is at the end of the LiveRange,
327  // adjust the other way.
328  if (I->end == End) {
329    I->end = Start;
330    return;
331  }
332
333  // Otherwise, we are splitting the LiveRange into two pieces.
334  SlotIndex OldEnd = I->end;
335  I->end = Start;   // Trim the old interval.
336
337  // Insert the new one.
338  ranges.insert(llvm::next(I), LiveRange(End, OldEnd, ValNo));
339}
340
341/// removeValNo - Remove all the ranges defined by the specified value#.
342/// Also remove the value# from value# list.
343void LiveInterval::removeValNo(VNInfo *ValNo) {
344  if (empty()) return;
345  Ranges::iterator I = ranges.end();
346  Ranges::iterator E = ranges.begin();
347  do {
348    --I;
349    if (I->valno == ValNo)
350      ranges.erase(I);
351  } while (I != E);
352  // Now that ValNo is dead, remove it.
353  markValNoForDeletion(ValNo);
354}
355
356/// join - Join two live intervals (this, and other) together.  This applies
357/// mappings to the value numbers in the LHS/RHS intervals as specified.  If
358/// the intervals are not joinable, this aborts.
359void LiveInterval::join(LiveInterval &Other,
360                        const int *LHSValNoAssignments,
361                        const int *RHSValNoAssignments,
362                        SmallVector<VNInfo*, 16> &NewVNInfo,
363                        MachineRegisterInfo *MRI) {
364  // Determine if any of our live range values are mapped.  This is uncommon, so
365  // we want to avoid the interval scan if not.
366  bool MustMapCurValNos = false;
367  unsigned NumVals = getNumValNums();
368  unsigned NumNewVals = NewVNInfo.size();
369  for (unsigned i = 0; i != NumVals; ++i) {
370    unsigned LHSValID = LHSValNoAssignments[i];
371    if (i != LHSValID ||
372        (NewVNInfo[LHSValID] && NewVNInfo[LHSValID] != getValNumInfo(i))) {
373      MustMapCurValNos = true;
374      break;
375    }
376  }
377
378  // If we have to apply a mapping to our base interval assignment, rewrite it
379  // now.
380  if (MustMapCurValNos) {
381    // Map the first live range.
382
383    iterator OutIt = begin();
384    OutIt->valno = NewVNInfo[LHSValNoAssignments[OutIt->valno->id]];
385    for (iterator I = next(OutIt), E = end(); I != E; ++I) {
386      VNInfo* nextValNo = NewVNInfo[LHSValNoAssignments[I->valno->id]];
387      assert(nextValNo != 0 && "Huh?");
388
389      // If this live range has the same value # as its immediate predecessor,
390      // and if they are neighbors, remove one LiveRange.  This happens when we
391      // have [0,4:0)[4,7:1) and map 0/1 onto the same value #.
392      if (OutIt->valno == nextValNo && OutIt->end == I->start) {
393        OutIt->end = I->end;
394      } else {
395        // Didn't merge. Move OutIt to the next interval,
396        ++OutIt;
397        OutIt->valno = nextValNo;
398        if (OutIt != I) {
399          OutIt->start = I->start;
400          OutIt->end = I->end;
401        }
402      }
403    }
404    // If we merge some live ranges, chop off the end.
405    ++OutIt;
406    ranges.erase(OutIt, end());
407  }
408
409  // Remember assignements because val# ids are changing.
410  SmallVector<unsigned, 16> OtherAssignments;
411  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I)
412    OtherAssignments.push_back(RHSValNoAssignments[I->valno->id]);
413
414  // Update val# info. Renumber them and make sure they all belong to this
415  // LiveInterval now. Also remove dead val#'s.
416  unsigned NumValNos = 0;
417  for (unsigned i = 0; i < NumNewVals; ++i) {
418    VNInfo *VNI = NewVNInfo[i];
419    if (VNI) {
420      if (NumValNos >= NumVals)
421        valnos.push_back(VNI);
422      else
423        valnos[NumValNos] = VNI;
424      VNI->id = NumValNos++;  // Renumber val#.
425    }
426  }
427  if (NumNewVals < NumVals)
428    valnos.resize(NumNewVals);  // shrinkify
429
430  // Okay, now insert the RHS live ranges into the LHS.
431  iterator InsertPos = begin();
432  unsigned RangeNo = 0;
433  for (iterator I = Other.begin(), E = Other.end(); I != E; ++I, ++RangeNo) {
434    // Map the valno in the other live range to the current live range.
435    I->valno = NewVNInfo[OtherAssignments[RangeNo]];
436    assert(I->valno && "Adding a dead range?");
437    InsertPos = addRangeFrom(*I, InsertPos);
438  }
439}
440
441/// MergeRangesInAsValue - Merge all of the intervals in RHS into this live
442/// interval as the specified value number.  The LiveRanges in RHS are
443/// allowed to overlap with LiveRanges in the current interval, but only if
444/// the overlapping LiveRanges have the specified value number.
445void LiveInterval::MergeRangesInAsValue(const LiveInterval &RHS,
446                                        VNInfo *LHSValNo) {
447  // TODO: Make this more efficient.
448  iterator InsertPos = begin();
449  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
450    // Map the valno in the other live range to the current live range.
451    LiveRange Tmp = *I;
452    Tmp.valno = LHSValNo;
453    InsertPos = addRangeFrom(Tmp, InsertPos);
454  }
455}
456
457
458/// MergeValueInAsValue - Merge all of the live ranges of a specific val#
459/// in RHS into this live interval as the specified value number.
460/// The LiveRanges in RHS are allowed to overlap with LiveRanges in the
461/// current interval, it will replace the value numbers of the overlaped
462/// live ranges with the specified value number.
463void LiveInterval::MergeValueInAsValue(
464                                    const LiveInterval &RHS,
465                                    const VNInfo *RHSValNo, VNInfo *LHSValNo) {
466  // TODO: Make this more efficient.
467  iterator InsertPos = begin();
468  for (const_iterator I = RHS.begin(), E = RHS.end(); I != E; ++I) {
469    if (I->valno != RHSValNo)
470      continue;
471    // Map the valno in the other live range to the current live range.
472    LiveRange Tmp = *I;
473    Tmp.valno = LHSValNo;
474    InsertPos = addRangeFrom(Tmp, InsertPos);
475  }
476}
477
478
479/// MergeValueNumberInto - This method is called when two value nubmers
480/// are found to be equivalent.  This eliminates V1, replacing all
481/// LiveRanges with the V1 value number with the V2 value number.  This can
482/// cause merging of V1/V2 values numbers and compaction of the value space.
483VNInfo* LiveInterval::MergeValueNumberInto(VNInfo *V1, VNInfo *V2) {
484  assert(V1 != V2 && "Identical value#'s are always equivalent!");
485
486  // This code actually merges the (numerically) larger value number into the
487  // smaller value number, which is likely to allow us to compactify the value
488  // space.  The only thing we have to be careful of is to preserve the
489  // instruction that defines the result value.
490
491  // Make sure V2 is smaller than V1.
492  if (V1->id < V2->id) {
493    V1->copyFrom(*V2);
494    std::swap(V1, V2);
495  }
496
497  // Merge V1 live ranges into V2.
498  for (iterator I = begin(); I != end(); ) {
499    iterator LR = I++;
500    if (LR->valno != V1) continue;  // Not a V1 LiveRange.
501
502    // Okay, we found a V1 live range.  If it had a previous, touching, V2 live
503    // range, extend it.
504    if (LR != begin()) {
505      iterator Prev = LR-1;
506      if (Prev->valno == V2 && Prev->end == LR->start) {
507        Prev->end = LR->end;
508
509        // Erase this live-range.
510        ranges.erase(LR);
511        I = Prev+1;
512        LR = Prev;
513      }
514    }
515
516    // Okay, now we have a V1 or V2 live range that is maximally merged forward.
517    // Ensure that it is a V2 live-range.
518    LR->valno = V2;
519
520    // If we can merge it into later V2 live ranges, do so now.  We ignore any
521    // following V1 live ranges, as they will be merged in subsequent iterations
522    // of the loop.
523    if (I != end()) {
524      if (I->start == LR->end && I->valno == V2) {
525        LR->end = I->end;
526        ranges.erase(I);
527        I = LR+1;
528      }
529    }
530  }
531
532  // Merge the relevant flags.
533  V2->mergeFlags(V1);
534
535  // Now that V1 is dead, remove it.
536  markValNoForDeletion(V1);
537
538  return V2;
539}
540
541void LiveInterval::Copy(const LiveInterval &RHS,
542                        MachineRegisterInfo *MRI,
543                        VNInfo::Allocator &VNInfoAllocator) {
544  ranges.clear();
545  valnos.clear();
546  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(RHS.reg);
547  MRI->setRegAllocationHint(reg, Hint.first, Hint.second);
548
549  weight = RHS.weight;
550  for (unsigned i = 0, e = RHS.getNumValNums(); i != e; ++i) {
551    const VNInfo *VNI = RHS.getValNumInfo(i);
552    createValueCopy(VNI, VNInfoAllocator);
553  }
554  for (unsigned i = 0, e = RHS.ranges.size(); i != e; ++i) {
555    const LiveRange &LR = RHS.ranges[i];
556    addRange(LiveRange(LR.start, LR.end, getValNumInfo(LR.valno->id)));
557  }
558}
559
560unsigned LiveInterval::getSize() const {
561  unsigned Sum = 0;
562  for (const_iterator I = begin(), E = end(); I != E; ++I)
563    Sum += I->start.distance(I->end);
564  return Sum;
565}
566
567raw_ostream& llvm::operator<<(raw_ostream& os, const LiveRange &LR) {
568  return os << '[' << LR.start << ',' << LR.end << ':' << LR.valno->id << ")";
569}
570
571void LiveRange::dump() const {
572  dbgs() << *this << "\n";
573}
574
575void LiveInterval::print(raw_ostream &OS, const TargetRegisterInfo *TRI) const {
576  OS << PrintReg(reg, TRI);
577  if (weight != 0)
578    OS << ',' << weight;
579
580  if (empty())
581    OS << " EMPTY";
582  else {
583    OS << " = ";
584    for (LiveInterval::Ranges::const_iterator I = ranges.begin(),
585           E = ranges.end(); I != E; ++I) {
586      OS << *I;
587      assert(I->valno == getValNumInfo(I->valno->id) && "Bad VNInfo");
588    }
589  }
590
591  // Print value number info.
592  if (getNumValNums()) {
593    OS << "  ";
594    unsigned vnum = 0;
595    for (const_vni_iterator i = vni_begin(), e = vni_end(); i != e;
596         ++i, ++vnum) {
597      const VNInfo *vni = *i;
598      if (vnum) OS << " ";
599      OS << vnum << "@";
600      if (vni->isUnused()) {
601        OS << "x";
602      } else {
603        OS << vni->def;
604        if (vni->isPHIDef())
605          OS << "-phidef";
606        if (vni->hasPHIKill())
607          OS << "-phikill";
608      }
609    }
610  }
611}
612
613void LiveInterval::dump() const {
614  dbgs() << *this << "\n";
615}
616
617
618void LiveRange::print(raw_ostream &os) const {
619  os << *this;
620}
621
622unsigned ConnectedVNInfoEqClasses::Classify(const LiveInterval *LI) {
623  // Create initial equivalence classes.
624  EqClass.clear();
625  EqClass.grow(LI->getNumValNums());
626
627  const VNInfo *used = 0, *unused = 0;
628
629  // Determine connections.
630  for (LiveInterval::const_vni_iterator I = LI->vni_begin(), E = LI->vni_end();
631       I != E; ++I) {
632    const VNInfo *VNI = *I;
633    // Group all unused values into one class.
634    if (VNI->isUnused()) {
635      if (unused)
636        EqClass.join(unused->id, VNI->id);
637      unused = VNI;
638      continue;
639    }
640    used = VNI;
641    if (VNI->isPHIDef()) {
642      const MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
643      assert(MBB && "Phi-def has no defining MBB");
644      // Connect to values live out of predecessors.
645      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
646           PE = MBB->pred_end(); PI != PE; ++PI)
647        if (const VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(*PI)))
648          EqClass.join(VNI->id, PVNI->id);
649    } else {
650      // Normal value defined by an instruction. Check for two-addr redef.
651      // FIXME: This could be coincidental. Should we really check for a tied
652      // operand constraint?
653      // Note that VNI->def may be a use slot for an early clobber def.
654      if (const VNInfo *UVNI = LI->getVNInfoBefore(VNI->def))
655        EqClass.join(VNI->id, UVNI->id);
656    }
657  }
658
659  // Lump all the unused values in with the last used value.
660  if (used && unused)
661    EqClass.join(used->id, unused->id);
662
663  EqClass.compress();
664  return EqClass.getNumClasses();
665}
666
667void ConnectedVNInfoEqClasses::Distribute(LiveInterval *LIV[],
668                                          MachineRegisterInfo &MRI) {
669  assert(LIV[0] && "LIV[0] must be set");
670  LiveInterval &LI = *LIV[0];
671
672  // Rewrite instructions.
673  for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LI.reg),
674       RE = MRI.reg_end(); RI != RE;) {
675    MachineOperand &MO = RI.getOperand();
676    MachineInstr *MI = MO.getParent();
677    ++RI;
678    if (MO.isUse() && MO.isUndef())
679      continue;
680    // DBG_VALUE instructions should have been eliminated earlier.
681    SlotIndex Idx = LIS.getInstructionIndex(MI);
682    Idx = Idx.getRegSlot(MO.isUse());
683    const VNInfo *VNI = LI.getVNInfoAt(Idx);
684    // FIXME: We should be able to assert(VNI) here, but the coalescer leaves
685    // dangling defs around.
686    if (!VNI)
687      continue;
688    MO.setReg(LIV[getEqClass(VNI)]->reg);
689  }
690
691  // Move runs to new intervals.
692  LiveInterval::iterator J = LI.begin(), E = LI.end();
693  while (J != E && EqClass[J->valno->id] == 0)
694    ++J;
695  for (LiveInterval::iterator I = J; I != E; ++I) {
696    if (unsigned eq = EqClass[I->valno->id]) {
697      assert((LIV[eq]->empty() || LIV[eq]->expiredAt(I->start)) &&
698             "New intervals should be empty");
699      LIV[eq]->ranges.push_back(*I);
700    } else
701      *J++ = *I;
702  }
703  LI.ranges.erase(J, E);
704
705  // Transfer VNInfos to their new owners and renumber them.
706  unsigned j = 0, e = LI.getNumValNums();
707  while (j != e && EqClass[j] == 0)
708    ++j;
709  for (unsigned i = j; i != e; ++i) {
710    VNInfo *VNI = LI.getValNumInfo(i);
711    if (unsigned eq = EqClass[i]) {
712      VNI->id = LIV[eq]->getNumValNums();
713      LIV[eq]->valnos.push_back(VNI);
714    } else {
715      VNI->id = j;
716      LI.valnos[j++] = VNI;
717    }
718  }
719  LI.valnos.resize(j);
720}
721