LiveIntervalAnalysis.cpp revision 30cac02a925c9d56613711b0e77099cb7252bc9b
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39STATISTIC(numIntervals, "Number of original intervals");
40STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
41STATISTIC(numJoins    , "Number of interval joins performed");
42STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
43STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
44
45namespace {
46  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
47
48  static cl::opt<bool>
49  EnableJoining("join-liveintervals",
50                cl::desc("Coallesce copies (default=true)"),
51                cl::init(true));
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.addRequired<LiveVariables>();
56  AU.addPreservedID(PHIEliminationID);
57  AU.addRequiredID(PHIEliminationID);
58  AU.addRequiredID(TwoAddressInstructionPassID);
59  AU.addRequired<LoopInfo>();
60  MachineFunctionPass::getAnalysisUsage(AU);
61}
62
63void LiveIntervals::releaseMemory() {
64  mi2iMap_.clear();
65  i2miMap_.clear();
66  r2iMap_.clear();
67  r2rMap_.clear();
68}
69
70
71static bool isZeroLengthInterval(LiveInterval *li) {
72  for (LiveInterval::Ranges::const_iterator
73         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
74    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
75      return false;
76  return true;
77}
78
79
80/// runOnMachineFunction - Register allocate the whole function
81///
82bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
83  mf_ = &fn;
84  tm_ = &fn.getTarget();
85  mri_ = tm_->getRegisterInfo();
86  tii_ = tm_->getInstrInfo();
87  lv_ = &getAnalysis<LiveVariables>();
88  allocatableRegs_ = mri_->getAllocatableSet(fn);
89  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
90
91  // Number MachineInstrs and MachineBasicBlocks.
92  // Initialize MBB indexes to a sentinal.
93  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
94
95  unsigned MIIndex = 0;
96  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
97       MBB != E; ++MBB) {
98    // Set the MBB2IdxMap entry for this MBB.
99    MBB2IdxMap[MBB->getNumber()] = MIIndex;
100
101    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
102         I != E; ++I) {
103      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
104      assert(inserted && "multiple MachineInstr -> index mappings");
105      i2miMap_.push_back(I);
106      MIIndex += InstrSlots::NUM;
107    }
108  }
109
110  computeIntervals();
111
112  numIntervals += getNumIntervals();
113
114  DOUT << "********** INTERVALS **********\n";
115  for (iterator I = begin(), E = end(); I != E; ++I) {
116    I->second.print(DOUT, mri_);
117    DOUT << "\n";
118  }
119
120  // Join (coallesce) intervals if requested.
121  if (EnableJoining) joinIntervals();
122
123  numIntervalsAfter += getNumIntervals();
124
125
126  // perform a final pass over the instructions and compute spill
127  // weights, coalesce virtual registers and remove identity moves.
128  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
129
130  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
131       mbbi != mbbe; ++mbbi) {
132    MachineBasicBlock* mbb = mbbi;
133    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
134
135    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
136         mii != mie; ) {
137      // if the move will be an identity move delete it
138      unsigned srcReg, dstReg, RegRep;
139      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
140          (RegRep = rep(srcReg)) == rep(dstReg)) {
141        // remove from def list
142        LiveInterval &RegInt = getOrCreateInterval(RegRep);
143        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
144        // If def of this move instruction is dead, remove its live range from
145        // the dstination register's live interval.
146        if (MO->isDead()) {
147          unsigned MoveIdx = getDefIndex(getInstructionIndex(mii));
148          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
149          RegInt.removeRange(MLR->start, MoveIdx+1);
150          if (RegInt.empty())
151            removeInterval(RegRep);
152        }
153        RemoveMachineInstrFromMaps(mii);
154        mii = mbbi->erase(mii);
155        ++numPeep;
156      }
157      else {
158        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
159          const MachineOperand &mop = mii->getOperand(i);
160          if (mop.isRegister() && mop.getReg() &&
161              MRegisterInfo::isVirtualRegister(mop.getReg())) {
162            // replace register with representative register
163            unsigned reg = rep(mop.getReg());
164            mii->getOperand(i).setReg(reg);
165
166            LiveInterval &RegInt = getInterval(reg);
167            RegInt.weight +=
168              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
169          }
170        }
171        ++mii;
172      }
173    }
174  }
175
176  for (iterator I = begin(), E = end(); I != E; ++I) {
177    LiveInterval &LI = I->second;
178    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
179      // If the live interval length is essentially zero, i.e. in every live
180      // range the use follows def immediately, it doesn't make sense to spill
181      // it and hope it will be easier to allocate for this li.
182      if (isZeroLengthInterval(&LI))
183        LI.weight = HUGE_VALF;
184
185      // Divide the weight of the interval by its size.  This encourages
186      // spilling of intervals that are large and have few uses, and
187      // discourages spilling of small intervals with many uses.
188      unsigned Size = 0;
189      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
190        Size += II->end - II->start;
191
192      LI.weight /= Size;
193    }
194  }
195
196  DEBUG(dump());
197  return true;
198}
199
200/// print - Implement the dump method.
201void LiveIntervals::print(std::ostream &O, const Module* ) const {
202  O << "********** INTERVALS **********\n";
203  for (const_iterator I = begin(), E = end(); I != E; ++I) {
204    I->second.print(DOUT, mri_);
205    DOUT << "\n";
206  }
207
208  O << "********** MACHINEINSTRS **********\n";
209  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
210       mbbi != mbbe; ++mbbi) {
211    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
212    for (MachineBasicBlock::iterator mii = mbbi->begin(),
213           mie = mbbi->end(); mii != mie; ++mii) {
214      O << getInstructionIndex(mii) << '\t' << *mii;
215    }
216  }
217}
218
219/// CreateNewLiveInterval - Create a new live interval with the given live
220/// ranges. The new live interval will have an infinite spill weight.
221LiveInterval&
222LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
223                                     const std::vector<LiveRange> &LRs) {
224  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
225
226  // Create a new virtual register for the spill interval.
227  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
228
229  // Replace the old virtual registers in the machine operands with the shiny
230  // new one.
231  for (std::vector<LiveRange>::const_iterator
232         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
233    unsigned Index = getBaseIndex(I->start);
234    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
235
236    for (; Index != End; Index += InstrSlots::NUM) {
237      // Skip deleted instructions
238      while (Index != End && !getInstructionFromIndex(Index))
239        Index += InstrSlots::NUM;
240
241      if (Index == End) break;
242
243      MachineInstr *MI = getInstructionFromIndex(Index);
244
245      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
246        MachineOperand &MOp = MI->getOperand(J);
247        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
248          MOp.setReg(NewVReg);
249      }
250    }
251  }
252
253  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
254
255  // The spill weight is now infinity as it cannot be spilled again
256  NewLI.weight = float(HUGE_VAL);
257
258  for (std::vector<LiveRange>::const_iterator
259         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
260    DOUT << "  Adding live range " << *I << " to new interval\n";
261    NewLI.addRange(*I);
262  }
263
264  DOUT << "Created new live interval " << NewLI << "\n";
265  return NewLI;
266}
267
268std::vector<LiveInterval*> LiveIntervals::
269addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
270  // since this is called after the analysis is done we don't know if
271  // LiveVariables is available
272  lv_ = getAnalysisToUpdate<LiveVariables>();
273
274  std::vector<LiveInterval*> added;
275
276  assert(li.weight != HUGE_VALF &&
277         "attempt to spill already spilled interval!");
278
279  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
280  li.print(DOUT, mri_);
281  DOUT << '\n';
282
283  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
284
285  for (LiveInterval::Ranges::const_iterator
286         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
287    unsigned index = getBaseIndex(i->start);
288    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
289    for (; index != end; index += InstrSlots::NUM) {
290      // skip deleted instructions
291      while (index != end && !getInstructionFromIndex(index))
292        index += InstrSlots::NUM;
293      if (index == end) break;
294
295      MachineInstr *MI = getInstructionFromIndex(index);
296
297    RestartInstruction:
298      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
299        MachineOperand& mop = MI->getOperand(i);
300        if (mop.isRegister() && mop.getReg() == li.reg) {
301          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
302            // Attempt to fold the memory reference into the instruction.  If we
303            // can do this, we don't need to insert spill code.
304            if (lv_)
305              lv_->instructionChanged(MI, fmi);
306            MachineBasicBlock &MBB = *MI->getParent();
307            vrm.virtFolded(li.reg, MI, i, fmi);
308            mi2iMap_.erase(MI);
309            i2miMap_[index/InstrSlots::NUM] = fmi;
310            mi2iMap_[fmi] = index;
311            MI = MBB.insert(MBB.erase(MI), fmi);
312            ++numFolded;
313            // Folding the load/store can completely change the instruction in
314            // unpredictable ways, rescan it from the beginning.
315            goto RestartInstruction;
316          } else {
317            // Create a new virtual register for the spill interval.
318            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
319
320            // Scan all of the operands of this instruction rewriting operands
321            // to use NewVReg instead of li.reg as appropriate.  We do this for
322            // two reasons:
323            //
324            //   1. If the instr reads the same spilled vreg multiple times, we
325            //      want to reuse the NewVReg.
326            //   2. If the instr is a two-addr instruction, we are required to
327            //      keep the src/dst regs pinned.
328            //
329            // Keep track of whether we replace a use and/or def so that we can
330            // create the spill interval with the appropriate range.
331            mop.setReg(NewVReg);
332
333            bool HasUse = mop.isUse();
334            bool HasDef = mop.isDef();
335            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
336              if (MI->getOperand(j).isReg() &&
337                  MI->getOperand(j).getReg() == li.reg) {
338                MI->getOperand(j).setReg(NewVReg);
339                HasUse |= MI->getOperand(j).isUse();
340                HasDef |= MI->getOperand(j).isDef();
341              }
342            }
343
344            // create a new register for this spill
345            vrm.grow();
346            vrm.assignVirt2StackSlot(NewVReg, slot);
347            LiveInterval &nI = getOrCreateInterval(NewVReg);
348            assert(nI.empty());
349
350            // the spill weight is now infinity as it
351            // cannot be spilled again
352            nI.weight = HUGE_VALF;
353
354            if (HasUse) {
355              LiveRange LR(getLoadIndex(index), getUseIndex(index),
356                           nI.getNextValue(~0U, 0));
357              DOUT << " +" << LR;
358              nI.addRange(LR);
359            }
360            if (HasDef) {
361              LiveRange LR(getDefIndex(index), getStoreIndex(index),
362                           nI.getNextValue(~0U, 0));
363              DOUT << " +" << LR;
364              nI.addRange(LR);
365            }
366
367            added.push_back(&nI);
368
369            // update live variables if it is available
370            if (lv_)
371              lv_->addVirtualRegisterKilled(NewVReg, MI);
372
373            DOUT << "\t\t\t\tadded new interval: ";
374            nI.print(DOUT, mri_);
375            DOUT << '\n';
376          }
377        }
378      }
379    }
380  }
381
382  return added;
383}
384
385void LiveIntervals::printRegName(unsigned reg) const {
386  if (MRegisterInfo::isPhysicalRegister(reg))
387    cerr << mri_->getName(reg);
388  else
389    cerr << "%reg" << reg;
390}
391
392/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
393/// two addr elimination.
394static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
395                                const TargetInstrInfo *TII) {
396  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
397    MachineOperand &MO1 = MI->getOperand(i);
398    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
399      for (unsigned j = i+1; j < e; ++j) {
400        MachineOperand &MO2 = MI->getOperand(j);
401        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
402            MI->getInstrDescriptor()->
403            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
404          return true;
405      }
406    }
407  }
408  return false;
409}
410
411void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
412                                             MachineBasicBlock::iterator mi,
413                                             unsigned MIIdx,
414                                             LiveInterval &interval) {
415  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
416  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
417
418  // Virtual registers may be defined multiple times (due to phi
419  // elimination and 2-addr elimination).  Much of what we do only has to be
420  // done once for the vreg.  We use an empty interval to detect the first
421  // time we see a vreg.
422  if (interval.empty()) {
423    // Get the Idx of the defining instructions.
424    unsigned defIndex = getDefIndex(MIIdx);
425
426    unsigned ValNum;
427    unsigned SrcReg, DstReg;
428    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
429      ValNum = interval.getNextValue(~0U, 0);
430    else
431      ValNum = interval.getNextValue(defIndex, SrcReg);
432
433    assert(ValNum == 0 && "First value in interval is not 0?");
434    ValNum = 0;  // Clue in the optimizer.
435
436    // Loop over all of the blocks that the vreg is defined in.  There are
437    // two cases we have to handle here.  The most common case is a vreg
438    // whose lifetime is contained within a basic block.  In this case there
439    // will be a single kill, in MBB, which comes after the definition.
440    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
441      // FIXME: what about dead vars?
442      unsigned killIdx;
443      if (vi.Kills[0] != mi)
444        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
445      else
446        killIdx = defIndex+1;
447
448      // If the kill happens after the definition, we have an intra-block
449      // live range.
450      if (killIdx > defIndex) {
451        assert(vi.AliveBlocks.none() &&
452               "Shouldn't be alive across any blocks!");
453        LiveRange LR(defIndex, killIdx, ValNum);
454        interval.addRange(LR);
455        DOUT << " +" << LR << "\n";
456        return;
457      }
458    }
459
460    // The other case we handle is when a virtual register lives to the end
461    // of the defining block, potentially live across some blocks, then is
462    // live into some number of blocks, but gets killed.  Start by adding a
463    // range that goes from this definition to the end of the defining block.
464    LiveRange NewLR(defIndex,
465                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
466                    ValNum);
467    DOUT << " +" << NewLR;
468    interval.addRange(NewLR);
469
470    // Iterate over all of the blocks that the variable is completely
471    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
472    // live interval.
473    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
474      if (vi.AliveBlocks[i]) {
475        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
476        if (!MBB->empty()) {
477          LiveRange LR(getMBBStartIdx(i),
478                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
479                       ValNum);
480          interval.addRange(LR);
481          DOUT << " +" << LR;
482        }
483      }
484    }
485
486    // Finally, this virtual register is live from the start of any killing
487    // block to the 'use' slot of the killing instruction.
488    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
489      MachineInstr *Kill = vi.Kills[i];
490      LiveRange LR(getMBBStartIdx(Kill->getParent()),
491                   getUseIndex(getInstructionIndex(Kill))+1,
492                   ValNum);
493      interval.addRange(LR);
494      DOUT << " +" << LR;
495    }
496
497  } else {
498    // If this is the second time we see a virtual register definition, it
499    // must be due to phi elimination or two addr elimination.  If this is
500    // the result of two address elimination, then the vreg is one of the
501    // def-and-use register operand.
502    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
503      // If this is a two-address definition, then we have already processed
504      // the live range.  The only problem is that we didn't realize there
505      // are actually two values in the live interval.  Because of this we
506      // need to take the LiveRegion that defines this register and split it
507      // into two values.
508      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
509      unsigned RedefIndex = getDefIndex(MIIdx);
510
511      // Delete the initial value, which should be short and continuous,
512      // because the 2-addr copy must be in the same MBB as the redef.
513      interval.removeRange(DefIndex, RedefIndex);
514
515      // Two-address vregs should always only be redefined once.  This means
516      // that at this point, there should be exactly one value number in it.
517      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
518
519      // The new value number (#1) is defined by the instruction we claimed
520      // defined value #0.
521      unsigned ValNo = interval.getNextValue(0, 0);
522      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
523
524      // Value#0 is now defined by the 2-addr instruction.
525      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
526
527      // Add the new live interval which replaces the range for the input copy.
528      LiveRange LR(DefIndex, RedefIndex, ValNo);
529      DOUT << " replace range with " << LR;
530      interval.addRange(LR);
531
532      // If this redefinition is dead, we need to add a dummy unit live
533      // range covering the def slot.
534      if (lv_->RegisterDefIsDead(mi, interval.reg))
535        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
536
537      DOUT << "RESULT: ";
538      interval.print(DOUT, mri_);
539
540    } else {
541      // Otherwise, this must be because of phi elimination.  If this is the
542      // first redefinition of the vreg that we have seen, go back and change
543      // the live range in the PHI block to be a different value number.
544      if (interval.containsOneValue()) {
545        assert(vi.Kills.size() == 1 &&
546               "PHI elimination vreg should have one kill, the PHI itself!");
547
548        // Remove the old range that we now know has an incorrect number.
549        MachineInstr *Killer = vi.Kills[0];
550        unsigned Start = getMBBStartIdx(Killer->getParent());
551        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
552        DOUT << "Removing [" << Start << "," << End << "] from: ";
553        interval.print(DOUT, mri_); DOUT << "\n";
554        interval.removeRange(Start, End);
555        DOUT << "RESULT: "; interval.print(DOUT, mri_);
556
557        // Replace the interval with one of a NEW value number.  Note that this
558        // value number isn't actually defined by an instruction, weird huh? :)
559        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
560        DOUT << " replace range with " << LR;
561        interval.addRange(LR);
562        DOUT << "RESULT: "; interval.print(DOUT, mri_);
563      }
564
565      // In the case of PHI elimination, each variable definition is only
566      // live until the end of the block.  We've already taken care of the
567      // rest of the live range.
568      unsigned defIndex = getDefIndex(MIIdx);
569
570      unsigned ValNum;
571      unsigned SrcReg, DstReg;
572      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
573        ValNum = interval.getNextValue(~0U, 0);
574      else
575        ValNum = interval.getNextValue(defIndex, SrcReg);
576
577      LiveRange LR(defIndex,
578                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
579      interval.addRange(LR);
580      DOUT << " +" << LR;
581    }
582  }
583
584  DOUT << '\n';
585}
586
587void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
588                                              MachineBasicBlock::iterator mi,
589                                              unsigned MIIdx,
590                                              LiveInterval &interval,
591                                              unsigned SrcReg) {
592  // A physical register cannot be live across basic block, so its
593  // lifetime must end somewhere in its defining basic block.
594  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
595
596  unsigned baseIndex = MIIdx;
597  unsigned start = getDefIndex(baseIndex);
598  unsigned end = start;
599
600  // If it is not used after definition, it is considered dead at
601  // the instruction defining it. Hence its interval is:
602  // [defSlot(def), defSlot(def)+1)
603  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
604    DOUT << " dead";
605    end = getDefIndex(start) + 1;
606    goto exit;
607  }
608
609  // If it is not dead on definition, it must be killed by a
610  // subsequent instruction. Hence its interval is:
611  // [defSlot(def), useSlot(kill)+1)
612  while (++mi != MBB->end()) {
613    baseIndex += InstrSlots::NUM;
614    if (lv_->KillsRegister(mi, interval.reg)) {
615      DOUT << " killed";
616      end = getUseIndex(baseIndex) + 1;
617      goto exit;
618    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
619      // Another instruction redefines the register before it is ever read.
620      // Then the register is essentially dead at the instruction that defines
621      // it. Hence its interval is:
622      // [defSlot(def), defSlot(def)+1)
623      DOUT << " dead";
624      end = getDefIndex(start) + 1;
625      goto exit;
626    }
627  }
628
629  // The only case we should have a dead physreg here without a killing or
630  // instruction where we know it's dead is if it is live-in to the function
631  // and never used.
632  assert(!SrcReg && "physreg was not killed in defining block!");
633  end = getDefIndex(start) + 1;  // It's dead.
634
635exit:
636  assert(start < end && "did not find end of interval?");
637
638  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
639                                                 SrcReg));
640  interval.addRange(LR);
641  DOUT << " +" << LR << '\n';
642}
643
644void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
645                                      MachineBasicBlock::iterator MI,
646                                      unsigned MIIdx,
647                                      unsigned reg) {
648  if (MRegisterInfo::isVirtualRegister(reg))
649    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
650  else if (allocatableRegs_[reg]) {
651    unsigned SrcReg, DstReg;
652    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
653      SrcReg = 0;
654    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
655    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
656      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
657  }
658}
659
660void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
661                                         unsigned MIIdx,
662                                         LiveInterval &interval) {
663  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
664
665  // Look for kills, if it reaches a def before it's killed, then it shouldn't
666  // be considered a livein.
667  MachineBasicBlock::iterator mi = MBB->begin();
668  unsigned baseIndex = MIIdx;
669  unsigned start = baseIndex;
670  unsigned end = start;
671  while (mi != MBB->end()) {
672    if (lv_->KillsRegister(mi, interval.reg)) {
673      DOUT << " killed";
674      end = getUseIndex(baseIndex) + 1;
675      goto exit;
676    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
677      // Another instruction redefines the register before it is ever read.
678      // Then the register is essentially dead at the instruction that defines
679      // it. Hence its interval is:
680      // [defSlot(def), defSlot(def)+1)
681      DOUT << " dead";
682      end = getDefIndex(start) + 1;
683      goto exit;
684    }
685
686    baseIndex += InstrSlots::NUM;
687    ++mi;
688  }
689
690exit:
691  assert(start < end && "did not find end of interval?");
692
693  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
694  DOUT << " +" << LR << '\n';
695  interval.addRange(LR);
696}
697
698/// computeIntervals - computes the live intervals for virtual
699/// registers. for some ordering of the machine instructions [1,N] a
700/// live interval is an interval [i, j) where 1 <= i <= j < N for
701/// which a variable is live
702void LiveIntervals::computeIntervals() {
703  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
704       << "********** Function: "
705       << ((Value*)mf_->getFunction())->getName() << '\n';
706  // Track the index of the current machine instr.
707  unsigned MIIndex = 0;
708  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
709       MBBI != E; ++MBBI) {
710    MachineBasicBlock *MBB = MBBI;
711    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
712
713    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
714
715    if (MBB->livein_begin() != MBB->livein_end()) {
716      // Create intervals for live-ins to this BB first.
717      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
718             LE = MBB->livein_end(); LI != LE; ++LI) {
719        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
720        for (const unsigned* AS = mri_->getAliasSet(*LI); *AS; ++AS)
721          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS));
722      }
723    }
724
725    for (; MI != miEnd; ++MI) {
726      DOUT << MIIndex << "\t" << *MI;
727
728      // Handle defs.
729      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
730        MachineOperand &MO = MI->getOperand(i);
731        // handle register defs - build intervals
732        if (MO.isRegister() && MO.getReg() && MO.isDef())
733          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
734      }
735
736      MIIndex += InstrSlots::NUM;
737    }
738  }
739}
740
741/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
742/// being the source and IntB being the dest, thus this defines a value number
743/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
744/// see if we can merge these two pieces of B into a single value number,
745/// eliminating a copy.  For example:
746///
747///  A3 = B0
748///    ...
749///  B1 = A3      <- this copy
750///
751/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
752/// value number to be replaced with B0 (which simplifies the B liveinterval).
753///
754/// This returns true if an interval was modified.
755///
756bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
757                                         MachineInstr *CopyMI) {
758  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
759
760  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
761  // the example above.
762  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
763  unsigned BValNo = BLR->ValId;
764
765  // Get the location that B is defined at.  Two options: either this value has
766  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
767  // can't process it.
768  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
769  if (BValNoDefIdx == ~0U) return false;
770  assert(BValNoDefIdx == CopyIdx &&
771         "Copy doesn't define the value?");
772
773  // AValNo is the value number in A that defines the copy, A0 in the example.
774  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
775  unsigned AValNo = AValLR->ValId;
776
777  // If AValNo is defined as a copy from IntB, we can potentially process this.
778
779  // Get the instruction that defines this value number.
780  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
781  if (!SrcReg) return false;  // Not defined by a copy.
782
783  // If the value number is not defined by a copy instruction, ignore it.
784
785  // If the source register comes from an interval other than IntB, we can't
786  // handle this.
787  if (rep(SrcReg) != IntB.reg) return false;
788
789  // Get the LiveRange in IntB that this value number starts with.
790  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
791  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
792
793  // Make sure that the end of the live range is inside the same block as
794  // CopyMI.
795  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
796  if (!ValLREndInst ||
797      ValLREndInst->getParent() != CopyMI->getParent()) return false;
798
799  // Okay, we now know that ValLR ends in the same block that the CopyMI
800  // live-range starts.  If there are no intervening live ranges between them in
801  // IntB, we can merge them.
802  if (ValLR+1 != BLR) return false;
803
804  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
805
806  // We are about to delete CopyMI, so need to remove it as the 'instruction
807  // that defines this value #'.
808  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
809
810  // Okay, we can merge them.  We need to insert a new liverange:
811  // [ValLR.end, BLR.begin) of either value number, then we merge the
812  // two value numbers.
813  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
814  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
815
816  // If the IntB live range is assigned to a physical register, and if that
817  // physreg has aliases,
818  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
819    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
820      LiveInterval &AliasLI = getInterval(*AS);
821      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
822                                 AliasLI.getNextValue(~0U, 0)));
823    }
824  }
825
826  // Okay, merge "B1" into the same value number as "B0".
827  if (BValNo != ValLR->ValId)
828    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
829  DOUT << "   result = "; IntB.print(DOUT, mri_);
830  DOUT << "\n";
831
832  // Finally, delete the copy instruction.
833  RemoveMachineInstrFromMaps(CopyMI);
834  CopyMI->eraseFromParent();
835  ++numPeep;
836  return true;
837}
838
839/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
840/// which are the src/dst of the copy instruction CopyMI.  This returns true
841/// if the copy was successfully coallesced away, or if it is never possible
842/// to coallesce these this copy, due to register constraints.  It returns
843/// false if it is not currently possible to coallesce this interval, but
844/// it may be possible if other things get coallesced.
845bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
846                             unsigned SrcReg, unsigned DstReg) {
847  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
848
849  // Get representative registers.
850  unsigned repSrcReg = rep(SrcReg);
851  unsigned repDstReg = rep(DstReg);
852
853  // If they are already joined we continue.
854  if (repSrcReg == repDstReg) {
855    DOUT << "\tCopy already coallesced.\n";
856    return true;  // Not coallescable.
857  }
858
859  // If they are both physical registers, we cannot join them.
860  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
861      MRegisterInfo::isPhysicalRegister(repDstReg)) {
862    DOUT << "\tCan not coallesce physregs.\n";
863    return true;  // Not coallescable.
864  }
865
866  // We only join virtual registers with allocatable physical registers.
867  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
868      !allocatableRegs_[repSrcReg]) {
869    DOUT << "\tSrc reg is unallocatable physreg.\n";
870    return true;  // Not coallescable.
871  }
872  if (MRegisterInfo::isPhysicalRegister(repDstReg) &&
873      !allocatableRegs_[repDstReg]) {
874    DOUT << "\tDst reg is unallocatable physreg.\n";
875    return true;  // Not coallescable.
876  }
877
878  // If they are not of the same register class, we cannot join them.
879  if (differingRegisterClasses(repSrcReg, repDstReg)) {
880    DOUT << "\tSrc/Dest are different register classes.\n";
881    return true;  // Not coallescable.
882  }
883
884  LiveInterval &SrcInt = getInterval(repSrcReg);
885  LiveInterval &DestInt = getInterval(repDstReg);
886  assert(SrcInt.reg == repSrcReg && DestInt.reg == repDstReg &&
887         "Register mapping is horribly broken!");
888
889  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
890  DOUT << " and "; DestInt.print(DOUT, mri_);
891  DOUT << ": ";
892
893  // Check if it is necessary to propagate "isDead" property before intervals
894  // are joined.
895  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
896  bool isDead = mopd->isDead();
897  unsigned SrcStart = 0;
898  unsigned SrcEnd = 0;
899  if (isDead) {
900    unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
901    LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx-1);
902    SrcStart = SrcLR->start;
903    SrcEnd   = SrcLR->end;
904    if (hasRegisterUse(repSrcReg, SrcStart, SrcEnd))
905      isDead = false;
906  }
907
908  // Okay, attempt to join these two intervals.  On failure, this returns false.
909  // Otherwise, if one of the intervals being joined is a physreg, this method
910  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
911  // been modified, so we can use this information below to update aliases.
912  if (JoinIntervals(DestInt, SrcInt)) {
913    if (isDead) {
914      // Result of the copy is dead. Propagate this property.
915      if (SrcStart == 0) {
916        // Live-in to the function but dead. Remove it from MBB live-in set.
917        // JoinIntervals may end up swapping the two intervals.
918        LiveInterval &LiveInInt = (repSrcReg == DestInt.reg) ? DestInt:SrcInt;
919        LiveInInt.removeRange(SrcStart, SrcEnd);
920        MachineBasicBlock *MBB = CopyMI->getParent();
921        MBB->removeLiveIn(SrcReg);
922      } else {
923        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
924        if (SrcMI) {
925          // FIXME: SrcMI == NULL means the register is livein to a non-entry
926          // MBB. Remove the range from its live interval?
927          MachineOperand *mops = SrcMI->findRegisterDefOperand(SrcReg);
928          if (mops)
929            // FIXME: mops == NULL means SrcMI defines a subregister?
930            mops->setIsDead();
931        }
932      }
933    }
934  } else {
935    // Coallescing failed.
936
937    // If we can eliminate the copy without merging the live ranges, do so now.
938    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
939      return true;
940
941    // Otherwise, we are unable to join the intervals.
942    DOUT << "Interference!\n";
943    return false;
944  }
945
946  bool Swapped = repSrcReg == DestInt.reg;
947  if (Swapped)
948    std::swap(repSrcReg, repDstReg);
949  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
950         "LiveInterval::join didn't work right!");
951
952  // If we're about to merge live ranges into a physical register live range,
953  // we have to update any aliased register's live ranges to indicate that they
954  // have clobbered values for this range.
955  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
956    for (const unsigned *AS = mri_->getAliasSet(repDstReg); *AS; ++AS)
957      getInterval(*AS).MergeInClobberRanges(SrcInt);
958  }
959
960  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
961  DOUT << "\n";
962
963  // If the intervals were swapped by Join, swap them back so that the register
964  // mapping (in the r2i map) is correct.
965  if (Swapped) SrcInt.swap(DestInt);
966
967  // Live range has been lengthened due to colaescing, eliminate the
968  // unnecessary kills at the end of the source live ranges.
969  LiveVariables::VarInfo& vi = lv_->getVarInfo(repSrcReg);
970  for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
971    MachineInstr *Kill = vi.Kills[i];
972    if (Kill == CopyMI || isRemoved(Kill))
973      continue;
974    if (DestInt.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
975      unsetRegisterKill(Kill, repSrcReg);
976  }
977
978  removeInterval(repSrcReg);
979  r2rMap_[repSrcReg] = repDstReg;
980
981  // Finally, delete the copy instruction.
982  RemoveMachineInstrFromMaps(CopyMI);
983  CopyMI->eraseFromParent();
984  ++numPeep;
985  ++numJoins;
986  return true;
987}
988
989/// ComputeUltimateVN - Assuming we are going to join two live intervals,
990/// compute what the resultant value numbers for each value in the input two
991/// ranges will be.  This is complicated by copies between the two which can
992/// and will commonly cause multiple value numbers to be merged into one.
993///
994/// VN is the value number that we're trying to resolve.  InstDefiningValue
995/// keeps track of the new InstDefiningValue assignment for the result
996/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
997/// whether a value in this or other is a copy from the opposite set.
998/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
999/// already been assigned.
1000///
1001/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1002/// contains the value number the copy is from.
1003///
1004static unsigned ComputeUltimateVN(unsigned VN,
1005                                  SmallVector<std::pair<unsigned,
1006                                                unsigned>, 16> &ValueNumberInfo,
1007                                  SmallVector<int, 16> &ThisFromOther,
1008                                  SmallVector<int, 16> &OtherFromThis,
1009                                  SmallVector<int, 16> &ThisValNoAssignments,
1010                                  SmallVector<int, 16> &OtherValNoAssignments,
1011                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
1012  // If the VN has already been computed, just return it.
1013  if (ThisValNoAssignments[VN] >= 0)
1014    return ThisValNoAssignments[VN];
1015//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1016
1017  // If this val is not a copy from the other val, then it must be a new value
1018  // number in the destination.
1019  int OtherValNo = ThisFromOther[VN];
1020  if (OtherValNo == -1) {
1021    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
1022    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
1023  }
1024
1025  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1026  // been computed, return it.
1027  if (OtherValNoAssignments[OtherValNo] >= 0)
1028    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
1029
1030  // Mark this value number as currently being computed, then ask what the
1031  // ultimate value # of the other value is.
1032  ThisValNoAssignments[VN] = -2;
1033  unsigned UltimateVN =
1034    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
1035                      OtherFromThis, ThisFromOther,
1036                      OtherValNoAssignments, ThisValNoAssignments,
1037                      OtherLI, ThisLI);
1038  return ThisValNoAssignments[VN] = UltimateVN;
1039}
1040
1041static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
1042  return std::find(V.begin(), V.end(), Val) != V.end();
1043}
1044
1045/// SimpleJoin - Attempt to joint the specified interval into this one. The
1046/// caller of this method must guarantee that the RHS only contains a single
1047/// value number and that the RHS is not defined by a copy from this
1048/// interval.  This returns false if the intervals are not joinable, or it
1049/// joins them and returns true.
1050bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
1051  assert(RHS.containsOneValue());
1052
1053  // Some number (potentially more than one) value numbers in the current
1054  // interval may be defined as copies from the RHS.  Scan the overlapping
1055  // portions of the LHS and RHS, keeping track of this and looking for
1056  // overlapping live ranges that are NOT defined as copies.  If these exist, we
1057  // cannot coallesce.
1058
1059  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1060  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1061
1062  if (LHSIt->start < RHSIt->start) {
1063    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1064    if (LHSIt != LHS.begin()) --LHSIt;
1065  } else if (RHSIt->start < LHSIt->start) {
1066    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1067    if (RHSIt != RHS.begin()) --RHSIt;
1068  }
1069
1070  SmallVector<unsigned, 8> EliminatedLHSVals;
1071
1072  while (1) {
1073    // Determine if these live intervals overlap.
1074    bool Overlaps = false;
1075    if (LHSIt->start <= RHSIt->start)
1076      Overlaps = LHSIt->end > RHSIt->start;
1077    else
1078      Overlaps = RHSIt->end > LHSIt->start;
1079
1080    // If the live intervals overlap, there are two interesting cases: if the
1081    // LHS interval is defined by a copy from the RHS, it's ok and we record
1082    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1083    // coallesce these live ranges and we bail out.
1084    if (Overlaps) {
1085      // If we haven't already recorded that this value # is safe, check it.
1086      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1087        // Copy from the RHS?
1088        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1089        if (rep(SrcReg) != RHS.reg)
1090          return false;    // Nope, bail out.
1091
1092        EliminatedLHSVals.push_back(LHSIt->ValId);
1093      }
1094
1095      // We know this entire LHS live range is okay, so skip it now.
1096      if (++LHSIt == LHSEnd) break;
1097      continue;
1098    }
1099
1100    if (LHSIt->end < RHSIt->end) {
1101      if (++LHSIt == LHSEnd) break;
1102    } else {
1103      // One interesting case to check here.  It's possible that we have
1104      // something like "X3 = Y" which defines a new value number in the LHS,
1105      // and is the last use of this liverange of the RHS.  In this case, we
1106      // want to notice this copy (so that it gets coallesced away) even though
1107      // the live ranges don't actually overlap.
1108      if (LHSIt->start == RHSIt->end) {
1109        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1110          // We already know that this value number is going to be merged in
1111          // if coallescing succeeds.  Just skip the liverange.
1112          if (++LHSIt == LHSEnd) break;
1113        } else {
1114          // Otherwise, if this is a copy from the RHS, mark it as being merged
1115          // in.
1116          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1117            EliminatedLHSVals.push_back(LHSIt->ValId);
1118
1119            // We know this entire LHS live range is okay, so skip it now.
1120            if (++LHSIt == LHSEnd) break;
1121          }
1122        }
1123      }
1124
1125      if (++RHSIt == RHSEnd) break;
1126    }
1127  }
1128
1129  // If we got here, we know that the coallescing will be successful and that
1130  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1131  // the most common case is that EliminatedLHSVals has a single number, we
1132  // optimize for it: if there is more than one value, we merge them all into
1133  // the lowest numbered one, then handle the interval as if we were merging
1134  // with one value number.
1135  unsigned LHSValNo;
1136  if (EliminatedLHSVals.size() > 1) {
1137    // Loop through all the equal value numbers merging them into the smallest
1138    // one.
1139    unsigned Smallest = EliminatedLHSVals[0];
1140    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1141      if (EliminatedLHSVals[i] < Smallest) {
1142        // Merge the current notion of the smallest into the smaller one.
1143        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1144        Smallest = EliminatedLHSVals[i];
1145      } else {
1146        // Merge into the smallest.
1147        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1148      }
1149    }
1150    LHSValNo = Smallest;
1151  } else {
1152    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1153    LHSValNo = EliminatedLHSVals[0];
1154  }
1155
1156  // Okay, now that there is a single LHS value number that we're merging the
1157  // RHS into, update the value number info for the LHS to indicate that the
1158  // value number is defined where the RHS value number was.
1159  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1160
1161  // Okay, the final step is to loop over the RHS live intervals, adding them to
1162  // the LHS.
1163  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1164  LHS.weight += RHS.weight;
1165
1166  return true;
1167}
1168
1169/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1170/// returns false.  Otherwise, if one of the intervals being joined is a
1171/// physreg, this method always canonicalizes LHS to be it.  The output
1172/// "RHS" will not have been modified, so we can use this information
1173/// below to update aliases.
1174bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1175  // Compute the final value assignment, assuming that the live ranges can be
1176  // coallesced.
1177  SmallVector<int, 16> LHSValNoAssignments;
1178  SmallVector<int, 16> RHSValNoAssignments;
1179  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1180
1181  // Compute ultimate value numbers for the LHS and RHS values.
1182  if (RHS.containsOneValue()) {
1183    // Copies from a liveinterval with a single value are simple to handle and
1184    // very common, handle the special case here.  This is important, because
1185    // often RHS is small and LHS is large (e.g. a physreg).
1186
1187    // Find out if the RHS is defined as a copy from some value in the LHS.
1188    int RHSValID = -1;
1189    std::pair<unsigned,unsigned> RHSValNoInfo;
1190    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1191    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1192      // If RHS is not defined as a copy from the LHS, we can use simpler and
1193      // faster checks to see if the live ranges are coallescable.  This joiner
1194      // can't swap the LHS/RHS intervals though.
1195      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1196        return SimpleJoin(LHS, RHS);
1197      } else {
1198        RHSValNoInfo = RHS.getValNumInfo(0);
1199      }
1200    } else {
1201      // It was defined as a copy from the LHS, find out what value # it is.
1202      unsigned ValInst = RHS.getInstForValNum(0);
1203      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1204      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1205    }
1206
1207    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1208    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1209    ValueNumberInfo.resize(LHS.getNumValNums());
1210
1211    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1212    // should now get updated.
1213    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1214      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1215        if (rep(LHSSrcReg) != RHS.reg) {
1216          // If this is not a copy from the RHS, its value number will be
1217          // unmodified by the coallescing.
1218          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1219          LHSValNoAssignments[VN] = VN;
1220        } else if (RHSValID == -1) {
1221          // Otherwise, it is a copy from the RHS, and we don't already have a
1222          // value# for it.  Keep the current value number, but remember it.
1223          LHSValNoAssignments[VN] = RHSValID = VN;
1224          ValueNumberInfo[VN] = RHSValNoInfo;
1225        } else {
1226          // Otherwise, use the specified value #.
1227          LHSValNoAssignments[VN] = RHSValID;
1228          if (VN != (unsigned)RHSValID)
1229            ValueNumberInfo[VN].first = ~1U;
1230          else
1231            ValueNumberInfo[VN] = RHSValNoInfo;
1232        }
1233      } else {
1234        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1235        LHSValNoAssignments[VN] = VN;
1236      }
1237    }
1238
1239    assert(RHSValID != -1 && "Didn't find value #?");
1240    RHSValNoAssignments[0] = RHSValID;
1241
1242  } else {
1243    // Loop over the value numbers of the LHS, seeing if any are defined from
1244    // the RHS.
1245    SmallVector<int, 16> LHSValsDefinedFromRHS;
1246    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1247    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1248      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1249      if (ValSrcReg == 0)  // Src not defined by a copy?
1250        continue;
1251
1252      // DstReg is known to be a register in the LHS interval.  If the src is
1253      // from the RHS interval, we can use its value #.
1254      if (rep(ValSrcReg) != RHS.reg)
1255        continue;
1256
1257      // Figure out the value # from the RHS.
1258      unsigned ValInst = LHS.getInstForValNum(VN);
1259      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1260    }
1261
1262    // Loop over the value numbers of the RHS, seeing if any are defined from
1263    // the LHS.
1264    SmallVector<int, 16> RHSValsDefinedFromLHS;
1265    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1266    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1267      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1268      if (ValSrcReg == 0)  // Src not defined by a copy?
1269        continue;
1270
1271      // DstReg is known to be a register in the RHS interval.  If the src is
1272      // from the LHS interval, we can use its value #.
1273      if (rep(ValSrcReg) != LHS.reg)
1274        continue;
1275
1276      // Figure out the value # from the LHS.
1277      unsigned ValInst = RHS.getInstForValNum(VN);
1278      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1279    }
1280
1281    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1282    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1283    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1284
1285    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1286      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1287        continue;
1288      ComputeUltimateVN(VN, ValueNumberInfo,
1289                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1290                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1291    }
1292    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1293      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1294        continue;
1295      // If this value number isn't a copy from the LHS, it's a new number.
1296      if (RHSValsDefinedFromLHS[VN] == -1) {
1297        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1298        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1299        continue;
1300      }
1301
1302      ComputeUltimateVN(VN, ValueNumberInfo,
1303                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1304                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1305    }
1306  }
1307
1308  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1309  // interval lists to see if these intervals are coallescable.
1310  LiveInterval::const_iterator I = LHS.begin();
1311  LiveInterval::const_iterator IE = LHS.end();
1312  LiveInterval::const_iterator J = RHS.begin();
1313  LiveInterval::const_iterator JE = RHS.end();
1314
1315  // Skip ahead until the first place of potential sharing.
1316  if (I->start < J->start) {
1317    I = std::upper_bound(I, IE, J->start);
1318    if (I != LHS.begin()) --I;
1319  } else if (J->start < I->start) {
1320    J = std::upper_bound(J, JE, I->start);
1321    if (J != RHS.begin()) --J;
1322  }
1323
1324  while (1) {
1325    // Determine if these two live ranges overlap.
1326    bool Overlaps;
1327    if (I->start < J->start) {
1328      Overlaps = I->end > J->start;
1329    } else {
1330      Overlaps = J->end > I->start;
1331    }
1332
1333    // If so, check value # info to determine if they are really different.
1334    if (Overlaps) {
1335      // If the live range overlap will map to the same value number in the
1336      // result liverange, we can still coallesce them.  If not, we can't.
1337      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1338        return false;
1339    }
1340
1341    if (I->end < J->end) {
1342      ++I;
1343      if (I == IE) break;
1344    } else {
1345      ++J;
1346      if (J == JE) break;
1347    }
1348  }
1349
1350  // If we get here, we know that we can coallesce the live ranges.  Ask the
1351  // intervals to coallesce themselves now.
1352  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1353           ValueNumberInfo);
1354  return true;
1355}
1356
1357
1358namespace {
1359  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1360  // depth of the basic block (the unsigned), and then on the MBB number.
1361  struct DepthMBBCompare {
1362    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1363    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1364      if (LHS.first > RHS.first) return true;   // Deeper loops first
1365      return LHS.first == RHS.first &&
1366        LHS.second->getNumber() < RHS.second->getNumber();
1367    }
1368  };
1369}
1370
1371
1372void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1373                                       std::vector<CopyRec> &TryAgain) {
1374  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1375
1376  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1377       MII != E;) {
1378    MachineInstr *Inst = MII++;
1379
1380    // If this isn't a copy, we can't join intervals.
1381    unsigned SrcReg, DstReg;
1382    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1383
1384    if (!JoinCopy(Inst, SrcReg, DstReg))
1385      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1386  }
1387}
1388
1389
1390void LiveIntervals::joinIntervals() {
1391  DOUT << "********** JOINING INTERVALS ***********\n";
1392
1393  std::vector<CopyRec> TryAgainList;
1394
1395  const LoopInfo &LI = getAnalysis<LoopInfo>();
1396  if (LI.begin() == LI.end()) {
1397    // If there are no loops in the function, join intervals in function order.
1398    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1399         I != E; ++I)
1400      CopyCoallesceInMBB(I, TryAgainList);
1401  } else {
1402    // Otherwise, join intervals in inner loops before other intervals.
1403    // Unfortunately we can't just iterate over loop hierarchy here because
1404    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1405    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1406    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1407         I != E; ++I)
1408      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1409
1410    // Sort by loop depth.
1411    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1412
1413    // Finally, join intervals in loop nest order.
1414    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1415      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1416  }
1417
1418  // Joining intervals can allow other intervals to be joined.  Iteratively join
1419  // until we make no progress.
1420  bool ProgressMade = true;
1421  while (ProgressMade) {
1422    ProgressMade = false;
1423
1424    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1425      CopyRec &TheCopy = TryAgainList[i];
1426      if (TheCopy.MI &&
1427          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1428        TheCopy.MI = 0;   // Mark this one as done.
1429        ProgressMade = true;
1430      }
1431    }
1432  }
1433
1434  DOUT << "*** Register mapping ***\n";
1435  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1436    if (r2rMap_[i]) {
1437      DOUT << "  reg " << i << " -> ";
1438      DEBUG(printRegName(r2rMap_[i]));
1439      DOUT << "\n";
1440    }
1441}
1442
1443/// Return true if the two specified registers belong to different register
1444/// classes.  The registers may be either phys or virt regs.
1445bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1446                                             unsigned RegB) const {
1447
1448  // Get the register classes for the first reg.
1449  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1450    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1451           "Shouldn't consider two physregs!");
1452    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1453  }
1454
1455  // Compare against the regclass for the second reg.
1456  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1457  if (MRegisterInfo::isVirtualRegister(RegB))
1458    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1459  else
1460    return !RegClass->contains(RegB);
1461}
1462
1463/// hasRegisterUse - Returns true if there is any use of the specific
1464/// reg between indexes Start and End.
1465bool
1466LiveIntervals::hasRegisterUse(unsigned Reg, unsigned Start, unsigned End) {
1467  for (unsigned Index = Start+InstrSlots::NUM; Index < End;
1468       Index += InstrSlots::NUM) {
1469    // Skip deleted instructions
1470    while (Index < End && !getInstructionFromIndex(Index))
1471      Index += InstrSlots::NUM;
1472    if (Index >= End) break;
1473
1474    MachineInstr *MI = getInstructionFromIndex(Index);
1475    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1476      MachineOperand &MO = MI->getOperand(i);
1477      if (MO.isReg() && MO.isUse() && MO.getReg() &&
1478          mri_->regsOverlap(rep(MO.getReg()), Reg))
1479        return true;
1480    }
1481  }
1482
1483  return false;
1484}
1485
1486/// unsetRegisterKill - Unset IsKill property of all uses of specific register
1487/// of the specific instruction.
1488void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
1489  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1490    MachineOperand &MO = MI->getOperand(i);
1491    if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
1492        mri_->regsOverlap(rep(MO.getReg()), Reg))
1493      MO.unsetIsKill();
1494  }
1495}
1496
1497LiveInterval LiveIntervals::createInterval(unsigned reg) {
1498  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1499                       HUGE_VALF : 0.0F;
1500  return LiveInterval(reg, Weight);
1501}
1502