LiveIntervalAnalysis.cpp revision 060913cce42d8b746194c7ebd8b19c9789a03909
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "Support/CommandLine.h"
31#include "Support/Debug.h"
32#include "Support/Statistic.h"
33#include "Support/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36
37using namespace llvm;
38
39namespace {
40    RegisterAnalysis<LiveIntervals> X("liveintervals",
41                                      "Live Interval Analysis");
42
43    Statistic<> numIntervals
44    ("liveintervals", "Number of original intervals");
45
46    Statistic<> numIntervalsAfter
47    ("liveintervals", "Number of intervals after coalescing");
48
49    Statistic<> numJoins
50    ("liveintervals", "Number of interval joins performed");
51
52    Statistic<> numPeep
53    ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55    Statistic<> numFolded
56    ("liveintervals", "Number of loads/stores folded into instructions");
57
58    cl::opt<bool>
59    EnableJoining("join-liveintervals",
60                  cl::desc("Join compatible live intervals"),
61                  cl::init(true));
62};
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
65{
66    AU.addPreserved<LiveVariables>();
67    AU.addRequired<LiveVariables>();
68    AU.addPreservedID(PHIEliminationID);
69    AU.addRequiredID(PHIEliminationID);
70    AU.addRequiredID(TwoAddressInstructionPassID);
71    AU.addRequired<LoopInfo>();
72    MachineFunctionPass::getAnalysisUsage(AU);
73}
74
75void LiveIntervals::releaseMemory()
76{
77    mi2iMap_.clear();
78    i2miMap_.clear();
79    for (std::map<unsigned, LiveInterval*>::iterator I = r2iMap_.begin(),
80           E = r2iMap_.end(); I != E; ++I)
81      delete I->second;  // free all intervals.
82    r2iMap_.clear();
83
84    r2rMap_.clear();
85}
86
87
88/// runOnMachineFunction - Register allocate the whole function
89///
90bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
91    mf_ = &fn;
92    tm_ = &fn.getTarget();
93    mri_ = tm_->getRegisterInfo();
94    lv_ = &getAnalysis<LiveVariables>();
95
96    // number MachineInstrs
97    unsigned miIndex = 0;
98    for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
99         mbb != mbbEnd; ++mbb)
100        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
101             mi != miEnd; ++mi) {
102            bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
103            assert(inserted && "multiple MachineInstr -> index mappings");
104            i2miMap_.push_back(mi);
105            miIndex += InstrSlots::NUM;
106        }
107
108    computeIntervals();
109
110    numIntervals += getNumIntervals();
111
112#if 1
113    DEBUG(std::cerr << "********** INTERVALS **********\n");
114    DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
115            std::cerr << *I->second << "\n");
116#endif
117
118    // join intervals if requested
119    if (EnableJoining) joinIntervals();
120
121    numIntervalsAfter += getNumIntervals();
122
123    // perform a final pass over the instructions and compute spill
124    // weights, coalesce virtual registers and remove identity moves
125    const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
126    const TargetInstrInfo& tii = *tm_->getInstrInfo();
127
128    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
129         mbbi != mbbe; ++mbbi) {
130        MachineBasicBlock* mbb = mbbi;
131        unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
132
133        for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
134             mii != mie; ) {
135            // if the move will be an identity move delete it
136            unsigned srcReg, dstReg, RegRep;
137            if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
138                (RegRep = rep(srcReg)) == rep(dstReg)) {
139                // remove from def list
140                LiveInterval &interval = getOrCreateInterval(RegRep);
141                // remove index -> MachineInstr and
142                // MachineInstr -> index mappings
143                Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
144                if (mi2i != mi2iMap_.end()) {
145                    i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
146                    mi2iMap_.erase(mi2i);
147                }
148                mii = mbbi->erase(mii);
149                ++numPeep;
150            }
151            else {
152                for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
153                    const MachineOperand& mop = mii->getOperand(i);
154                    if (mop.isRegister() && mop.getReg() &&
155                        MRegisterInfo::isVirtualRegister(mop.getReg())) {
156                        // replace register with representative register
157                        unsigned reg = rep(mop.getReg());
158                        mii->SetMachineOperandReg(i, reg);
159
160                        LiveInterval &RegInt = getInterval(reg);
161                        RegInt.weight +=
162                            (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
163                    }
164                }
165                ++mii;
166            }
167        }
168    }
169
170    DEBUG(std::cerr << "********** INTERVALS **********\n");
171    DEBUG (for (iterator I = begin(), E = end(); I != E; ++I)
172             std::cerr << *I->second << "\n");
173    DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
174    DEBUG(
175        for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
176             mbbi != mbbe; ++mbbi) {
177            std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
178            for (MachineBasicBlock::iterator mii = mbbi->begin(),
179                     mie = mbbi->end(); mii != mie; ++mii) {
180                std::cerr << getInstructionIndex(mii) << '\t';
181                mii->print(std::cerr, tm_);
182            }
183        });
184
185    return true;
186}
187
188std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
189    const LiveInterval& li,
190    VirtRegMap& vrm,
191    int slot)
192{
193    std::vector<LiveInterval*> added;
194
195    assert(li.weight != HUGE_VAL &&
196           "attempt to spill already spilled interval!");
197
198    DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
199          << li << '\n');
200
201    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
202
203    for (LiveInterval::Ranges::const_iterator
204              i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
205        unsigned index = getBaseIndex(i->start);
206        unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
207        for (; index != end; index += InstrSlots::NUM) {
208            // skip deleted instructions
209            while (index != end && !getInstructionFromIndex(index))
210                index += InstrSlots::NUM;
211            if (index == end) break;
212
213            MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
214
215        for_operand:
216            for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
217                MachineOperand& mop = mi->getOperand(i);
218                if (mop.isRegister() && mop.getReg() == li.reg) {
219                    if (MachineInstr* fmi =
220                        mri_->foldMemoryOperand(mi, i, slot)) {
221                        lv_->instructionChanged(mi, fmi);
222                        vrm.virtFolded(li.reg, mi, fmi);
223                        mi2iMap_.erase(mi);
224                        i2miMap_[index/InstrSlots::NUM] = fmi;
225                        mi2iMap_[fmi] = index;
226                        MachineBasicBlock& mbb = *mi->getParent();
227                        mi = mbb.insert(mbb.erase(mi), fmi);
228                        ++numFolded;
229                        goto for_operand;
230                    }
231                    else {
232                        // This is tricky. We need to add information in
233                        // the interval about the spill code so we have to
234                        // use our extra load/store slots.
235                        //
236                        // If we have a use we are going to have a load so
237                        // we start the interval from the load slot
238                        // onwards. Otherwise we start from the def slot.
239                        unsigned start = (mop.isUse() ?
240                                          getLoadIndex(index) :
241                                          getDefIndex(index));
242                        // If we have a def we are going to have a store
243                        // right after it so we end the interval after the
244                        // use of the next instruction. Otherwise we end
245                        // after the use of this instruction.
246                        unsigned end = 1 + (mop.isDef() ?
247                                            getStoreIndex(index) :
248                                            getUseIndex(index));
249
250                        // create a new register for this spill
251                        unsigned nReg =
252                            mf_->getSSARegMap()->createVirtualRegister(rc);
253                        mi->SetMachineOperandReg(i, nReg);
254                        vrm.grow();
255                        vrm.assignVirt2StackSlot(nReg, slot);
256                        LiveInterval& nI = getOrCreateInterval(nReg);
257                        assert(nI.empty());
258                        // the spill weight is now infinity as it
259                        // cannot be spilled again
260                        nI.weight = HUGE_VAL;
261                        LiveRange LR(start, end, nI.getNextValue());
262                        DEBUG(std::cerr << " +" << LR);
263                        nI.addRange(LR);
264                        added.push_back(&nI);
265                        // update live variables
266                        lv_->addVirtualRegisterKilled(nReg, mi);
267                        DEBUG(std::cerr << "\t\t\t\tadded new interval: "
268                              << nI << '\n');
269                    }
270                }
271            }
272        }
273    }
274
275    return added;
276}
277
278void LiveIntervals::printRegName(unsigned reg) const
279{
280    if (MRegisterInfo::isPhysicalRegister(reg))
281        std::cerr << mri_->getName(reg);
282    else
283        std::cerr << "%reg" << reg;
284}
285
286void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
287                                             MachineBasicBlock::iterator mi,
288                                             LiveInterval& interval)
289{
290    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
291    LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
292
293    // Virtual registers may be defined multiple times (due to phi
294    // elimination and 2-addr elimination).  Much of what we do only has to be
295    // done once for the vreg.  We use an empty interval to detect the first
296    // time we see a vreg.
297    if (interval.empty()) {
298       // Get the Idx of the defining instructions.
299       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
300
301       unsigned ValNum = interval.getNextValue();
302       assert(ValNum == 0 && "First value in interval is not 0?");
303       ValNum = 0;  // Clue in the optimizer.
304
305       // Loop over all of the blocks that the vreg is defined in.  There are
306       // two cases we have to handle here.  The most common case is a vreg
307       // whose lifetime is contained within a basic block.  In this case there
308       // will be a single kill, in MBB, which comes after the definition.
309       if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
310           // FIXME: what about dead vars?
311           unsigned killIdx;
312           if (vi.Kills[0] != mi)
313               killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
314           else
315               killIdx = defIndex+1;
316
317           // If the kill happens after the definition, we have an intra-block
318           // live range.
319           if (killIdx > defIndex) {
320              assert(vi.AliveBlocks.empty() &&
321                     "Shouldn't be alive across any blocks!");
322              LiveRange LR(defIndex, killIdx, ValNum);
323              interval.addRange(LR);
324              DEBUG(std::cerr << " +" << LR << "\n");
325              return;
326           }
327       }
328
329       // The other case we handle is when a virtual register lives to the end
330       // of the defining block, potentially live across some blocks, then is
331       // live into some number of blocks, but gets killed.  Start by adding a
332       // range that goes from this definition to the end of the defining block.
333       LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) +
334                                                   InstrSlots::NUM, ValNum);
335       DEBUG(std::cerr << " +" << NewLR);
336       interval.addRange(NewLR);
337
338       // Iterate over all of the blocks that the variable is completely
339       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
340       // live interval.
341       for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
342           if (vi.AliveBlocks[i]) {
343               MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
344               if (!mbb->empty()) {
345                 LiveRange LR(getInstructionIndex(&mbb->front()),
346                              getInstructionIndex(&mbb->back())+InstrSlots::NUM,
347                              ValNum);
348                 interval.addRange(LR);
349                 DEBUG(std::cerr << " +" << LR);
350               }
351           }
352       }
353
354       // Finally, this virtual register is live from the start of any killing
355       // block to the 'use' slot of the killing instruction.
356       for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
357           MachineInstr *Kill = vi.Kills[i];
358           LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
359                        getUseIndex(getInstructionIndex(Kill))+1, ValNum);
360           interval.addRange(LR);
361           DEBUG(std::cerr << " +" << LR);
362       }
363
364    } else {
365       // If this is the second time we see a virtual register definition, it
366       // must be due to phi elimination or two addr elimination.  If this is
367       // the result of two address elimination, then the vreg is the first
368       // operand, and is a def-and-use.
369       if (mi->getOperand(0).isRegister() &&
370           mi->getOperand(0).getReg() == interval.reg &&
371           mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
372         // If this is a two-address definition, then we have already processed
373         // the live range.  The only problem is that we didn't realize there
374         // are actually two values in the live interval.  Because of this we
375         // need to take the LiveRegion that defines this register and split it
376         // into two values.
377         unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
378         unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
379
380         // Delete the initial value, which should be short and continuous,
381         // becuase the 2-addr copy must be in the same MBB as the redef.
382         interval.removeRange(DefIndex, RedefIndex);
383
384         LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
385         DEBUG(std::cerr << " replace range with " << LR);
386         interval.addRange(LR);
387
388         // If this redefinition is dead, we need to add a dummy unit live
389         // range covering the def slot.
390         for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
391                E = lv_->dead_end(mi); KI != E; ++KI)
392           if (KI->second == interval.reg) {
393             interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
394             break;
395           }
396
397         DEBUG(std::cerr << "RESULT: " << interval);
398
399       } else {
400         // Otherwise, this must be because of phi elimination.  In this case,
401         // the defined value will be live until the end of the basic block it
402         // is defined in.
403         unsigned defIndex = getDefIndex(getInstructionIndex(mi));
404         LiveRange LR(defIndex,
405                      getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
406                      interval.getNextValue());
407         interval.addRange(LR);
408         DEBUG(std::cerr << " +" << LR);
409       }
410    }
411
412    DEBUG(std::cerr << '\n');
413}
414
415void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
416                                              MachineBasicBlock::iterator mi,
417                                              LiveInterval& interval)
418{
419    // A physical register cannot be live across basic block, so its
420    // lifetime must end somewhere in its defining basic block.
421    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
422    typedef LiveVariables::killed_iterator KillIter;
423
424    unsigned baseIndex = getInstructionIndex(mi);
425    unsigned start = getDefIndex(baseIndex);
426    unsigned end = start;
427
428    // If it is not used after definition, it is considered dead at
429    // the instruction defining it. Hence its interval is:
430    // [defSlot(def), defSlot(def)+1)
431    for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
432         ki != ke; ++ki) {
433        if (interval.reg == ki->second) {
434            DEBUG(std::cerr << " dead");
435            end = getDefIndex(start) + 1;
436            goto exit;
437        }
438    }
439
440    // If it is not dead on definition, it must be killed by a
441    // subsequent instruction. Hence its interval is:
442    // [defSlot(def), useSlot(kill)+1)
443    while (true) {
444        ++mi;
445        assert(mi != MBB->end() && "physreg was not killed in defining block!");
446        baseIndex += InstrSlots::NUM;
447        for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
448             ki != ke; ++ki) {
449            if (interval.reg == ki->second) {
450                DEBUG(std::cerr << " killed");
451                end = getUseIndex(baseIndex) + 1;
452                goto exit;
453            }
454        }
455    }
456
457exit:
458    assert(start < end && "did not find end of interval?");
459    LiveRange LR(start, end, interval.getNextValue());
460    interval.addRange(LR);
461    DEBUG(std::cerr << " +" << LR << '\n');
462}
463
464void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
465                                      MachineBasicBlock::iterator MI,
466                                      unsigned reg) {
467  if (MRegisterInfo::isVirtualRegister(reg))
468    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
469  else if (lv_->getAllocatablePhysicalRegisters()[reg]) {
470    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
471    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
472      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
473  }
474}
475
476/// computeIntervals - computes the live intervals for virtual
477/// registers. for some ordering of the machine instructions [1,N] a
478/// live interval is an interval [i, j) where 1 <= i <= j < N for
479/// which a variable is live
480void LiveIntervals::computeIntervals()
481{
482    DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
483    DEBUG(std::cerr << "********** Function: "
484          << ((Value*)mf_->getFunction())->getName() << '\n');
485
486    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
487         I != E; ++I) {
488        MachineBasicBlock* mbb = I;
489        DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
490
491        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
492             mi != miEnd; ++mi) {
493            const TargetInstrDescriptor& tid =
494                tm_->getInstrInfo()->get(mi->getOpcode());
495            DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
496                  mi->print(std::cerr, tm_));
497
498            // handle implicit defs
499            for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
500                handleRegisterDef(mbb, mi, *id);
501
502            // handle explicit defs
503            for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
504                MachineOperand& mop = mi->getOperand(i);
505                // handle register defs - build intervals
506                if (mop.isRegister() && mop.getReg() && mop.isDef())
507                    handleRegisterDef(mbb, mi, mop.getReg());
508            }
509        }
510    }
511}
512
513void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
514  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
515  const TargetInstrInfo &TII = *tm_->getInstrInfo();
516
517  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
518       mi != mie; ++mi) {
519    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
520
521    // we only join virtual registers with allocatable
522    // physical registers since we do not have liveness information
523    // on not allocatable physical registers
524    unsigned regA, regB;
525    if (TII.isMoveInstr(*mi, regA, regB) &&
526        (MRegisterInfo::isVirtualRegister(regA) ||
527                 lv_->getAllocatablePhysicalRegisters()[regA]) &&
528        (MRegisterInfo::isVirtualRegister(regB) ||
529                 lv_->getAllocatablePhysicalRegisters()[regB])) {
530
531      // Get representative registers.
532      regA = rep(regA);
533      regB = rep(regB);
534
535      // If they are already joined we continue.
536      if (regA == regB)
537        continue;
538
539      // If they are both physical registers, we cannot join them.
540      if (MRegisterInfo::isPhysicalRegister(regA) &&
541          MRegisterInfo::isPhysicalRegister(regB))
542        continue;
543
544      // If they are not of the same register class, we cannot join them.
545      if (differingRegisterClasses(regA, regB))
546        continue;
547
548      LiveInterval &IntA = getInterval(regA);
549      LiveInterval &IntB = getInterval(regB);
550      assert(IntA.reg == regA && IntB.reg == regB &&
551             "Register mapping is horribly broken!");
552
553      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
554
555      // If two intervals contain a single value and are joined by a copy, it
556      // does not matter if the intervals overlap, they can always be joined.
557      bool TriviallyJoinable =
558        IntA.containsOneValue() && IntB.containsOneValue();
559
560      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
561      if ((TriviallyJoinable || !IntB.joinable(IntA, MIDefIdx)) &&
562          !overlapsAliases(&IntA, &IntB)) {
563        IntB.join(IntA, MIDefIdx);
564        delete r2iMap_[regA];   // Delete the dead interval
565
566        if (!MRegisterInfo::isPhysicalRegister(regA)) {
567          r2iMap_.erase(regA);
568          r2rMap_[regA] = regB;
569        } else {
570          // Otherwise merge the data structures the other way so we don't lose
571          // the physreg information.
572          r2rMap_[regB] = regA;
573          IntB.reg = regA;
574          r2iMap_[regA] = r2iMap_[regB];
575          r2iMap_.erase(regB);
576        }
577        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
578        ++numJoins;
579      } else {
580        DEBUG(std::cerr << "Interference!\n");
581      }
582    }
583  }
584}
585
586namespace {
587  // DepthMBBCompare - Comparison predicate that sort first based on the loop
588  // depth of the basic block (the unsigned), and then on the MBB number.
589  struct DepthMBBCompare {
590    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
591    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
592      if (LHS.first > RHS.first) return true;   // Deeper loops first
593      return LHS.first == RHS.first &&
594             LHS.second->getNumber() < RHS.second->getNumber();
595    }
596  };
597}
598
599void LiveIntervals::joinIntervals() {
600  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
601
602  const LoopInfo &LI = getAnalysis<LoopInfo>();
603  if (LI.begin() == LI.end()) {
604    // If there are no loops in the function, join intervals in function order.
605    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
606         I != E; ++I)
607      joinIntervalsInMachineBB(I);
608  } else {
609    // Otherwise, join intervals in inner loops before other intervals.
610    // Unfortunately we can't just iterate over loop hierarchy here because
611    // there may be more MBB's than BB's.  Collect MBB's for sorting.
612    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
613    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
614         I != E; ++I)
615      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
616
617    // Sort by loop depth.
618    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
619
620    // Finally, join intervals in loop nest order.
621    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
622      joinIntervalsInMachineBB(MBBs[i].second);
623  }
624}
625
626/// Return true if the two specified registers belong to different register
627/// classes.  The registers may be either phys or virt regs.
628bool LiveIntervals::differingRegisterClasses(unsigned RegA,
629                                             unsigned RegB) const {
630  const TargetRegisterClass *RegClass;
631
632  // Get the register classes for the first reg.
633  if (MRegisterInfo::isVirtualRegister(RegA))
634    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
635  else
636    RegClass = mri_->getRegClass(RegA);
637
638  // Compare against the regclass for the second reg.
639  if (MRegisterInfo::isVirtualRegister(RegB))
640    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
641  else
642    return RegClass != mri_->getRegClass(RegB);
643}
644
645bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
646                                    const LiveInterval *RHS) const {
647  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
648    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
649      return false;   // vreg-vreg merge has no aliases!
650    std::swap(LHS, RHS);
651  }
652
653  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
654         MRegisterInfo::isVirtualRegister(RHS->reg) &&
655         "first interval must describe a physical register");
656
657  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
658    if (RHS->overlaps(getInterval(*AS)))
659      return true;
660
661  return false;
662}
663
664LiveInterval *LiveIntervals::createInterval(unsigned reg) const {
665  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
666  return new LiveInterval(reg, Weight);
667}
668
669