LiveIntervalAnalysis.cpp revision 35d477654ca963fc39bb556018a60272f1f44ec0
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  // Hidden options for help debugging.
41  cl::opt<bool> DisableReMat("disable-rematerialization",
42                              cl::init(false), cl::Hidden);
43
44  cl::opt<bool> SplitAtBB("split-intervals-at-bb",
45                          cl::init(false), cl::Hidden);
46  cl::opt<int> SplitLimit("split-limit",
47                          cl::init(-1), cl::Hidden);
48}
49
50STATISTIC(numIntervals, "Number of original intervals");
51STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
52STATISTIC(numFolds    , "Number of loads/stores folded into instructions");
53STATISTIC(numSplits   , "Number of intervals split");
54
55char LiveIntervals::ID = 0;
56namespace {
57  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
58}
59
60void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
61  AU.addPreserved<LiveVariables>();
62  AU.addRequired<LiveVariables>();
63  AU.addPreservedID(PHIEliminationID);
64  AU.addRequiredID(PHIEliminationID);
65  AU.addRequiredID(TwoAddressInstructionPassID);
66  MachineFunctionPass::getAnalysisUsage(AU);
67}
68
69void LiveIntervals::releaseMemory() {
70  Idx2MBBMap.clear();
71  mi2iMap_.clear();
72  i2miMap_.clear();
73  r2iMap_.clear();
74  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
75  VNInfoAllocator.Reset();
76  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
77    delete ClonedMIs[i];
78}
79
80namespace llvm {
81  inline bool operator<(unsigned V, const IdxMBBPair &IM) {
82    return V < IM.first;
83  }
84
85  inline bool operator<(const IdxMBBPair &IM, unsigned V) {
86    return IM.first < V;
87  }
88
89  struct Idx2MBBCompare {
90    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
91      return LHS.first < RHS.first;
92    }
93  };
94}
95
96/// runOnMachineFunction - Register allocate the whole function
97///
98bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
99  mf_ = &fn;
100  tm_ = &fn.getTarget();
101  mri_ = tm_->getRegisterInfo();
102  tii_ = tm_->getInstrInfo();
103  lv_ = &getAnalysis<LiveVariables>();
104  allocatableRegs_ = mri_->getAllocatableSet(fn);
105
106  // Number MachineInstrs and MachineBasicBlocks.
107  // Initialize MBB indexes to a sentinal.
108  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
109
110  unsigned MIIndex = 0;
111  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
112       MBB != E; ++MBB) {
113    unsigned StartIdx = MIIndex;
114
115    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
116         I != E; ++I) {
117      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
118      assert(inserted && "multiple MachineInstr -> index mappings");
119      i2miMap_.push_back(I);
120      MIIndex += InstrSlots::NUM;
121    }
122
123    // Set the MBB2IdxMap entry for this MBB.
124    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
125    Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
126  }
127  std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
128
129  computeIntervals();
130
131  numIntervals += getNumIntervals();
132
133  DOUT << "********** INTERVALS **********\n";
134  for (iterator I = begin(), E = end(); I != E; ++I) {
135    I->second.print(DOUT, mri_);
136    DOUT << "\n";
137  }
138
139  numIntervalsAfter += getNumIntervals();
140  DEBUG(dump());
141  return true;
142}
143
144/// print - Implement the dump method.
145void LiveIntervals::print(std::ostream &O, const Module* ) const {
146  O << "********** INTERVALS **********\n";
147  for (const_iterator I = begin(), E = end(); I != E; ++I) {
148    I->second.print(DOUT, mri_);
149    DOUT << "\n";
150  }
151
152  O << "********** MACHINEINSTRS **********\n";
153  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
154       mbbi != mbbe; ++mbbi) {
155    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
156    for (MachineBasicBlock::iterator mii = mbbi->begin(),
157           mie = mbbi->end(); mii != mie; ++mii) {
158      O << getInstructionIndex(mii) << '\t' << *mii;
159    }
160  }
161}
162
163/// conflictsWithPhysRegDef - Returns true if the specified register
164/// is defined during the duration of the specified interval.
165bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
166                                            VirtRegMap &vrm, unsigned reg) {
167  for (LiveInterval::Ranges::const_iterator
168         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
169    for (unsigned index = getBaseIndex(I->start),
170           end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
171         index += InstrSlots::NUM) {
172      // skip deleted instructions
173      while (index != end && !getInstructionFromIndex(index))
174        index += InstrSlots::NUM;
175      if (index == end) break;
176
177      MachineInstr *MI = getInstructionFromIndex(index);
178      unsigned SrcReg, DstReg;
179      if (tii_->isMoveInstr(*MI, SrcReg, DstReg))
180        if (SrcReg == li.reg || DstReg == li.reg)
181          continue;
182      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
183        MachineOperand& mop = MI->getOperand(i);
184        if (!mop.isRegister())
185          continue;
186        unsigned PhysReg = mop.getReg();
187        if (PhysReg == 0 || PhysReg == li.reg)
188          continue;
189        if (MRegisterInfo::isVirtualRegister(PhysReg)) {
190          if (!vrm.hasPhys(PhysReg))
191            continue;
192          PhysReg = vrm.getPhys(PhysReg);
193        }
194        if (PhysReg && mri_->regsOverlap(PhysReg, reg))
195          return true;
196      }
197    }
198  }
199
200  return false;
201}
202
203void LiveIntervals::printRegName(unsigned reg) const {
204  if (MRegisterInfo::isPhysicalRegister(reg))
205    cerr << mri_->getName(reg);
206  else
207    cerr << "%reg" << reg;
208}
209
210void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
211                                             MachineBasicBlock::iterator mi,
212                                             unsigned MIIdx,
213                                             LiveInterval &interval) {
214  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
215  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
216
217  // Virtual registers may be defined multiple times (due to phi
218  // elimination and 2-addr elimination).  Much of what we do only has to be
219  // done once for the vreg.  We use an empty interval to detect the first
220  // time we see a vreg.
221  if (interval.empty()) {
222    // Get the Idx of the defining instructions.
223    unsigned defIndex = getDefIndex(MIIdx);
224    VNInfo *ValNo;
225    unsigned SrcReg, DstReg;
226    if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
227      ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
228    else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
229      ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
230                                    VNInfoAllocator);
231    else
232      ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
233
234    assert(ValNo->id == 0 && "First value in interval is not 0?");
235
236    // Loop over all of the blocks that the vreg is defined in.  There are
237    // two cases we have to handle here.  The most common case is a vreg
238    // whose lifetime is contained within a basic block.  In this case there
239    // will be a single kill, in MBB, which comes after the definition.
240    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
241      // FIXME: what about dead vars?
242      unsigned killIdx;
243      if (vi.Kills[0] != mi)
244        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
245      else
246        killIdx = defIndex+1;
247
248      // If the kill happens after the definition, we have an intra-block
249      // live range.
250      if (killIdx > defIndex) {
251        assert(vi.AliveBlocks.none() &&
252               "Shouldn't be alive across any blocks!");
253        LiveRange LR(defIndex, killIdx, ValNo);
254        interval.addRange(LR);
255        DOUT << " +" << LR << "\n";
256        interval.addKill(ValNo, killIdx);
257        return;
258      }
259    }
260
261    // The other case we handle is when a virtual register lives to the end
262    // of the defining block, potentially live across some blocks, then is
263    // live into some number of blocks, but gets killed.  Start by adding a
264    // range that goes from this definition to the end of the defining block.
265    LiveRange NewLR(defIndex,
266                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
267                    ValNo);
268    DOUT << " +" << NewLR;
269    interval.addRange(NewLR);
270
271    // Iterate over all of the blocks that the variable is completely
272    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
273    // live interval.
274    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
275      if (vi.AliveBlocks[i]) {
276        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
277        if (!MBB->empty()) {
278          LiveRange LR(getMBBStartIdx(i),
279                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
280                       ValNo);
281          interval.addRange(LR);
282          DOUT << " +" << LR;
283        }
284      }
285    }
286
287    // Finally, this virtual register is live from the start of any killing
288    // block to the 'use' slot of the killing instruction.
289    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
290      MachineInstr *Kill = vi.Kills[i];
291      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
292      LiveRange LR(getMBBStartIdx(Kill->getParent()),
293                   killIdx, ValNo);
294      interval.addRange(LR);
295      interval.addKill(ValNo, killIdx);
296      DOUT << " +" << LR;
297    }
298
299  } else {
300    // If this is the second time we see a virtual register definition, it
301    // must be due to phi elimination or two addr elimination.  If this is
302    // the result of two address elimination, then the vreg is one of the
303    // def-and-use register operand.
304    if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
305      // If this is a two-address definition, then we have already processed
306      // the live range.  The only problem is that we didn't realize there
307      // are actually two values in the live interval.  Because of this we
308      // need to take the LiveRegion that defines this register and split it
309      // into two values.
310      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
311      unsigned RedefIndex = getDefIndex(MIIdx);
312
313      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
314      VNInfo *OldValNo = OldLR->valno;
315      unsigned OldEnd = OldLR->end;
316
317      // Delete the initial value, which should be short and continuous,
318      // because the 2-addr copy must be in the same MBB as the redef.
319      interval.removeRange(DefIndex, RedefIndex);
320
321      // Two-address vregs should always only be redefined once.  This means
322      // that at this point, there should be exactly one value number in it.
323      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
324
325      // The new value number (#1) is defined by the instruction we claimed
326      // defined value #0.
327      VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
328      interval.copyValNumInfo(ValNo, OldValNo);
329
330      // Value#0 is now defined by the 2-addr instruction.
331      OldValNo->def = RedefIndex;
332      OldValNo->reg = 0;
333
334      // Add the new live interval which replaces the range for the input copy.
335      LiveRange LR(DefIndex, RedefIndex, ValNo);
336      DOUT << " replace range with " << LR;
337      interval.addRange(LR);
338      interval.addKill(ValNo, RedefIndex);
339      interval.removeKills(ValNo, RedefIndex, OldEnd);
340
341      // If this redefinition is dead, we need to add a dummy unit live
342      // range covering the def slot.
343      if (lv_->RegisterDefIsDead(mi, interval.reg))
344        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
345
346      DOUT << " RESULT: ";
347      interval.print(DOUT, mri_);
348
349    } else {
350      // Otherwise, this must be because of phi elimination.  If this is the
351      // first redefinition of the vreg that we have seen, go back and change
352      // the live range in the PHI block to be a different value number.
353      if (interval.containsOneValue()) {
354        assert(vi.Kills.size() == 1 &&
355               "PHI elimination vreg should have one kill, the PHI itself!");
356
357        // Remove the old range that we now know has an incorrect number.
358        VNInfo *VNI = interval.getValNumInfo(0);
359        MachineInstr *Killer = vi.Kills[0];
360        unsigned Start = getMBBStartIdx(Killer->getParent());
361        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
362        DOUT << " Removing [" << Start << "," << End << "] from: ";
363        interval.print(DOUT, mri_); DOUT << "\n";
364        interval.removeRange(Start, End);
365        interval.addKill(VNI, Start);
366        VNI->hasPHIKill = true;
367        DOUT << " RESULT: "; interval.print(DOUT, mri_);
368
369        // Replace the interval with one of a NEW value number.  Note that this
370        // value number isn't actually defined by an instruction, weird huh? :)
371        LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
372        DOUT << " replace range with " << LR;
373        interval.addRange(LR);
374        interval.addKill(LR.valno, End);
375        DOUT << " RESULT: "; interval.print(DOUT, mri_);
376      }
377
378      // In the case of PHI elimination, each variable definition is only
379      // live until the end of the block.  We've already taken care of the
380      // rest of the live range.
381      unsigned defIndex = getDefIndex(MIIdx);
382
383      VNInfo *ValNo;
384      unsigned SrcReg, DstReg;
385      if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
386        ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
387      else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
388        ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
389                                      VNInfoAllocator);
390      else
391        ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
392
393      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
394      LiveRange LR(defIndex, killIndex, ValNo);
395      interval.addRange(LR);
396      interval.addKill(ValNo, killIndex);
397      ValNo->hasPHIKill = true;
398      DOUT << " +" << LR;
399    }
400  }
401
402  DOUT << '\n';
403}
404
405void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
406                                              MachineBasicBlock::iterator mi,
407                                              unsigned MIIdx,
408                                              LiveInterval &interval,
409                                              unsigned SrcReg) {
410  // A physical register cannot be live across basic block, so its
411  // lifetime must end somewhere in its defining basic block.
412  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
413
414  unsigned baseIndex = MIIdx;
415  unsigned start = getDefIndex(baseIndex);
416  unsigned end = start;
417
418  // If it is not used after definition, it is considered dead at
419  // the instruction defining it. Hence its interval is:
420  // [defSlot(def), defSlot(def)+1)
421  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
422    DOUT << " dead";
423    end = getDefIndex(start) + 1;
424    goto exit;
425  }
426
427  // If it is not dead on definition, it must be killed by a
428  // subsequent instruction. Hence its interval is:
429  // [defSlot(def), useSlot(kill)+1)
430  while (++mi != MBB->end()) {
431    baseIndex += InstrSlots::NUM;
432    if (lv_->KillsRegister(mi, interval.reg)) {
433      DOUT << " killed";
434      end = getUseIndex(baseIndex) + 1;
435      goto exit;
436    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
437      // Another instruction redefines the register before it is ever read.
438      // Then the register is essentially dead at the instruction that defines
439      // it. Hence its interval is:
440      // [defSlot(def), defSlot(def)+1)
441      DOUT << " dead";
442      end = getDefIndex(start) + 1;
443      goto exit;
444    }
445  }
446
447  // The only case we should have a dead physreg here without a killing or
448  // instruction where we know it's dead is if it is live-in to the function
449  // and never used.
450  assert(!SrcReg && "physreg was not killed in defining block!");
451  end = getDefIndex(start) + 1;  // It's dead.
452
453exit:
454  assert(start < end && "did not find end of interval?");
455
456  // Already exists? Extend old live interval.
457  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
458  VNInfo *ValNo = (OldLR != interval.end())
459    ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
460  LiveRange LR(start, end, ValNo);
461  interval.addRange(LR);
462  interval.addKill(LR.valno, end);
463  DOUT << " +" << LR << '\n';
464}
465
466void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
467                                      MachineBasicBlock::iterator MI,
468                                      unsigned MIIdx,
469                                      unsigned reg) {
470  if (MRegisterInfo::isVirtualRegister(reg))
471    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
472  else if (allocatableRegs_[reg]) {
473    unsigned SrcReg, DstReg;
474    if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
475      SrcReg = MI->getOperand(1).getReg();
476    else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
477      SrcReg = 0;
478    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
479    // Def of a register also defines its sub-registers.
480    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
481      // Avoid processing some defs more than once.
482      if (!MI->findRegisterDefOperand(*AS))
483        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
484  }
485}
486
487void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
488                                         unsigned MIIdx,
489                                         LiveInterval &interval, bool isAlias) {
490  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
491
492  // Look for kills, if it reaches a def before it's killed, then it shouldn't
493  // be considered a livein.
494  MachineBasicBlock::iterator mi = MBB->begin();
495  unsigned baseIndex = MIIdx;
496  unsigned start = baseIndex;
497  unsigned end = start;
498  while (mi != MBB->end()) {
499    if (lv_->KillsRegister(mi, interval.reg)) {
500      DOUT << " killed";
501      end = getUseIndex(baseIndex) + 1;
502      goto exit;
503    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
504      // Another instruction redefines the register before it is ever read.
505      // Then the register is essentially dead at the instruction that defines
506      // it. Hence its interval is:
507      // [defSlot(def), defSlot(def)+1)
508      DOUT << " dead";
509      end = getDefIndex(start) + 1;
510      goto exit;
511    }
512
513    baseIndex += InstrSlots::NUM;
514    ++mi;
515  }
516
517exit:
518  // Live-in register might not be used at all.
519  if (end == MIIdx) {
520    if (isAlias) {
521      DOUT << " dead";
522      end = getDefIndex(MIIdx) + 1;
523    } else {
524      DOUT << " live through";
525      end = baseIndex;
526    }
527  }
528
529  LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
530  interval.addRange(LR);
531  interval.addKill(LR.valno, end);
532  DOUT << " +" << LR << '\n';
533}
534
535/// computeIntervals - computes the live intervals for virtual
536/// registers. for some ordering of the machine instructions [1,N] a
537/// live interval is an interval [i, j) where 1 <= i <= j < N for
538/// which a variable is live
539void LiveIntervals::computeIntervals() {
540  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
541       << "********** Function: "
542       << ((Value*)mf_->getFunction())->getName() << '\n';
543  // Track the index of the current machine instr.
544  unsigned MIIndex = 0;
545  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
546       MBBI != E; ++MBBI) {
547    MachineBasicBlock *MBB = MBBI;
548    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
549
550    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
551
552    // Create intervals for live-ins to this BB first.
553    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
554           LE = MBB->livein_end(); LI != LE; ++LI) {
555      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
556      // Multiple live-ins can alias the same register.
557      for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
558        if (!hasInterval(*AS))
559          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
560                               true);
561    }
562
563    for (; MI != miEnd; ++MI) {
564      DOUT << MIIndex << "\t" << *MI;
565
566      // Handle defs.
567      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
568        MachineOperand &MO = MI->getOperand(i);
569        // handle register defs - build intervals
570        if (MO.isRegister() && MO.getReg() && MO.isDef())
571          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
572      }
573
574      MIIndex += InstrSlots::NUM;
575    }
576  }
577}
578
579bool LiveIntervals::findLiveInMBBs(const LiveRange &LR,
580                              SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
581  std::vector<IdxMBBPair>::const_iterator I =
582    std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), LR.start);
583
584  bool ResVal = false;
585  while (I != Idx2MBBMap.end()) {
586    if (LR.end <= I->first)
587      break;
588    MBBs.push_back(I->second);
589    ResVal = true;
590    ++I;
591  }
592  return ResVal;
593}
594
595
596LiveInterval LiveIntervals::createInterval(unsigned reg) {
597  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
598                       HUGE_VALF : 0.0F;
599  return LiveInterval(reg, Weight);
600}
601
602
603//===----------------------------------------------------------------------===//
604// Register allocator hooks.
605//
606
607/// isReMaterializable - Returns true if the definition MI of the specified
608/// val# of the specified interval is re-materializable.
609bool LiveIntervals::isReMaterializable(const LiveInterval &li,
610                                       const VNInfo *ValNo, MachineInstr *MI) {
611  if (DisableReMat)
612    return false;
613
614  if (tii_->isTriviallyReMaterializable(MI))
615    return true;
616
617  int FrameIdx = 0;
618  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
619      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
620    return false;
621
622  // This is a load from fixed stack slot. It can be rematerialized unless it's
623  // re-defined by a two-address instruction.
624  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
625       i != e; ++i) {
626    const VNInfo *VNI = *i;
627    if (VNI == ValNo)
628      continue;
629    unsigned DefIdx = VNI->def;
630    if (DefIdx == ~1U)
631      continue; // Dead val#.
632    MachineInstr *DefMI = (DefIdx == ~0u)
633      ? NULL : getInstructionFromIndex(DefIdx);
634    if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
635      return false;
636  }
637  return true;
638}
639
640/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
641/// slot / to reg or any rematerialized load into ith operand of specified
642/// MI. If it is successul, MI is updated with the newly created MI and
643/// returns true.
644bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
645                                         VirtRegMap &vrm,
646                                         MachineInstr *DefMI,
647                                         unsigned index, unsigned i,
648                                         bool isSS, int slot, unsigned reg) {
649  MachineInstr *fmi = isSS
650    ? mri_->foldMemoryOperand(MI, i, slot)
651    : mri_->foldMemoryOperand(MI, i, DefMI);
652  if (fmi) {
653    // Attempt to fold the memory reference into the instruction. If
654    // we can do this, we don't need to insert spill code.
655    if (lv_)
656      lv_->instructionChanged(MI, fmi);
657    else
658      LiveVariables::transferKillDeadInfo(MI, fmi, mri_);
659    MachineBasicBlock &MBB = *MI->getParent();
660    if (isSS) {
661      if (!mf_->getFrameInfo()->isFixedObjectIndex(slot))
662        vrm.virtFolded(reg, MI, i, fmi);
663    }
664    vrm.transferSpillPts(MI, fmi);
665    vrm.transferRestorePts(MI, fmi);
666    mi2iMap_.erase(MI);
667    i2miMap_[index/InstrSlots::NUM] = fmi;
668    mi2iMap_[fmi] = index;
669    MI = MBB.insert(MBB.erase(MI), fmi);
670    ++numFolds;
671    return true;
672  }
673  return false;
674}
675
676bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
677  SmallPtrSet<MachineBasicBlock*, 4> MBBs;
678  for (LiveInterval::Ranges::const_iterator
679         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
680    std::vector<IdxMBBPair>::const_iterator II =
681      std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start);
682    if (II == Idx2MBBMap.end())
683      continue;
684    if (I->end > II->first)  // crossing a MBB.
685      return false;
686    MBBs.insert(II->second);
687    if (MBBs.size() > 1)
688      return false;
689  }
690  return true;
691}
692
693/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
694/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
695void LiveIntervals::
696rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
697                 unsigned id, unsigned index, unsigned end,  MachineInstr *MI,
698                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
699                 unsigned Slot, int LdSlot,
700                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
701                 VirtRegMap &vrm, SSARegMap *RegMap,
702                 const TargetRegisterClass* rc,
703                 SmallVector<int, 4> &ReMatIds,
704                 unsigned &NewVReg, bool &HasDef, bool &HasUse,
705                 const LoopInfo *loopInfo,
706                 std::map<unsigned,unsigned> &MBBVRegsMap,
707                 std::vector<LiveInterval*> &NewLIs) {
708 RestartInstruction:
709  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
710    MachineOperand& mop = MI->getOperand(i);
711    if (!mop.isRegister())
712      continue;
713    unsigned Reg = mop.getReg();
714    unsigned RegI = Reg;
715    if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
716      continue;
717    unsigned SubIdx = mop.getSubReg();
718    bool isSubReg = SubIdx != 0;
719    if (Reg != li.reg)
720      continue;
721
722    bool TryFold = !DefIsReMat;
723    bool FoldSS = true; // Default behavior unless it's a remat.
724    int FoldSlot = Slot;
725    if (DefIsReMat) {
726      // If this is the rematerializable definition MI itself and
727      // all of its uses are rematerialized, simply delete it.
728      if (MI == ReMatOrigDefMI && CanDelete) {
729        RemoveMachineInstrFromMaps(MI);
730        vrm.RemoveMachineInstrFromMaps(MI);
731        MI->eraseFromParent();
732        break;
733      }
734
735      // If def for this use can't be rematerialized, then try folding.
736      // If def is rematerializable and it's a load, also try folding.
737      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
738      if (isLoad) {
739        // Try fold loads (from stack slot, constant pool, etc.) into uses.
740        FoldSS = isLoadSS;
741        FoldSlot = LdSlot;
742      }
743    }
744
745    // Do not fold load / store here if we are splitting. We'll find an
746    // optimal point to insert a load / store later.
747    if (TryFold)
748      TryFold = !TrySplit && NewVReg == 0;
749
750    // FIXME: fold subreg use
751    if (!isSubReg && TryFold &&
752        tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, i, FoldSS, FoldSlot,
753                             Reg))
754      // Folding the load/store can completely change the instruction in
755      // unpredictable ways, rescan it from the beginning.
756      goto RestartInstruction;
757
758    // Create a new virtual register for the spill interval.
759    bool CreatedNewVReg = false;
760    if (NewVReg == 0) {
761      NewVReg = RegMap->createVirtualRegister(rc);
762      vrm.grow();
763      CreatedNewVReg = true;
764    }
765    mop.setReg(NewVReg);
766
767    // Scan all of the operands of this instruction rewriting operands
768    // to use NewVReg instead of li.reg as appropriate.  We do this for
769    // two reasons:
770    //
771    //   1. If the instr reads the same spilled vreg multiple times, we
772    //      want to reuse the NewVReg.
773    //   2. If the instr is a two-addr instruction, we are required to
774    //      keep the src/dst regs pinned.
775    //
776    // Keep track of whether we replace a use and/or def so that we can
777    // create the spill interval with the appropriate range.
778
779    HasUse = mop.isUse();
780    HasDef = mop.isDef();
781    for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
782      if (!MI->getOperand(j).isRegister())
783        continue;
784      unsigned RegJ = MI->getOperand(j).getReg();
785      if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ))
786        continue;
787      if (RegJ == RegI) {
788        MI->getOperand(j).setReg(NewVReg);
789        HasUse |= MI->getOperand(j).isUse();
790        HasDef |= MI->getOperand(j).isDef();
791      }
792    }
793
794    if (CreatedNewVReg) {
795      if (DefIsReMat) {
796        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
797        if (ReMatIds[id] == VirtRegMap::MAX_STACK_SLOT) {
798          // Each valnum may have its own remat id.
799          ReMatIds[id] = vrm.assignVirtReMatId(NewVReg);
800        } else {
801          vrm.assignVirtReMatId(NewVReg, ReMatIds[id]);
802        }
803        if (!CanDelete || (HasUse && HasDef)) {
804          // If this is a two-addr instruction then its use operands are
805          // rematerializable but its def is not. It should be assigned a
806          // stack slot.
807          vrm.assignVirt2StackSlot(NewVReg, Slot);
808        }
809      } else {
810        vrm.assignVirt2StackSlot(NewVReg, Slot);
811      }
812    } else if (HasUse && HasDef &&
813               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
814      // If this interval hasn't been assigned a stack slot (because earlier
815      // def is a deleted remat def), do it now.
816      assert(Slot != VirtRegMap::NO_STACK_SLOT);
817      vrm.assignVirt2StackSlot(NewVReg, Slot);
818    }
819
820    // create a new register interval for this spill / remat.
821    LiveInterval &nI = getOrCreateInterval(NewVReg);
822    if (CreatedNewVReg) {
823      NewLIs.push_back(&nI);
824      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
825      if (TrySplit)
826        vrm.setIsSplitFromReg(NewVReg, li.reg);
827    }
828
829    if (HasUse) {
830      if (CreatedNewVReg) {
831        LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
832                     nI.getNextValue(~0U, 0, VNInfoAllocator));
833        DOUT << " +" << LR;
834        nI.addRange(LR);
835      } else {
836        // Extend the split live interval to this def / use.
837        unsigned End = getUseIndex(index)+1;
838        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
839                     nI.getValNumInfo(nI.getNumValNums()-1));
840        DOUT << " +" << LR;
841        nI.addRange(LR);
842      }
843    }
844    if (HasDef) {
845      LiveRange LR(getDefIndex(index), getStoreIndex(index),
846                   nI.getNextValue(~0U, 0, VNInfoAllocator));
847      DOUT << " +" << LR;
848      nI.addRange(LR);
849    }
850
851    DOUT << "\t\t\t\tAdded new interval: ";
852    nI.print(DOUT, mri_);
853    DOUT << '\n';
854  }
855}
856
857bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
858                                   const VNInfo *VNI,
859                                   MachineBasicBlock *MBB, unsigned Idx) const {
860  unsigned End = getMBBEndIdx(MBB);
861  for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
862    unsigned KillIdx = VNI->kills[j];
863    if (KillIdx > Idx && KillIdx < End)
864      return true;
865  }
866  return false;
867}
868
869static const VNInfo *findDefinedVNInfo(const LiveInterval &li, unsigned DefIdx) {
870  const VNInfo *VNI = NULL;
871  for (LiveInterval::const_vni_iterator i = li.vni_begin(),
872         e = li.vni_end(); i != e; ++i)
873    if ((*i)->def == DefIdx) {
874      VNI = *i;
875      break;
876    }
877  return VNI;
878}
879
880void LiveIntervals::
881rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
882                    LiveInterval::Ranges::const_iterator &I,
883                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
884                    unsigned Slot, int LdSlot,
885                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
886                    VirtRegMap &vrm, SSARegMap *RegMap,
887                    const TargetRegisterClass* rc,
888                    SmallVector<int, 4> &ReMatIds,
889                    const LoopInfo *loopInfo,
890                    BitVector &SpillMBBs,
891                    std::map<unsigned, std::vector<SRInfo> > &SpillIdxes,
892                    BitVector &RestoreMBBs,
893                    std::map<unsigned, std::vector<SRInfo> > &RestoreIdxes,
894                    std::map<unsigned,unsigned> &MBBVRegsMap,
895                    std::vector<LiveInterval*> &NewLIs) {
896  unsigned NewVReg = 0;
897  unsigned index = getBaseIndex(I->start);
898  unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
899  bool TrySplitMI = TrySplit && vrm.getPreSplitReg(li.reg) == 0;
900  for (; index != end; index += InstrSlots::NUM) {
901    // skip deleted instructions
902    while (index != end && !getInstructionFromIndex(index))
903      index += InstrSlots::NUM;
904    if (index == end) break;
905
906    MachineInstr *MI = getInstructionFromIndex(index);
907    MachineBasicBlock *MBB = MI->getParent();
908    NewVReg = 0;
909    if (TrySplitMI) {
910      std::map<unsigned,unsigned>::const_iterator NVI =
911        MBBVRegsMap.find(MBB->getNumber());
912      if (NVI != MBBVRegsMap.end()) {
913        NewVReg = NVI->second;
914        // One common case:
915        // x = use
916        // ...
917        // ...
918        // def = ...
919        //     = use
920        // It's better to start a new interval to avoid artifically
921        // extend the new interval.
922        // FIXME: Too slow? Can we fix it after rewriteInstructionsForSpills?
923        bool MIHasUse = false;
924        bool MIHasDef = false;
925        for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
926          MachineOperand& mop = MI->getOperand(i);
927          if (!mop.isRegister() || mop.getReg() != li.reg)
928            continue;
929          if (mop.isUse())
930            MIHasUse = true;
931          else
932            MIHasDef = true;
933        }
934        if (MIHasDef && !MIHasUse) {
935          MBBVRegsMap.erase(MBB->getNumber());
936          NewVReg = 0;
937        }
938      }
939    }
940    bool IsNew = NewVReg == 0;
941    bool HasDef = false;
942    bool HasUse = false;
943    rewriteInstructionForSpills(li, TrySplitMI, I->valno->id, index, end,
944                                MI, ReMatOrigDefMI, ReMatDefMI, Slot, LdSlot,
945                                isLoad, isLoadSS, DefIsReMat, CanDelete, vrm,
946                                RegMap, rc, ReMatIds, NewVReg, HasDef, HasUse,
947                                loopInfo, MBBVRegsMap, NewLIs);
948    if (!HasDef && !HasUse)
949      continue;
950
951    // Update weight of spill interval.
952    LiveInterval &nI = getOrCreateInterval(NewVReg);
953    if (!TrySplitMI) {
954      // The spill weight is now infinity as it cannot be spilled again.
955      nI.weight = HUGE_VALF;
956      continue;
957    }
958
959    // Keep track of the last def and first use in each MBB.
960    unsigned MBBId = MBB->getNumber();
961    if (HasDef) {
962      if (MI != ReMatOrigDefMI || !CanDelete) {
963        bool HasKill = false;
964        if (!HasUse)
965          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
966        else {
967          // If this is a two-address code, then this index starts a new VNInfo.
968          const VNInfo *VNI = findDefinedVNInfo(li, getDefIndex(index));
969          if (VNI)
970            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
971        }
972        if (!HasKill) {
973          std::map<unsigned, std::vector<SRInfo> >::iterator SII =
974            SpillIdxes.find(MBBId);
975          if (SII == SpillIdxes.end()) {
976            std::vector<SRInfo> S;
977            S.push_back(SRInfo(index, NewVReg, true));
978            SpillIdxes.insert(std::make_pair(MBBId, S));
979          } else if (SII->second.back().vreg != NewVReg) {
980            SII->second.push_back(SRInfo(index, NewVReg, true));
981          } else if ((int)index > SII->second.back().index) {
982            // If there is an earlier def and this is a two-address
983            // instruction, then it's not possible to fold the store (which
984            // would also fold the load).
985            SRInfo &Info = SII->second.back();
986            Info.index = index;
987            Info.canFold = !HasUse;
988          }
989          SpillMBBs.set(MBBId);
990        }
991      }
992    }
993
994    if (HasUse) {
995      std::map<unsigned, std::vector<SRInfo> >::iterator SII =
996        SpillIdxes.find(MBBId);
997      if (SII != SpillIdxes.end() &&
998          SII->second.back().vreg == NewVReg &&
999          (int)index > SII->second.back().index)
1000        // Use(s) following the last def, it's not safe to fold the spill.
1001        SII->second.back().canFold = false;
1002      std::map<unsigned, std::vector<SRInfo> >::iterator RII =
1003        RestoreIdxes.find(MBBId);
1004      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
1005        // If we are splitting live intervals, only fold if it's the first
1006        // use and there isn't another use later in the MBB.
1007        RII->second.back().canFold = false;
1008      else if (IsNew) {
1009        // Only need a reload if there isn't an earlier def / use.
1010        if (RII == RestoreIdxes.end()) {
1011          std::vector<SRInfo> Infos;
1012          Infos.push_back(SRInfo(index, NewVReg, true));
1013          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
1014        } else {
1015          RII->second.push_back(SRInfo(index, NewVReg, true));
1016        }
1017        RestoreMBBs.set(MBBId);
1018      }
1019    }
1020
1021    // Update spill weight.
1022    unsigned loopDepth = loopInfo->getLoopDepth(MBB->getBasicBlock());
1023    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
1024  }
1025}
1026
1027bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
1028                        BitVector &RestoreMBBs,
1029                        std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
1030  if (!RestoreMBBs[Id])
1031    return false;
1032  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
1033  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
1034    if (Restores[i].index == index &&
1035        Restores[i].vreg == vr &&
1036        Restores[i].canFold)
1037      return true;
1038  return false;
1039}
1040
1041void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
1042                        BitVector &RestoreMBBs,
1043                        std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
1044  if (!RestoreMBBs[Id])
1045    return;
1046  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
1047  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
1048    if (Restores[i].index == index && Restores[i].vreg)
1049      Restores[i].index = -1;
1050}
1051
1052
1053std::vector<LiveInterval*> LiveIntervals::
1054addIntervalsForSpills(const LiveInterval &li,
1055                      const LoopInfo *loopInfo, VirtRegMap &vrm) {
1056  // Since this is called after the analysis is done we don't know if
1057  // LiveVariables is available
1058  lv_ = getAnalysisToUpdate<LiveVariables>();
1059
1060  assert(li.weight != HUGE_VALF &&
1061         "attempt to spill already spilled interval!");
1062
1063  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
1064  li.print(DOUT, mri_);
1065  DOUT << '\n';
1066
1067  // Each bit specify whether it a spill is required in the MBB.
1068  BitVector SpillMBBs(mf_->getNumBlockIDs());
1069  std::map<unsigned, std::vector<SRInfo> > SpillIdxes;
1070  BitVector RestoreMBBs(mf_->getNumBlockIDs());
1071  std::map<unsigned, std::vector<SRInfo> > RestoreIdxes;
1072  std::map<unsigned,unsigned> MBBVRegsMap;
1073  std::vector<LiveInterval*> NewLIs;
1074  SSARegMap *RegMap = mf_->getSSARegMap();
1075  const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
1076
1077  unsigned NumValNums = li.getNumValNums();
1078  SmallVector<MachineInstr*, 4> ReMatDefs;
1079  ReMatDefs.resize(NumValNums, NULL);
1080  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
1081  ReMatOrigDefs.resize(NumValNums, NULL);
1082  SmallVector<int, 4> ReMatIds;
1083  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
1084  BitVector ReMatDelete(NumValNums);
1085  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
1086
1087  // Spilling a split live interval. It cannot be split any further. Also,
1088  // it's also guaranteed to be a single val# / range interval.
1089  if (vrm.getPreSplitReg(li.reg)) {
1090    vrm.setIsSplitFromReg(li.reg, 0);
1091    bool DefIsReMat = vrm.isReMaterialized(li.reg);
1092    Slot = vrm.getStackSlot(li.reg);
1093    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
1094    MachineInstr *ReMatDefMI = DefIsReMat ?
1095      vrm.getReMaterializedMI(li.reg) : NULL;
1096    int LdSlot = 0;
1097    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1098    bool isLoad = isLoadSS ||
1099      (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
1100    bool IsFirstRange = true;
1101    for (LiveInterval::Ranges::const_iterator
1102           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
1103      // If this is a split live interval with multiple ranges, it means there
1104      // are two-address instructions that re-defined the value. Only the
1105      // first def can be rematerialized!
1106      if (IsFirstRange) {
1107        // Note ReMatOrigDefMI has already been deleted.
1108        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
1109                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
1110                             false, vrm, RegMap, rc, ReMatIds, loopInfo,
1111                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1112                             MBBVRegsMap, NewLIs);
1113      } else {
1114        rewriteInstructionsForSpills(li, false, I, NULL, 0,
1115                             Slot, 0, false, false, false,
1116                             false, vrm, RegMap, rc, ReMatIds, loopInfo,
1117                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1118                             MBBVRegsMap, NewLIs);
1119      }
1120      IsFirstRange = false;
1121    }
1122    return NewLIs;
1123  }
1124
1125  bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
1126  if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
1127    TrySplit = false;
1128  if (TrySplit)
1129    ++numSplits;
1130  bool NeedStackSlot = false;
1131  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
1132       i != e; ++i) {
1133    const VNInfo *VNI = *i;
1134    unsigned VN = VNI->id;
1135    unsigned DefIdx = VNI->def;
1136    if (DefIdx == ~1U)
1137      continue; // Dead val#.
1138    // Is the def for the val# rematerializable?
1139    MachineInstr *ReMatDefMI = (DefIdx == ~0u)
1140      ? 0 : getInstructionFromIndex(DefIdx);
1141    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI)) {
1142      // Remember how to remat the def of this val#.
1143      ReMatOrigDefs[VN] = ReMatDefMI;
1144      // Original def may be modified so we have to make a copy here. vrm must
1145      // delete these!
1146      ReMatDefs[VN] = ReMatDefMI = ReMatDefMI->clone();
1147      vrm.setVirtIsReMaterialized(li.reg, ReMatDefMI);
1148
1149      bool CanDelete = true;
1150      if (VNI->hasPHIKill) {
1151        // A kill is a phi node, not all of its uses can be rematerialized.
1152        // It must not be deleted.
1153        CanDelete = false;
1154        // Need a stack slot if there is any live range where uses cannot be
1155        // rematerialized.
1156        NeedStackSlot = true;
1157      }
1158      if (CanDelete)
1159        ReMatDelete.set(VN);
1160    } else {
1161      // Need a stack slot if there is any live range where uses cannot be
1162      // rematerialized.
1163      NeedStackSlot = true;
1164    }
1165  }
1166
1167  // One stack slot per live interval.
1168  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0)
1169    Slot = vrm.assignVirt2StackSlot(li.reg);
1170
1171  // Create new intervals and rewrite defs and uses.
1172  for (LiveInterval::Ranges::const_iterator
1173         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
1174    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
1175    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
1176    bool DefIsReMat = ReMatDefMI != NULL;
1177    bool CanDelete = ReMatDelete[I->valno->id];
1178    int LdSlot = 0;
1179    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1180    bool isLoad = isLoadSS ||
1181      (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
1182    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
1183                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
1184                               CanDelete, vrm, RegMap, rc, ReMatIds, loopInfo,
1185                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1186                               MBBVRegsMap, NewLIs);
1187  }
1188
1189  // Insert spills / restores if we are splitting.
1190  if (!TrySplit)
1191    return NewLIs;
1192
1193  if (NeedStackSlot) {
1194    int Id = SpillMBBs.find_first();
1195    while (Id != -1) {
1196      std::vector<SRInfo> &spills = SpillIdxes[Id];
1197      for (unsigned i = 0, e = spills.size(); i != e; ++i) {
1198        int index = spills[i].index;
1199        unsigned VReg = spills[i].vreg;
1200        bool DoFold = spills[i].canFold;
1201        bool isReMat = vrm.isReMaterialized(VReg);
1202        MachineInstr *MI = getInstructionFromIndex(index);
1203        int OpIdx = -1;
1204        bool FoldedLoad = false;
1205        if (DoFold) {
1206          for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
1207            MachineOperand &MO = MI->getOperand(j);
1208            if (!MO.isRegister() || MO.getReg() != VReg)
1209              continue;
1210            if (MO.isUse()) {
1211              // Can't fold if it's two-address code and the use isn't the
1212              // first and only use.
1213              // If there are more than one uses, a load is still needed.
1214              if (!isReMat && !FoldedLoad &&
1215                  alsoFoldARestore(Id, index,VReg,RestoreMBBs,RestoreIdxes)) {
1216                FoldedLoad = true;
1217                continue;
1218              } else {
1219                OpIdx = -1;
1220                break;
1221              }
1222            }
1223            OpIdx = (int)j;
1224          }
1225        }
1226        // Fold the store into the def if possible.
1227        if (OpIdx == -1)
1228          DoFold = false;
1229        if (DoFold) {
1230          if (tryFoldMemoryOperand(MI, vrm, NULL, index,OpIdx,true,Slot,VReg)) {
1231            if (FoldedLoad)
1232              // Folded a two-address instruction, do not issue a load.
1233              eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
1234          } else
1235            DoFold = false;
1236        }
1237
1238        // Else tell the spiller to issue a store for us.
1239        if (!DoFold)
1240          vrm.addSpillPoint(VReg, MI);
1241      }
1242      Id = SpillMBBs.find_next(Id);
1243    }
1244  }
1245
1246  int Id = RestoreMBBs.find_first();
1247  while (Id != -1) {
1248    std::vector<SRInfo> &restores = RestoreIdxes[Id];
1249    for (unsigned i = 0, e = restores.size(); i != e; ++i) {
1250      int index = restores[i].index;
1251      if (index == -1)
1252        continue;
1253      unsigned VReg = restores[i].vreg;
1254      bool DoFold = restores[i].canFold;
1255      MachineInstr *MI = getInstructionFromIndex(index);
1256      int OpIdx = -1;
1257      if (DoFold) {
1258        for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
1259          MachineOperand &MO = MI->getOperand(j);
1260          if (!MO.isRegister() || MO.getReg() != VReg)
1261            continue;
1262          if (MO.isDef()) {
1263            // Can't fold if it's two-address code.
1264            OpIdx = -1;
1265            break;
1266          }
1267          if (OpIdx != -1) {
1268            // Multiple uses, do not fold!
1269            OpIdx = -1;
1270            break;
1271          }
1272          OpIdx = (int)j;
1273        }
1274      }
1275
1276      // Fold the load into the use if possible.
1277      if (OpIdx == -1)
1278        DoFold = false;
1279      if (DoFold) {
1280        if (vrm.isReMaterialized(VReg)) {
1281          MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
1282          int LdSlot = 0;
1283          bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1284          // If the rematerializable def is a load, also try to fold it.
1285          if (isLoadSS ||
1286              (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG))
1287            DoFold = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index, OpIdx,
1288                                          isLoadSS, LdSlot, VReg);
1289          else
1290            DoFold = false;
1291        } else
1292          DoFold = tryFoldMemoryOperand(MI, vrm, NULL, index, OpIdx,
1293                                        true, Slot, VReg);
1294      }
1295      // If folding is not possible / failed, then tell the spiller to issue a
1296      // load / rematerialization for us.
1297      if (!DoFold)
1298        vrm.addRestorePoint(VReg, MI);
1299    }
1300    Id = RestoreMBBs.find_next(Id);
1301  }
1302
1303  // Finalize spill weights.
1304  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i)
1305    NewLIs[i]->weight /= NewLIs[i]->getSize();
1306
1307  return NewLIs;
1308}
1309