LiveIntervalAnalysis.cpp revision 36b56886974eae4f9c5ebc96befd3e7bfe5de338
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "LiveRangeCalc.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
26#include "llvm/CodeGen/MachineDominators.h"
27#include "llvm/CodeGen/MachineInstr.h"
28#include "llvm/CodeGen/MachineRegisterInfo.h"
29#include "llvm/CodeGen/Passes.h"
30#include "llvm/CodeGen/VirtRegMap.h"
31#include "llvm/IR/Value.h"
32#include "llvm/Support/BlockFrequency.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Support/Debug.h"
35#include "llvm/Support/ErrorHandling.h"
36#include "llvm/Support/raw_ostream.h"
37#include "llvm/Target/TargetInstrInfo.h"
38#include "llvm/Target/TargetMachine.h"
39#include "llvm/Target/TargetRegisterInfo.h"
40#include <algorithm>
41#include <cmath>
42#include <limits>
43using namespace llvm;
44
45char LiveIntervals::ID = 0;
46char &llvm::LiveIntervalsID = LiveIntervals::ID;
47INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
48                "Live Interval Analysis", false, false)
49INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
50INITIALIZE_PASS_DEPENDENCY(LiveVariables)
51INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
52INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
53INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
54                "Live Interval Analysis", false, false)
55
56#ifndef NDEBUG
57static cl::opt<bool> EnablePrecomputePhysRegs(
58  "precompute-phys-liveness", cl::Hidden,
59  cl::desc("Eagerly compute live intervals for all physreg units."));
60#else
61static bool EnablePrecomputePhysRegs = false;
62#endif // NDEBUG
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
65  AU.setPreservesCFG();
66  AU.addRequired<AliasAnalysis>();
67  AU.addPreserved<AliasAnalysis>();
68  // LiveVariables isn't really required by this analysis, it is only required
69  // here to make sure it is live during TwoAddressInstructionPass and
70  // PHIElimination. This is temporary.
71  AU.addRequired<LiveVariables>();
72  AU.addPreserved<LiveVariables>();
73  AU.addPreservedID(MachineLoopInfoID);
74  AU.addRequiredTransitiveID(MachineDominatorsID);
75  AU.addPreservedID(MachineDominatorsID);
76  AU.addPreserved<SlotIndexes>();
77  AU.addRequiredTransitive<SlotIndexes>();
78  MachineFunctionPass::getAnalysisUsage(AU);
79}
80
81LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
82  DomTree(0), LRCalc(0) {
83  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
84}
85
86LiveIntervals::~LiveIntervals() {
87  delete LRCalc;
88}
89
90void LiveIntervals::releaseMemory() {
91  // Free the live intervals themselves.
92  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
93    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
94  VirtRegIntervals.clear();
95  RegMaskSlots.clear();
96  RegMaskBits.clear();
97  RegMaskBlocks.clear();
98
99  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
100    delete RegUnitRanges[i];
101  RegUnitRanges.clear();
102
103  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
104  VNInfoAllocator.Reset();
105}
106
107/// runOnMachineFunction - calculates LiveIntervals
108///
109bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
110  MF = &fn;
111  MRI = &MF->getRegInfo();
112  TM = &fn.getTarget();
113  TRI = TM->getRegisterInfo();
114  TII = TM->getInstrInfo();
115  AA = &getAnalysis<AliasAnalysis>();
116  Indexes = &getAnalysis<SlotIndexes>();
117  DomTree = &getAnalysis<MachineDominatorTree>();
118  if (!LRCalc)
119    LRCalc = new LiveRangeCalc();
120
121  // Allocate space for all virtual registers.
122  VirtRegIntervals.resize(MRI->getNumVirtRegs());
123
124  computeVirtRegs();
125  computeRegMasks();
126  computeLiveInRegUnits();
127
128  if (EnablePrecomputePhysRegs) {
129    // For stress testing, precompute live ranges of all physical register
130    // units, including reserved registers.
131    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
132      getRegUnit(i);
133  }
134  DEBUG(dump());
135  return true;
136}
137
138/// print - Implement the dump method.
139void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
140  OS << "********** INTERVALS **********\n";
141
142  // Dump the regunits.
143  for (unsigned i = 0, e = RegUnitRanges.size(); i != e; ++i)
144    if (LiveRange *LR = RegUnitRanges[i])
145      OS << PrintRegUnit(i, TRI) << ' ' << *LR << '\n';
146
147  // Dump the virtregs.
148  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
149    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
150    if (hasInterval(Reg))
151      OS << getInterval(Reg) << '\n';
152  }
153
154  OS << "RegMasks:";
155  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
156    OS << ' ' << RegMaskSlots[i];
157  OS << '\n';
158
159  printInstrs(OS);
160}
161
162void LiveIntervals::printInstrs(raw_ostream &OS) const {
163  OS << "********** MACHINEINSTRS **********\n";
164  MF->print(OS, Indexes);
165}
166
167#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
168void LiveIntervals::dumpInstrs() const {
169  printInstrs(dbgs());
170}
171#endif
172
173LiveInterval* LiveIntervals::createInterval(unsigned reg) {
174  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ?
175                  llvm::huge_valf : 0.0F;
176  return new LiveInterval(reg, Weight);
177}
178
179
180/// computeVirtRegInterval - Compute the live interval of a virtual register,
181/// based on defs and uses.
182void LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
183  assert(LRCalc && "LRCalc not initialized.");
184  assert(LI.empty() && "Should only compute empty intervals.");
185  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
186  LRCalc->createDeadDefs(LI);
187  LRCalc->extendToUses(LI);
188}
189
190void LiveIntervals::computeVirtRegs() {
191  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
192    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
193    if (MRI->reg_nodbg_empty(Reg))
194      continue;
195    createAndComputeVirtRegInterval(Reg);
196  }
197}
198
199void LiveIntervals::computeRegMasks() {
200  RegMaskBlocks.resize(MF->getNumBlockIDs());
201
202  // Find all instructions with regmask operands.
203  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
204       MBBI != E; ++MBBI) {
205    MachineBasicBlock *MBB = MBBI;
206    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
207    RMB.first = RegMaskSlots.size();
208    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
209         MI != ME; ++MI)
210      for (MIOperands MO(MI); MO.isValid(); ++MO) {
211        if (!MO->isRegMask())
212          continue;
213          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
214          RegMaskBits.push_back(MO->getRegMask());
215      }
216    // Compute the number of register mask instructions in this block.
217    RMB.second = RegMaskSlots.size() - RMB.first;
218  }
219}
220
221//===----------------------------------------------------------------------===//
222//                           Register Unit Liveness
223//===----------------------------------------------------------------------===//
224//
225// Fixed interference typically comes from ABI boundaries: Function arguments
226// and return values are passed in fixed registers, and so are exception
227// pointers entering landing pads. Certain instructions require values to be
228// present in specific registers. That is also represented through fixed
229// interference.
230//
231
232/// computeRegUnitInterval - Compute the live range of a register unit, based
233/// on the uses and defs of aliasing registers.  The range should be empty,
234/// or contain only dead phi-defs from ABI blocks.
235void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
236  assert(LRCalc && "LRCalc not initialized.");
237  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
238
239  // The physregs aliasing Unit are the roots and their super-registers.
240  // Create all values as dead defs before extending to uses. Note that roots
241  // may share super-registers. That's OK because createDeadDefs() is
242  // idempotent. It is very rare for a register unit to have multiple roots, so
243  // uniquing super-registers is probably not worthwhile.
244  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
245    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
246         Supers.isValid(); ++Supers) {
247      if (!MRI->reg_empty(*Supers))
248        LRCalc->createDeadDefs(LR, *Supers);
249    }
250  }
251
252  // Now extend LR to reach all uses.
253  // Ignore uses of reserved registers. We only track defs of those.
254  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
255    for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
256         Supers.isValid(); ++Supers) {
257      unsigned Reg = *Supers;
258      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
259        LRCalc->extendToUses(LR, Reg);
260    }
261  }
262}
263
264
265/// computeLiveInRegUnits - Precompute the live ranges of any register units
266/// that are live-in to an ABI block somewhere. Register values can appear
267/// without a corresponding def when entering the entry block or a landing pad.
268///
269void LiveIntervals::computeLiveInRegUnits() {
270  RegUnitRanges.resize(TRI->getNumRegUnits());
271  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
272
273  // Keep track of the live range sets allocated.
274  SmallVector<unsigned, 8> NewRanges;
275
276  // Check all basic blocks for live-ins.
277  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
278       MFI != MFE; ++MFI) {
279    const MachineBasicBlock *MBB = MFI;
280
281    // We only care about ABI blocks: Entry + landing pads.
282    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
283      continue;
284
285    // Create phi-defs at Begin for all live-in registers.
286    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
287    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
288    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
289         LIE = MBB->livein_end(); LII != LIE; ++LII) {
290      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
291        unsigned Unit = *Units;
292        LiveRange *LR = RegUnitRanges[Unit];
293        if (!LR) {
294          LR = RegUnitRanges[Unit] = new LiveRange();
295          NewRanges.push_back(Unit);
296        }
297        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
298        (void)VNI;
299        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
300      }
301    }
302    DEBUG(dbgs() << '\n');
303  }
304  DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
305
306  // Compute the 'normal' part of the ranges.
307  for (unsigned i = 0, e = NewRanges.size(); i != e; ++i) {
308    unsigned Unit = NewRanges[i];
309    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
310  }
311}
312
313
314/// shrinkToUses - After removing some uses of a register, shrink its live
315/// range to just the remaining uses. This method does not compute reaching
316/// defs for new uses, and it doesn't remove dead defs.
317bool LiveIntervals::shrinkToUses(LiveInterval *li,
318                                 SmallVectorImpl<MachineInstr*> *dead) {
319  DEBUG(dbgs() << "Shrink: " << *li << '\n');
320  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
321         && "Can only shrink virtual registers");
322  // Find all the values used, including PHI kills.
323  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
324
325  // Blocks that have already been added to WorkList as live-out.
326  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
327
328  // Visit all instructions reading li->reg.
329  for (MachineRegisterInfo::reg_instr_iterator
330       I = MRI->reg_instr_begin(li->reg), E = MRI->reg_instr_end();
331       I != E; ) {
332    MachineInstr *UseMI = &*(I++);
333    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
334      continue;
335    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
336    LiveQueryResult LRQ = li->Query(Idx);
337    VNInfo *VNI = LRQ.valueIn();
338    if (!VNI) {
339      // This shouldn't happen: readsVirtualRegister returns true, but there is
340      // no live value. It is likely caused by a target getting <undef> flags
341      // wrong.
342      DEBUG(dbgs() << Idx << '\t' << *UseMI
343                   << "Warning: Instr claims to read non-existent value in "
344                    << *li << '\n');
345      continue;
346    }
347    // Special case: An early-clobber tied operand reads and writes the
348    // register one slot early.
349    if (VNInfo *DefVNI = LRQ.valueDefined())
350      Idx = DefVNI->def;
351
352    WorkList.push_back(std::make_pair(Idx, VNI));
353  }
354
355  // Create new live ranges with only minimal live segments per def.
356  LiveRange NewLR;
357  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
358       I != E; ++I) {
359    VNInfo *VNI = *I;
360    if (VNI->isUnused())
361      continue;
362    NewLR.addSegment(LiveRange::Segment(VNI->def, VNI->def.getDeadSlot(), VNI));
363  }
364
365  // Keep track of the PHIs that are in use.
366  SmallPtrSet<VNInfo*, 8> UsedPHIs;
367
368  // Extend intervals to reach all uses in WorkList.
369  while (!WorkList.empty()) {
370    SlotIndex Idx = WorkList.back().first;
371    VNInfo *VNI = WorkList.back().second;
372    WorkList.pop_back();
373    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
374    SlotIndex BlockStart = getMBBStartIdx(MBB);
375
376    // Extend the live range for VNI to be live at Idx.
377    if (VNInfo *ExtVNI = NewLR.extendInBlock(BlockStart, Idx)) {
378      (void)ExtVNI;
379      assert(ExtVNI == VNI && "Unexpected existing value number");
380      // Is this a PHIDef we haven't seen before?
381      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
382        continue;
383      // The PHI is live, make sure the predecessors are live-out.
384      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
385           PE = MBB->pred_end(); PI != PE; ++PI) {
386        if (!LiveOut.insert(*PI))
387          continue;
388        SlotIndex Stop = getMBBEndIdx(*PI);
389        // A predecessor is not required to have a live-out value for a PHI.
390        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
391          WorkList.push_back(std::make_pair(Stop, PVNI));
392      }
393      continue;
394    }
395
396    // VNI is live-in to MBB.
397    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
398    NewLR.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
399
400    // Make sure VNI is live-out from the predecessors.
401    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
402         PE = MBB->pred_end(); PI != PE; ++PI) {
403      if (!LiveOut.insert(*PI))
404        continue;
405      SlotIndex Stop = getMBBEndIdx(*PI);
406      assert(li->getVNInfoBefore(Stop) == VNI &&
407             "Wrong value out of predecessor");
408      WorkList.push_back(std::make_pair(Stop, VNI));
409    }
410  }
411
412  // Handle dead values.
413  bool CanSeparate = false;
414  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
415       I != E; ++I) {
416    VNInfo *VNI = *I;
417    if (VNI->isUnused())
418      continue;
419    LiveRange::iterator LRI = NewLR.FindSegmentContaining(VNI->def);
420    assert(LRI != NewLR.end() && "Missing segment for PHI");
421    if (LRI->end != VNI->def.getDeadSlot())
422      continue;
423    if (VNI->isPHIDef()) {
424      // This is a dead PHI. Remove it.
425      VNI->markUnused();
426      NewLR.removeSegment(LRI->start, LRI->end);
427      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
428      CanSeparate = true;
429    } else {
430      // This is a dead def. Make sure the instruction knows.
431      MachineInstr *MI = getInstructionFromIndex(VNI->def);
432      assert(MI && "No instruction defining live value");
433      MI->addRegisterDead(li->reg, TRI);
434      if (dead && MI->allDefsAreDead()) {
435        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
436        dead->push_back(MI);
437      }
438    }
439  }
440
441  // Move the trimmed segments back.
442  li->segments.swap(NewLR.segments);
443  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
444  return CanSeparate;
445}
446
447void LiveIntervals::extendToIndices(LiveRange &LR,
448                                    ArrayRef<SlotIndex> Indices) {
449  assert(LRCalc && "LRCalc not initialized.");
450  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
451  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
452    LRCalc->extend(LR, Indices[i]);
453}
454
455void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
456                               SmallVectorImpl<SlotIndex> *EndPoints) {
457  LiveQueryResult LRQ = LI->Query(Kill);
458  VNInfo *VNI = LRQ.valueOut();
459  if (!VNI)
460    return;
461
462  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
463  SlotIndex MBBStart, MBBEnd;
464  std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
465
466  // If VNI isn't live out from KillMBB, the value is trivially pruned.
467  if (LRQ.endPoint() < MBBEnd) {
468    LI->removeSegment(Kill, LRQ.endPoint());
469    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
470    return;
471  }
472
473  // VNI is live out of KillMBB.
474  LI->removeSegment(Kill, MBBEnd);
475  if (EndPoints) EndPoints->push_back(MBBEnd);
476
477  // Find all blocks that are reachable from KillMBB without leaving VNI's live
478  // range. It is possible that KillMBB itself is reachable, so start a DFS
479  // from each successor.
480  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
481  VisitedTy Visited;
482  for (MachineBasicBlock::succ_iterator
483       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
484       SuccI != SuccE; ++SuccI) {
485    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
486         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
487         I != E;) {
488      MachineBasicBlock *MBB = *I;
489
490      // Check if VNI is live in to MBB.
491      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
492      LiveQueryResult LRQ = LI->Query(MBBStart);
493      if (LRQ.valueIn() != VNI) {
494        // This block isn't part of the VNI segment. Prune the search.
495        I.skipChildren();
496        continue;
497      }
498
499      // Prune the search if VNI is killed in MBB.
500      if (LRQ.endPoint() < MBBEnd) {
501        LI->removeSegment(MBBStart, LRQ.endPoint());
502        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
503        I.skipChildren();
504        continue;
505      }
506
507      // VNI is live through MBB.
508      LI->removeSegment(MBBStart, MBBEnd);
509      if (EndPoints) EndPoints->push_back(MBBEnd);
510      ++I;
511    }
512  }
513}
514
515//===----------------------------------------------------------------------===//
516// Register allocator hooks.
517//
518
519void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
520  // Keep track of regunit ranges.
521  SmallVector<std::pair<LiveRange*, LiveRange::iterator>, 8> RU;
522
523  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
524    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
525    if (MRI->reg_nodbg_empty(Reg))
526      continue;
527    LiveInterval *LI = &getInterval(Reg);
528    if (LI->empty())
529      continue;
530
531    // Find the regunit intervals for the assigned register. They may overlap
532    // the virtual register live range, cancelling any kills.
533    RU.clear();
534    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
535         ++Units) {
536      LiveRange &RURanges = getRegUnit(*Units);
537      if (RURanges.empty())
538        continue;
539      RU.push_back(std::make_pair(&RURanges, RURanges.find(LI->begin()->end)));
540    }
541
542    // Every instruction that kills Reg corresponds to a segment range end
543    // point.
544    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
545         ++RI) {
546      // A block index indicates an MBB edge.
547      if (RI->end.isBlock())
548        continue;
549      MachineInstr *MI = getInstructionFromIndex(RI->end);
550      if (!MI)
551        continue;
552
553      // Check if any of the regunits are live beyond the end of RI. That could
554      // happen when a physreg is defined as a copy of a virtreg:
555      //
556      //   %EAX = COPY %vreg5
557      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
558      //   BAR %EAX<kill>
559      //
560      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
561      bool CancelKill = false;
562      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
563        LiveRange &RRanges = *RU[u].first;
564        LiveRange::iterator &I = RU[u].second;
565        if (I == RRanges.end())
566          continue;
567        I = RRanges.advanceTo(I, RI->end);
568        if (I == RRanges.end() || I->start >= RI->end)
569          continue;
570        // I is overlapping RI.
571        CancelKill = true;
572        break;
573      }
574      if (CancelKill)
575        MI->clearRegisterKills(Reg, NULL);
576      else
577        MI->addRegisterKilled(Reg, NULL);
578    }
579  }
580}
581
582MachineBasicBlock*
583LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
584  // A local live range must be fully contained inside the block, meaning it is
585  // defined and killed at instructions, not at block boundaries. It is not
586  // live in or or out of any block.
587  //
588  // It is technically possible to have a PHI-defined live range identical to a
589  // single block, but we are going to return false in that case.
590
591  SlotIndex Start = LI.beginIndex();
592  if (Start.isBlock())
593    return NULL;
594
595  SlotIndex Stop = LI.endIndex();
596  if (Stop.isBlock())
597    return NULL;
598
599  // getMBBFromIndex doesn't need to search the MBB table when both indexes
600  // belong to proper instructions.
601  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
602  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
603  return MBB1 == MBB2 ? MBB1 : NULL;
604}
605
606bool
607LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
608  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
609       I != E; ++I) {
610    const VNInfo *PHI = *I;
611    if (PHI->isUnused() || !PHI->isPHIDef())
612      continue;
613    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
614    // Conservatively return true instead of scanning huge predecessor lists.
615    if (PHIMBB->pred_size() > 100)
616      return true;
617    for (MachineBasicBlock::const_pred_iterator
618         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
619      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
620        return true;
621  }
622  return false;
623}
624
625float
626LiveIntervals::getSpillWeight(bool isDef, bool isUse,
627                              const MachineBlockFrequencyInfo *MBFI,
628                              const MachineInstr *MI) {
629  BlockFrequency Freq = MBFI->getBlockFreq(MI->getParent());
630  const float Scale = 1.0f / MBFI->getEntryFreq();
631  return (isDef + isUse) * (Freq.getFrequency() * Scale);
632}
633
634LiveRange::Segment
635LiveIntervals::addSegmentToEndOfBlock(unsigned reg, MachineInstr* startInst) {
636  LiveInterval& Interval = createEmptyInterval(reg);
637  VNInfo* VN = Interval.getNextValue(
638    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
639    getVNInfoAllocator());
640  LiveRange::Segment S(
641     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
642     getMBBEndIdx(startInst->getParent()), VN);
643  Interval.addSegment(S);
644
645  return S;
646}
647
648
649//===----------------------------------------------------------------------===//
650//                          Register mask functions
651//===----------------------------------------------------------------------===//
652
653bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
654                                             BitVector &UsableRegs) {
655  if (LI.empty())
656    return false;
657  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
658
659  // Use a smaller arrays for local live ranges.
660  ArrayRef<SlotIndex> Slots;
661  ArrayRef<const uint32_t*> Bits;
662  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
663    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
664    Bits = getRegMaskBitsInBlock(MBB->getNumber());
665  } else {
666    Slots = getRegMaskSlots();
667    Bits = getRegMaskBits();
668  }
669
670  // We are going to enumerate all the register mask slots contained in LI.
671  // Start with a binary search of RegMaskSlots to find a starting point.
672  ArrayRef<SlotIndex>::iterator SlotI =
673    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
674  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
675
676  // No slots in range, LI begins after the last call.
677  if (SlotI == SlotE)
678    return false;
679
680  bool Found = false;
681  for (;;) {
682    assert(*SlotI >= LiveI->start);
683    // Loop over all slots overlapping this segment.
684    while (*SlotI < LiveI->end) {
685      // *SlotI overlaps LI. Collect mask bits.
686      if (!Found) {
687        // This is the first overlap. Initialize UsableRegs to all ones.
688        UsableRegs.clear();
689        UsableRegs.resize(TRI->getNumRegs(), true);
690        Found = true;
691      }
692      // Remove usable registers clobbered by this mask.
693      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
694      if (++SlotI == SlotE)
695        return Found;
696    }
697    // *SlotI is beyond the current LI segment.
698    LiveI = LI.advanceTo(LiveI, *SlotI);
699    if (LiveI == LiveE)
700      return Found;
701    // Advance SlotI until it overlaps.
702    while (*SlotI < LiveI->start)
703      if (++SlotI == SlotE)
704        return Found;
705  }
706}
707
708//===----------------------------------------------------------------------===//
709//                         IntervalUpdate class.
710//===----------------------------------------------------------------------===//
711
712// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
713class LiveIntervals::HMEditor {
714private:
715  LiveIntervals& LIS;
716  const MachineRegisterInfo& MRI;
717  const TargetRegisterInfo& TRI;
718  SlotIndex OldIdx;
719  SlotIndex NewIdx;
720  SmallPtrSet<LiveRange*, 8> Updated;
721  bool UpdateFlags;
722
723public:
724  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
725           const TargetRegisterInfo& TRI,
726           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
727    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
728      UpdateFlags(UpdateFlags) {}
729
730  // FIXME: UpdateFlags is a workaround that creates live intervals for all
731  // physregs, even those that aren't needed for regalloc, in order to update
732  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
733  // flags, and postRA passes will use a live register utility instead.
734  LiveRange *getRegUnitLI(unsigned Unit) {
735    if (UpdateFlags)
736      return &LIS.getRegUnit(Unit);
737    return LIS.getCachedRegUnit(Unit);
738  }
739
740  /// Update all live ranges touched by MI, assuming a move from OldIdx to
741  /// NewIdx.
742  void updateAllRanges(MachineInstr *MI) {
743    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
744    bool hasRegMask = false;
745    for (MIOperands MO(MI); MO.isValid(); ++MO) {
746      if (MO->isRegMask())
747        hasRegMask = true;
748      if (!MO->isReg())
749        continue;
750      // Aggressively clear all kill flags.
751      // They are reinserted by VirtRegRewriter.
752      if (MO->isUse())
753        MO->setIsKill(false);
754
755      unsigned Reg = MO->getReg();
756      if (!Reg)
757        continue;
758      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
759        LiveInterval &LI = LIS.getInterval(Reg);
760        updateRange(LI, Reg);
761        continue;
762      }
763
764      // For physregs, only update the regunits that actually have a
765      // precomputed live range.
766      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
767        if (LiveRange *LR = getRegUnitLI(*Units))
768          updateRange(*LR, *Units);
769    }
770    if (hasRegMask)
771      updateRegMaskSlots();
772  }
773
774private:
775  /// Update a single live range, assuming an instruction has been moved from
776  /// OldIdx to NewIdx.
777  void updateRange(LiveRange &LR, unsigned Reg) {
778    if (!Updated.insert(&LR))
779      return;
780    DEBUG({
781      dbgs() << "     ";
782      if (TargetRegisterInfo::isVirtualRegister(Reg))
783        dbgs() << PrintReg(Reg);
784      else
785        dbgs() << PrintRegUnit(Reg, &TRI);
786      dbgs() << ":\t" << LR << '\n';
787    });
788    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
789      handleMoveDown(LR);
790    else
791      handleMoveUp(LR, Reg);
792    DEBUG(dbgs() << "        -->\t" << LR << '\n');
793    LR.verify();
794  }
795
796  /// Update LR to reflect an instruction has been moved downwards from OldIdx
797  /// to NewIdx.
798  ///
799  /// 1. Live def at OldIdx:
800  ///    Move def to NewIdx, assert endpoint after NewIdx.
801  ///
802  /// 2. Live def at OldIdx, killed at NewIdx:
803  ///    Change to dead def at NewIdx.
804  ///    (Happens when bundling def+kill together).
805  ///
806  /// 3. Dead def at OldIdx:
807  ///    Move def to NewIdx, possibly across another live value.
808  ///
809  /// 4. Def at OldIdx AND at NewIdx:
810  ///    Remove segment [OldIdx;NewIdx) and value defined at OldIdx.
811  ///    (Happens when bundling multiple defs together).
812  ///
813  /// 5. Value read at OldIdx, killed before NewIdx:
814  ///    Extend kill to NewIdx.
815  ///
816  void handleMoveDown(LiveRange &LR) {
817    // First look for a kill at OldIdx.
818    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
819    LiveRange::iterator E = LR.end();
820    // Is LR even live at OldIdx?
821    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
822      return;
823
824    // Handle a live-in value.
825    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
826      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
827      // If the live-in value already extends to NewIdx, there is nothing to do.
828      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
829        return;
830      // Aggressively remove all kill flags from the old kill point.
831      // Kill flags shouldn't be used while live intervals exist, they will be
832      // reinserted by VirtRegRewriter.
833      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
834        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
835          if (MO->isReg() && MO->isUse())
836            MO->setIsKill(false);
837      // Adjust I->end to reach NewIdx. This may temporarily make LR invalid by
838      // overlapping ranges. Case 5 above.
839      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
840      // If this was a kill, there may also be a def. Otherwise we're done.
841      if (!isKill)
842        return;
843      ++I;
844    }
845
846    // Check for a def at OldIdx.
847    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
848      return;
849    // We have a def at OldIdx.
850    VNInfo *DefVNI = I->valno;
851    assert(DefVNI->def == I->start && "Inconsistent def");
852    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
853    // If the defined value extends beyond NewIdx, just move the def down.
854    // This is case 1 above.
855    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
856      I->start = DefVNI->def;
857      return;
858    }
859    // The remaining possibilities are now:
860    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
861    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
862    // In either case, it is possible that there is an existing def at NewIdx.
863    assert((I->end == OldIdx.getDeadSlot() ||
864            SlotIndex::isSameInstr(I->end, NewIdx)) &&
865            "Cannot move def below kill");
866    LiveRange::iterator NewI = LR.advanceTo(I, NewIdx.getRegSlot());
867    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
868      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
869      // coalesced into that value.
870      assert(NewI->valno != DefVNI && "Multiple defs of value?");
871      LR.removeValNo(DefVNI);
872      return;
873    }
874    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
875    // If the def at OldIdx was dead, we allow it to be moved across other LR
876    // values. The new range should be placed immediately before NewI, move any
877    // intermediate ranges up.
878    assert(NewI != I && "Inconsistent iterators");
879    std::copy(std::next(I), NewI, I);
880    *std::prev(NewI)
881      = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
882  }
883
884  /// Update LR to reflect an instruction has been moved upwards from OldIdx
885  /// to NewIdx.
886  ///
887  /// 1. Live def at OldIdx:
888  ///    Hoist def to NewIdx.
889  ///
890  /// 2. Dead def at OldIdx:
891  ///    Hoist def+end to NewIdx, possibly move across other values.
892  ///
893  /// 3. Dead def at OldIdx AND existing def at NewIdx:
894  ///    Remove value defined at OldIdx, coalescing it with existing value.
895  ///
896  /// 4. Live def at OldIdx AND existing def at NewIdx:
897  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
898  ///    (Happens when bundling multiple defs together).
899  ///
900  /// 5. Value killed at OldIdx:
901  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
902  ///    OldIdx.
903  ///
904  void handleMoveUp(LiveRange &LR, unsigned Reg) {
905    // First look for a kill at OldIdx.
906    LiveRange::iterator I = LR.find(OldIdx.getBaseIndex());
907    LiveRange::iterator E = LR.end();
908    // Is LR even live at OldIdx?
909    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
910      return;
911
912    // Handle a live-in value.
913    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
914      // If the live-in value isn't killed here, there is nothing to do.
915      if (!SlotIndex::isSameInstr(OldIdx, I->end))
916        return;
917      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
918      // another use, we need to search for that use. Case 5 above.
919      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
920      ++I;
921      // If OldIdx also defines a value, there couldn't have been another use.
922      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
923        // No def, search for the new kill.
924        // This can never be an early clobber kill since there is no def.
925        std::prev(I)->end = findLastUseBefore(Reg).getRegSlot();
926        return;
927      }
928    }
929
930    // Now deal with the def at OldIdx.
931    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
932    VNInfo *DefVNI = I->valno;
933    assert(DefVNI->def == I->start && "Inconsistent def");
934    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
935
936    // Check for an existing def at NewIdx.
937    LiveRange::iterator NewI = LR.find(NewIdx.getRegSlot());
938    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
939      assert(NewI->valno != DefVNI && "Same value defined more than once?");
940      // There is an existing def at NewIdx.
941      if (I->end.isDead()) {
942        // Case 3: Remove the dead def at OldIdx.
943        LR.removeValNo(DefVNI);
944        return;
945      }
946      // Case 4: Replace def at NewIdx with live def at OldIdx.
947      I->start = DefVNI->def;
948      LR.removeValNo(NewI->valno);
949      return;
950    }
951
952    // There is no existing def at NewIdx. Hoist DefVNI.
953    if (!I->end.isDead()) {
954      // Leave the end point of a live def.
955      I->start = DefVNI->def;
956      return;
957    }
958
959    // DefVNI is a dead def. It may have been moved across other values in LR,
960    // so move I up to NewI. Slide [NewI;I) down one position.
961    std::copy_backward(NewI, I, std::next(I));
962    *NewI = LiveRange::Segment(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
963  }
964
965  void updateRegMaskSlots() {
966    SmallVectorImpl<SlotIndex>::iterator RI =
967      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
968                       OldIdx);
969    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
970           "No RegMask at OldIdx.");
971    *RI = NewIdx.getRegSlot();
972    assert((RI == LIS.RegMaskSlots.begin() ||
973            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
974           "Cannot move regmask instruction above another call");
975    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
976            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
977           "Cannot move regmask instruction below another call");
978  }
979
980  // Return the last use of reg between NewIdx and OldIdx.
981  SlotIndex findLastUseBefore(unsigned Reg) {
982
983    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
984      SlotIndex LastUse = NewIdx;
985      for (MachineRegisterInfo::use_instr_nodbg_iterator
986             UI = MRI.use_instr_nodbg_begin(Reg),
987             UE = MRI.use_instr_nodbg_end();
988           UI != UE; ++UI) {
989        const MachineInstr* MI = &*UI;
990        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
991        if (InstSlot > LastUse && InstSlot < OldIdx)
992          LastUse = InstSlot;
993      }
994      return LastUse;
995    }
996
997    // This is a regunit interval, so scanning the use list could be very
998    // expensive. Scan upwards from OldIdx instead.
999    assert(NewIdx < OldIdx && "Expected upwards move");
1000    SlotIndexes *Indexes = LIS.getSlotIndexes();
1001    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
1002
1003    // OldIdx may not correspond to an instruction any longer, so set MII to
1004    // point to the next instruction after OldIdx, or MBB->end().
1005    MachineBasicBlock::iterator MII = MBB->end();
1006    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1007                           Indexes->getNextNonNullIndex(OldIdx)))
1008      if (MI->getParent() == MBB)
1009        MII = MI;
1010
1011    MachineBasicBlock::iterator Begin = MBB->begin();
1012    while (MII != Begin) {
1013      if ((--MII)->isDebugValue())
1014        continue;
1015      SlotIndex Idx = Indexes->getInstructionIndex(MII);
1016
1017      // Stop searching when NewIdx is reached.
1018      if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1019        return NewIdx;
1020
1021      // Check if MII uses Reg.
1022      for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1023        if (MO->isReg() &&
1024            TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1025            TRI.hasRegUnit(MO->getReg(), Reg))
1026          return Idx;
1027    }
1028    // Didn't reach NewIdx. It must be the first instruction in the block.
1029    return NewIdx;
1030  }
1031};
1032
1033void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1034  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1035  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1036  Indexes->removeMachineInstrFromMaps(MI);
1037  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1038  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1039         OldIndex < getMBBEndIdx(MI->getParent()) &&
1040         "Cannot handle moves across basic block boundaries.");
1041
1042  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1043  HME.updateAllRanges(MI);
1044}
1045
1046void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1047                                         MachineInstr* BundleStart,
1048                                         bool UpdateFlags) {
1049  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1050  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1051  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1052  HME.updateAllRanges(MI);
1053}
1054
1055void
1056LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1057                                      MachineBasicBlock::iterator Begin,
1058                                      MachineBasicBlock::iterator End,
1059                                      ArrayRef<unsigned> OrigRegs) {
1060  // Find anchor points, which are at the beginning/end of blocks or at
1061  // instructions that already have indexes.
1062  while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1063    --Begin;
1064  while (End != MBB->end() && !Indexes->hasIndex(End))
1065    ++End;
1066
1067  SlotIndex endIdx;
1068  if (End == MBB->end())
1069    endIdx = getMBBEndIdx(MBB).getPrevSlot();
1070  else
1071    endIdx = getInstructionIndex(End);
1072
1073  Indexes->repairIndexesInRange(MBB, Begin, End);
1074
1075  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1076    --I;
1077    MachineInstr *MI = I;
1078    if (MI->isDebugValue())
1079      continue;
1080    for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1081         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1082      if (MOI->isReg() &&
1083          TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1084          !hasInterval(MOI->getReg())) {
1085        createAndComputeVirtRegInterval(MOI->getReg());
1086      }
1087    }
1088  }
1089
1090  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1091    unsigned Reg = OrigRegs[i];
1092    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1093      continue;
1094
1095    LiveInterval &LI = getInterval(Reg);
1096    // FIXME: Should we support undefs that gain defs?
1097    if (!LI.hasAtLeastOneValue())
1098      continue;
1099
1100    LiveInterval::iterator LII = LI.find(endIdx);
1101    SlotIndex lastUseIdx;
1102    if (LII != LI.end() && LII->start < endIdx)
1103      lastUseIdx = LII->end;
1104    else
1105      --LII;
1106
1107    for (MachineBasicBlock::iterator I = End; I != Begin;) {
1108      --I;
1109      MachineInstr *MI = I;
1110      if (MI->isDebugValue())
1111        continue;
1112
1113      SlotIndex instrIdx = getInstructionIndex(MI);
1114      bool isStartValid = getInstructionFromIndex(LII->start);
1115      bool isEndValid = getInstructionFromIndex(LII->end);
1116
1117      // FIXME: This doesn't currently handle early-clobber or multiple removed
1118      // defs inside of the region to repair.
1119      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1120           OE = MI->operands_end(); OI != OE; ++OI) {
1121        const MachineOperand &MO = *OI;
1122        if (!MO.isReg() || MO.getReg() != Reg)
1123          continue;
1124
1125        if (MO.isDef()) {
1126          if (!isStartValid) {
1127            if (LII->end.isDead()) {
1128              SlotIndex prevStart;
1129              if (LII != LI.begin())
1130                prevStart = std::prev(LII)->start;
1131
1132              // FIXME: This could be more efficient if there was a
1133              // removeSegment method that returned an iterator.
1134              LI.removeSegment(*LII, true);
1135              if (prevStart.isValid())
1136                LII = LI.find(prevStart);
1137              else
1138                LII = LI.begin();
1139            } else {
1140              LII->start = instrIdx.getRegSlot();
1141              LII->valno->def = instrIdx.getRegSlot();
1142              if (MO.getSubReg() && !MO.isUndef())
1143                lastUseIdx = instrIdx.getRegSlot();
1144              else
1145                lastUseIdx = SlotIndex();
1146              continue;
1147            }
1148          }
1149
1150          if (!lastUseIdx.isValid()) {
1151            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1152                                          VNInfoAllocator);
1153            LiveRange::Segment S(instrIdx.getRegSlot(),
1154                                 instrIdx.getDeadSlot(), VNI);
1155            LII = LI.addSegment(S);
1156          } else if (LII->start != instrIdx.getRegSlot()) {
1157            VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1158                                          VNInfoAllocator);
1159            LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1160            LII = LI.addSegment(S);
1161          }
1162
1163          if (MO.getSubReg() && !MO.isUndef())
1164            lastUseIdx = instrIdx.getRegSlot();
1165          else
1166            lastUseIdx = SlotIndex();
1167        } else if (MO.isUse()) {
1168          // FIXME: This should probably be handled outside of this branch,
1169          // either as part of the def case (for defs inside of the region) or
1170          // after the loop over the region.
1171          if (!isEndValid && !LII->end.isBlock())
1172            LII->end = instrIdx.getRegSlot();
1173          if (!lastUseIdx.isValid())
1174            lastUseIdx = instrIdx.getRegSlot();
1175        }
1176      }
1177    }
1178  }
1179}
1180