LiveIntervalAnalysis.cpp revision 35f2705e3de4600c3621b883eed9b22e4607ddf4
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37#include <iostream>
38using namespace llvm;
39
40namespace {
41  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
42
43  Statistic<> numIntervals
44  ("liveintervals", "Number of original intervals");
45
46  Statistic<> numIntervalsAfter
47  ("liveintervals", "Number of intervals after coalescing");
48
49  Statistic<> numJoins
50  ("liveintervals", "Number of interval joins performed");
51
52  Statistic<> numPeep
53  ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55  Statistic<> numFolded
56  ("liveintervals", "Number of loads/stores folded into instructions");
57
58  cl::opt<bool>
59  EnableJoining("join-liveintervals",
60                cl::desc("Join compatible live intervals"),
61                cl::init(true));
62};
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
65{
66  AU.addRequired<LiveVariables>();
67  AU.addPreservedID(PHIEliminationID);
68  AU.addRequiredID(PHIEliminationID);
69  AU.addRequiredID(TwoAddressInstructionPassID);
70  AU.addRequired<LoopInfo>();
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74void LiveIntervals::releaseMemory()
75{
76  mi2iMap_.clear();
77  i2miMap_.clear();
78  r2iMap_.clear();
79  r2rMap_.clear();
80}
81
82
83/// runOnMachineFunction - Register allocate the whole function
84///
85bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
86  mf_ = &fn;
87  tm_ = &fn.getTarget();
88  mri_ = tm_->getRegisterInfo();
89  tii_ = tm_->getInstrInfo();
90  lv_ = &getAnalysis<LiveVariables>();
91  allocatableRegs_ = mri_->getAllocatableSet(fn);
92  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
93
94  // If this function has any live ins, insert a dummy instruction at the
95  // beginning of the function that we will pretend "defines" the values.  This
96  // is to make the interval analysis simpler by providing a number.
97  if (fn.livein_begin() != fn.livein_end()) {
98    unsigned FirstLiveIn = fn.livein_begin()->first;
99
100    // Find a reg class that contains this live in.
101    const TargetRegisterClass *RC = 0;
102    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
103           E = mri_->regclass_end(); RCI != E; ++RCI)
104      if ((*RCI)->contains(FirstLiveIn)) {
105        RC = *RCI;
106        break;
107      }
108
109    MachineInstr *OldFirstMI = fn.begin()->begin();
110    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
111                       FirstLiveIn, FirstLiveIn, RC);
112    assert(OldFirstMI != fn.begin()->begin() &&
113           "copyRetToReg didn't insert anything!");
114  }
115
116  // number MachineInstrs
117  unsigned miIndex = 0;
118  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
119       mbb != mbbEnd; ++mbb)
120    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
121         mi != miEnd; ++mi) {
122      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
123      assert(inserted && "multiple MachineInstr -> index mappings");
124      i2miMap_.push_back(mi);
125      miIndex += InstrSlots::NUM;
126    }
127
128  // Note intervals due to live-in values.
129  if (fn.livein_begin() != fn.livein_end()) {
130    MachineBasicBlock *Entry = fn.begin();
131    for (MachineFunction::livein_iterator I = fn.livein_begin(),
132           E = fn.livein_end(); I != E; ++I) {
133      handlePhysicalRegisterDef(Entry, Entry->begin(),
134                                getOrCreateInterval(I->first), 0, 0, true);
135      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
136        handlePhysicalRegisterDef(Entry, Entry->begin(),
137                                  getOrCreateInterval(*AS), 0, 0, true);
138    }
139  }
140
141  computeIntervals();
142
143  numIntervals += getNumIntervals();
144
145  DEBUG(std::cerr << "********** INTERVALS **********\n";
146        for (iterator I = begin(), E = end(); I != E; ++I) {
147          I->second.print(std::cerr, mri_);
148          std::cerr << "\n";
149        });
150
151  // join intervals if requested
152  if (EnableJoining) joinIntervals();
153
154  numIntervalsAfter += getNumIntervals();
155
156  // perform a final pass over the instructions and compute spill
157  // weights, coalesce virtual registers and remove identity moves
158  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
159
160  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
161       mbbi != mbbe; ++mbbi) {
162    MachineBasicBlock* mbb = mbbi;
163    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
164
165    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
166         mii != mie; ) {
167      // if the move will be an identity move delete it
168      unsigned srcReg, dstReg, RegRep;
169      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
170          (RegRep = rep(srcReg)) == rep(dstReg)) {
171        // remove from def list
172        LiveInterval &interval = getOrCreateInterval(RegRep);
173        // remove index -> MachineInstr and
174        // MachineInstr -> index mappings
175        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
176        if (mi2i != mi2iMap_.end()) {
177          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
178          mi2iMap_.erase(mi2i);
179        }
180        mii = mbbi->erase(mii);
181        ++numPeep;
182      }
183      else {
184        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
185          const MachineOperand& mop = mii->getOperand(i);
186          if (mop.isRegister() && mop.getReg() &&
187              MRegisterInfo::isVirtualRegister(mop.getReg())) {
188            // replace register with representative register
189            unsigned reg = rep(mop.getReg());
190            mii->SetMachineOperandReg(i, reg);
191
192            LiveInterval &RegInt = getInterval(reg);
193            RegInt.weight +=
194              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
195          }
196        }
197        ++mii;
198      }
199    }
200  }
201
202  DEBUG(dump());
203  return true;
204}
205
206/// print - Implement the dump method.
207void LiveIntervals::print(std::ostream &O, const Module* ) const {
208  O << "********** INTERVALS **********\n";
209  for (const_iterator I = begin(), E = end(); I != E; ++I) {
210    I->second.print(std::cerr, mri_);
211    std::cerr << "\n";
212  }
213
214  O << "********** MACHINEINSTRS **********\n";
215  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
216       mbbi != mbbe; ++mbbi) {
217    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
218    for (MachineBasicBlock::iterator mii = mbbi->begin(),
219           mie = mbbi->end(); mii != mie; ++mii) {
220      O << getInstructionIndex(mii) << '\t' << *mii;
221    }
222  }
223}
224
225std::vector<LiveInterval*> LiveIntervals::
226addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
227  // since this is called after the analysis is done we don't know if
228  // LiveVariables is available
229  lv_ = getAnalysisToUpdate<LiveVariables>();
230
231  std::vector<LiveInterval*> added;
232
233  assert(li.weight != HUGE_VAL &&
234         "attempt to spill already spilled interval!");
235
236  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
237        << li << '\n');
238
239  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
240
241  for (LiveInterval::Ranges::const_iterator
242         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
243    unsigned index = getBaseIndex(i->start);
244    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
245    for (; index != end; index += InstrSlots::NUM) {
246      // skip deleted instructions
247      while (index != end && !getInstructionFromIndex(index))
248        index += InstrSlots::NUM;
249      if (index == end) break;
250
251      MachineInstr *MI = getInstructionFromIndex(index);
252
253      // NewRegLiveIn - This instruction might have multiple uses of the spilled
254      // register.  In this case, for the first use, keep track of the new vreg
255      // that we reload it into.  If we see a second use, reuse this vreg
256      // instead of creating live ranges for two reloads.
257      unsigned NewRegLiveIn = 0;
258
259    for_operand:
260      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
261        MachineOperand& mop = MI->getOperand(i);
262        if (mop.isRegister() && mop.getReg() == li.reg) {
263          if (NewRegLiveIn && mop.isUse()) {
264            // We already emitted a reload of this value, reuse it for
265            // subsequent operands.
266            MI->SetMachineOperandReg(i, NewRegLiveIn);
267            DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
268                            << " for operand #" << i << '\n');
269          } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
270            // Attempt to fold the memory reference into the instruction.  If we
271            // can do this, we don't need to insert spill code.
272            if (lv_)
273              lv_->instructionChanged(MI, fmi);
274            MachineBasicBlock &MBB = *MI->getParent();
275            vrm.virtFolded(li.reg, MI, i, fmi);
276            mi2iMap_.erase(MI);
277            i2miMap_[index/InstrSlots::NUM] = fmi;
278            mi2iMap_[fmi] = index;
279            MI = MBB.insert(MBB.erase(MI), fmi);
280            ++numFolded;
281            // Folding the load/store can completely change the instruction in
282            // unpredictable ways, rescan it from the beginning.
283            goto for_operand;
284          } else {
285            // This is tricky. We need to add information in the interval about
286            // the spill code so we have to use our extra load/store slots.
287            //
288            // If we have a use we are going to have a load so we start the
289            // interval from the load slot onwards. Otherwise we start from the
290            // def slot.
291            unsigned start = (mop.isUse() ?
292                              getLoadIndex(index) :
293                              getDefIndex(index));
294            // If we have a def we are going to have a store right after it so
295            // we end the interval after the use of the next
296            // instruction. Otherwise we end after the use of this instruction.
297            unsigned end = 1 + (mop.isDef() ?
298                                getStoreIndex(index) :
299                                getUseIndex(index));
300
301            // create a new register for this spill
302            NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
303            MI->SetMachineOperandReg(i, NewRegLiveIn);
304            vrm.grow();
305            vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
306            LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
307            assert(nI.empty());
308
309            // the spill weight is now infinity as it
310            // cannot be spilled again
311            nI.weight = float(HUGE_VAL);
312            LiveRange LR(start, end, nI.getNextValue());
313            DEBUG(std::cerr << " +" << LR);
314            nI.addRange(LR);
315            added.push_back(&nI);
316
317            // update live variables if it is available
318            if (lv_)
319              lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
320
321            // If this is a live in, reuse it for subsequent live-ins.  If it's
322            // a def, we can't do this.
323            if (!mop.isUse()) NewRegLiveIn = 0;
324
325            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
326          }
327        }
328      }
329    }
330  }
331
332  return added;
333}
334
335void LiveIntervals::printRegName(unsigned reg) const
336{
337  if (MRegisterInfo::isPhysicalRegister(reg))
338    std::cerr << mri_->getName(reg);
339  else
340    std::cerr << "%reg" << reg;
341}
342
343void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
344                                             MachineBasicBlock::iterator mi,
345                                             LiveInterval& interval)
346{
347  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
348  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
349
350  // Virtual registers may be defined multiple times (due to phi
351  // elimination and 2-addr elimination).  Much of what we do only has to be
352  // done once for the vreg.  We use an empty interval to detect the first
353  // time we see a vreg.
354  if (interval.empty()) {
355    // Get the Idx of the defining instructions.
356    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
357
358    unsigned ValNum = interval.getNextValue();
359    assert(ValNum == 0 && "First value in interval is not 0?");
360    ValNum = 0;  // Clue in the optimizer.
361
362    // Loop over all of the blocks that the vreg is defined in.  There are
363    // two cases we have to handle here.  The most common case is a vreg
364    // whose lifetime is contained within a basic block.  In this case there
365    // will be a single kill, in MBB, which comes after the definition.
366    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
367      // FIXME: what about dead vars?
368      unsigned killIdx;
369      if (vi.Kills[0] != mi)
370        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
371      else
372        killIdx = defIndex+1;
373
374      // If the kill happens after the definition, we have an intra-block
375      // live range.
376      if (killIdx > defIndex) {
377        assert(vi.AliveBlocks.empty() &&
378               "Shouldn't be alive across any blocks!");
379        LiveRange LR(defIndex, killIdx, ValNum);
380        interval.addRange(LR);
381        DEBUG(std::cerr << " +" << LR << "\n");
382        return;
383      }
384    }
385
386    // The other case we handle is when a virtual register lives to the end
387    // of the defining block, potentially live across some blocks, then is
388    // live into some number of blocks, but gets killed.  Start by adding a
389    // range that goes from this definition to the end of the defining block.
390    LiveRange NewLR(defIndex,
391                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
392                    ValNum);
393    DEBUG(std::cerr << " +" << NewLR);
394    interval.addRange(NewLR);
395
396    // Iterate over all of the blocks that the variable is completely
397    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
398    // live interval.
399    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
400      if (vi.AliveBlocks[i]) {
401        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
402        if (!mbb->empty()) {
403          LiveRange LR(getInstructionIndex(&mbb->front()),
404                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
405                       ValNum);
406          interval.addRange(LR);
407          DEBUG(std::cerr << " +" << LR);
408        }
409      }
410    }
411
412    // Finally, this virtual register is live from the start of any killing
413    // block to the 'use' slot of the killing instruction.
414    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
415      MachineInstr *Kill = vi.Kills[i];
416      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
417                   getUseIndex(getInstructionIndex(Kill))+1,
418                   ValNum);
419      interval.addRange(LR);
420      DEBUG(std::cerr << " +" << LR);
421    }
422
423  } else {
424    // If this is the second time we see a virtual register definition, it
425    // must be due to phi elimination or two addr elimination.  If this is
426    // the result of two address elimination, then the vreg is the first
427    // operand, and is a def-and-use.
428    if (mi->getOperand(0).isRegister() &&
429        mi->getOperand(0).getReg() == interval.reg &&
430        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
431      // If this is a two-address definition, then we have already processed
432      // the live range.  The only problem is that we didn't realize there
433      // are actually two values in the live interval.  Because of this we
434      // need to take the LiveRegion that defines this register and split it
435      // into two values.
436      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
437      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
438
439      // Delete the initial value, which should be short and continuous,
440      // becuase the 2-addr copy must be in the same MBB as the redef.
441      interval.removeRange(DefIndex, RedefIndex);
442
443      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
444      DEBUG(std::cerr << " replace range with " << LR);
445      interval.addRange(LR);
446
447      // If this redefinition is dead, we need to add a dummy unit live
448      // range covering the def slot.
449      if (lv_->RegisterDefIsDead(mi, interval.reg))
450        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
451
452      DEBUG(std::cerr << "RESULT: " << interval);
453
454    } else {
455      // Otherwise, this must be because of phi elimination.  If this is the
456      // first redefinition of the vreg that we have seen, go back and change
457      // the live range in the PHI block to be a different value number.
458      if (interval.containsOneValue()) {
459        assert(vi.Kills.size() == 1 &&
460               "PHI elimination vreg should have one kill, the PHI itself!");
461
462        // Remove the old range that we now know has an incorrect number.
463        MachineInstr *Killer = vi.Kills[0];
464        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
465        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
466        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
467              << interval << "\n");
468        interval.removeRange(Start, End);
469        DEBUG(std::cerr << "RESULT: " << interval);
470
471        // Replace the interval with one of a NEW value number.
472        LiveRange LR(Start, End, interval.getNextValue());
473        DEBUG(std::cerr << " replace range with " << LR);
474        interval.addRange(LR);
475        DEBUG(std::cerr << "RESULT: " << interval);
476      }
477
478      // In the case of PHI elimination, each variable definition is only
479      // live until the end of the block.  We've already taken care of the
480      // rest of the live range.
481      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
482      LiveRange LR(defIndex,
483                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
484                   interval.getNextValue());
485      interval.addRange(LR);
486      DEBUG(std::cerr << " +" << LR);
487    }
488  }
489
490  DEBUG(std::cerr << '\n');
491}
492
493void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
494                                              MachineBasicBlock::iterator mi,
495                                              LiveInterval& interval,
496                                              unsigned SrcReg, unsigned DestReg,
497                                              bool isLiveIn)
498{
499  // A physical register cannot be live across basic block, so its
500  // lifetime must end somewhere in its defining basic block.
501  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
502  typedef LiveVariables::killed_iterator KillIter;
503
504  unsigned baseIndex = getInstructionIndex(mi);
505  unsigned start = getDefIndex(baseIndex);
506  unsigned end = start;
507
508  // If it is not used after definition, it is considered dead at
509  // the instruction defining it. Hence its interval is:
510  // [defSlot(def), defSlot(def)+1)
511  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
512    DEBUG(std::cerr << " dead");
513    end = getDefIndex(start) + 1;
514    goto exit;
515  }
516
517  // If it is not dead on definition, it must be killed by a
518  // subsequent instruction. Hence its interval is:
519  // [defSlot(def), useSlot(kill)+1)
520  while (++mi != MBB->end()) {
521    baseIndex += InstrSlots::NUM;
522    if (lv_->KillsRegister(mi, interval.reg)) {
523      DEBUG(std::cerr << " killed");
524      end = getUseIndex(baseIndex) + 1;
525      goto exit;
526    }
527  }
528
529  // The only case we should have a dead physreg here without a killing or
530  // instruction where we know it's dead is if it is live-in to the function
531  // and never used.
532  assert(isLiveIn && "physreg was not killed in defining block!");
533  end = getDefIndex(start) + 1;  // It's dead.
534
535exit:
536  assert(start < end && "did not find end of interval?");
537
538  // Finally, if this is defining a new range for the physical register, and if
539  // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
540  // the physreg, then the new fragment has the same value as the one copied
541  // into the vreg.
542  if (interval.reg == DestReg && !interval.empty() &&
543      MRegisterInfo::isVirtualRegister(SrcReg)) {
544
545    // Get the live interval for the vreg, see if it is defined by a copy.
546    LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
547
548    if (SrcInterval.containsOneValue()) {
549      assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
550
551      // Get the first index of the first range.  Though the interval may have
552      // multiple liveranges in it, we only check the first.
553      unsigned StartIdx = SrcInterval.begin()->start;
554      MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
555
556      // Check to see if the vreg was defined by a copy instruction, and that
557      // the source was this physreg.
558      unsigned VRegSrcSrc, VRegSrcDest;
559      if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
560          SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
561        // Okay, now we know that the vreg was defined by a copy from this
562        // physreg.  Find the value number being copied and use it as the value
563        // for this range.
564        const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
565        if (DefRange) {
566          LiveRange LR(start, end, DefRange->ValId);
567          interval.addRange(LR);
568          DEBUG(std::cerr << " +" << LR << '\n');
569          return;
570        }
571      }
572    }
573  }
574
575
576  LiveRange LR(start, end, interval.getNextValue());
577  interval.addRange(LR);
578  DEBUG(std::cerr << " +" << LR << '\n');
579}
580
581void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
582                                      MachineBasicBlock::iterator MI,
583                                      unsigned reg) {
584  if (MRegisterInfo::isVirtualRegister(reg))
585    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
586  else if (allocatableRegs_[reg]) {
587    unsigned SrcReg = 0, DestReg = 0;
588    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
589      SrcReg = DestReg = 0;
590
591    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
592                              SrcReg, DestReg);
593    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
594      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
595                                SrcReg, DestReg);
596  }
597}
598
599/// computeIntervals - computes the live intervals for virtual
600/// registers. for some ordering of the machine instructions [1,N] a
601/// live interval is an interval [i, j) where 1 <= i <= j < N for
602/// which a variable is live
603void LiveIntervals::computeIntervals()
604{
605  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
606  DEBUG(std::cerr << "********** Function: "
607        << ((Value*)mf_->getFunction())->getName() << '\n');
608  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
609
610  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
611       I != E; ++I) {
612    MachineBasicBlock* mbb = I;
613    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
614
615    MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
616    if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
617    for (; mi != miEnd; ++mi) {
618      const TargetInstrDescriptor& tid =
619        tm_->getInstrInfo()->get(mi->getOpcode());
620      DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
621
622      // handle implicit defs
623      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
624        handleRegisterDef(mbb, mi, *id);
625
626      // handle explicit defs
627      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
628        MachineOperand& mop = mi->getOperand(i);
629        // handle register defs - build intervals
630        if (mop.isRegister() && mop.getReg() && mop.isDef())
631          handleRegisterDef(mbb, mi, mop.getReg());
632      }
633    }
634  }
635}
636
637/// IntA is defined as a copy from IntB and we know it only has one value
638/// number.  If all of the places that IntA and IntB overlap are defined by
639/// copies from IntA to IntB, we know that these two ranges can really be
640/// merged if we adjust the value numbers.  If it is safe, adjust the value
641/// numbers and return true, allowing coalescing to occur.
642bool LiveIntervals::
643AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
644                                          LiveInterval &IntB,
645                                          unsigned CopyIdx) {
646  std::vector<LiveRange*> Ranges;
647  IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
648
649  assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
650
651  unsigned IntBRep = rep(IntB.reg);
652
653  // Check to see if all of the overlaps (entries in Ranges) are defined by a
654  // copy from IntA.  If not, exit.
655  for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
656    unsigned Idx = Ranges[i]->start;
657    MachineInstr *MI = getInstructionFromIndex(Idx);
658    unsigned SrcReg, DestReg;
659    if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
660
661    // If this copy isn't actually defining this range, it must be a live
662    // range spanning basic blocks or something.
663    if (rep(DestReg) != rep(IntA.reg)) return false;
664
665    // Check to see if this is coming from IntB.  If not, bail out.
666    if (rep(SrcReg) != IntBRep) return false;
667  }
668
669  // Okay, we can change this one.  Get the IntB value number that IntA is
670  // copied from.
671  unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
672
673  // Change all of the value numbers to the same as what we IntA is copied from.
674  for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
675    Ranges[i]->ValId = ActualValNo;
676
677  return true;
678}
679
680void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
681  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
682
683  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
684       mi != mie; ++mi) {
685    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
686
687    // we only join virtual registers with allocatable
688    // physical registers since we do not have liveness information
689    // on not allocatable physical registers
690    unsigned SrcReg, DestReg;
691    if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
692        (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
693        (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
694
695      // Get representative registers.
696      SrcReg = rep(SrcReg);
697      DestReg = rep(DestReg);
698
699      // If they are already joined we continue.
700      if (SrcReg == DestReg)
701        continue;
702
703      // If they are both physical registers, we cannot join them.
704      if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
705          MRegisterInfo::isPhysicalRegister(DestReg))
706        continue;
707
708      // If they are not of the same register class, we cannot join them.
709      if (differingRegisterClasses(SrcReg, DestReg))
710        continue;
711
712      LiveInterval &SrcInt = getInterval(SrcReg);
713      LiveInterval &DestInt = getInterval(DestReg);
714      assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
715             "Register mapping is horribly broken!");
716
717      DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
718                      << ": ");
719
720      // If two intervals contain a single value and are joined by a copy, it
721      // does not matter if the intervals overlap, they can always be joined.
722      bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
723
724      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
725
726      // If the intervals think that this is joinable, do so now.
727      if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
728        Joinable = true;
729
730      // If DestInt is actually a copy from SrcInt (which we know) that is used
731      // to define another value of SrcInt, we can change the other range of
732      // SrcInt to be the value of the range that defines DestInt, allowing a
733      // coalesce.
734      if (!Joinable && DestInt.containsOneValue() &&
735          AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
736        Joinable = true;
737
738      if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
739        DEBUG(std::cerr << "Interference!\n");
740      } else {
741        DestInt.join(SrcInt, MIDefIdx);
742        DEBUG(std::cerr << "Joined.  Result = " << DestInt << "\n");
743
744        if (!MRegisterInfo::isPhysicalRegister(SrcReg)) {
745          r2iMap_.erase(SrcReg);
746          r2rMap_[SrcReg] = DestReg;
747        } else {
748          // Otherwise merge the data structures the other way so we don't lose
749          // the physreg information.
750          r2rMap_[DestReg] = SrcReg;
751          DestInt.reg = SrcReg;
752          SrcInt.swap(DestInt);
753          r2iMap_.erase(DestReg);
754        }
755        ++numJoins;
756      }
757    }
758  }
759}
760
761namespace {
762  // DepthMBBCompare - Comparison predicate that sort first based on the loop
763  // depth of the basic block (the unsigned), and then on the MBB number.
764  struct DepthMBBCompare {
765    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
766    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
767      if (LHS.first > RHS.first) return true;   // Deeper loops first
768      return LHS.first == RHS.first &&
769        LHS.second->getNumber() < RHS.second->getNumber();
770    }
771  };
772}
773
774void LiveIntervals::joinIntervals() {
775  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
776
777  const LoopInfo &LI = getAnalysis<LoopInfo>();
778  if (LI.begin() == LI.end()) {
779    // If there are no loops in the function, join intervals in function order.
780    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
781         I != E; ++I)
782      joinIntervalsInMachineBB(I);
783  } else {
784    // Otherwise, join intervals in inner loops before other intervals.
785    // Unfortunately we can't just iterate over loop hierarchy here because
786    // there may be more MBB's than BB's.  Collect MBB's for sorting.
787    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
788    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
789         I != E; ++I)
790      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
791
792    // Sort by loop depth.
793    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
794
795    // Finally, join intervals in loop nest order.
796    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
797      joinIntervalsInMachineBB(MBBs[i].second);
798  }
799
800  DEBUG(std::cerr << "*** Register mapping ***\n");
801  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
802          if (r2rMap_[i])
803             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
804}
805
806/// Return true if the two specified registers belong to different register
807/// classes.  The registers may be either phys or virt regs.
808bool LiveIntervals::differingRegisterClasses(unsigned RegA,
809                                             unsigned RegB) const {
810
811  // Get the register classes for the first reg.
812  if (MRegisterInfo::isPhysicalRegister(RegA)) {
813    assert(MRegisterInfo::isVirtualRegister(RegB) &&
814           "Shouldn't consider two physregs!");
815    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
816  }
817
818  // Compare against the regclass for the second reg.
819  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
820  if (MRegisterInfo::isVirtualRegister(RegB))
821    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
822  else
823    return !RegClass->contains(RegB);
824}
825
826bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
827                                    const LiveInterval *RHS) const {
828  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
829    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
830      return false;   // vreg-vreg merge has no aliases!
831    std::swap(LHS, RHS);
832  }
833
834  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
835         MRegisterInfo::isVirtualRegister(RHS->reg) &&
836         "first interval must describe a physical register");
837
838  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
839    if (RHS->overlaps(getInterval(*AS)))
840      return true;
841
842  return false;
843}
844
845LiveInterval LiveIntervals::createInterval(unsigned reg) {
846  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
847                       (float)HUGE_VAL :0.0F;
848  return LiveInterval(reg, Weight);
849}
850