LiveIntervalAnalysis.cpp revision 38135af219c48a8626d6af34a92e7e8bb957c81f
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Join compatible live intervals"),
60                cl::init(true));
61};
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
64{
65  AU.addPreserved<LiveVariables>();
66  AU.addRequired<LiveVariables>();
67  AU.addPreservedID(PHIEliminationID);
68  AU.addRequiredID(PHIEliminationID);
69  AU.addRequiredID(TwoAddressInstructionPassID);
70  AU.addRequired<LoopInfo>();
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74void LiveIntervals::releaseMemory()
75{
76  mi2iMap_.clear();
77  i2miMap_.clear();
78  r2iMap_.clear();
79  r2rMap_.clear();
80}
81
82
83/// runOnMachineFunction - Register allocate the whole function
84///
85bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
86  mf_ = &fn;
87  tm_ = &fn.getTarget();
88  mri_ = tm_->getRegisterInfo();
89  tii_ = tm_->getInstrInfo();
90  lv_ = &getAnalysis<LiveVariables>();
91  allocatableRegs_ = mri_->getAllocatableSet(fn);
92  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
93
94  // If this function has any live ins, insert a dummy instruction at the
95  // beginning of the function that we will pretend "defines" the values.  This
96  // is to make the interval analysis simpler by providing a number.
97  if (fn.livein_begin() != fn.livein_end()) {
98    unsigned FirstLiveIn = fn.livein_begin()->first;
99
100    // Find a reg class that contains this live in.
101    const TargetRegisterClass *RC = 0;
102    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
103           E = mri_->regclass_end(); RCI != E; ++RCI)
104      if ((*RCI)->contains(FirstLiveIn)) {
105        RC = *RCI;
106        break;
107      }
108
109    MachineInstr *OldFirstMI = fn.begin()->begin();
110    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
111                       FirstLiveIn, FirstLiveIn, RC);
112    assert(OldFirstMI != fn.begin()->begin() &&
113           "copyRetToReg didn't insert anything!");
114  }
115
116  // number MachineInstrs
117  unsigned miIndex = 0;
118  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
119       mbb != mbbEnd; ++mbb)
120    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
121         mi != miEnd; ++mi) {
122      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
123      assert(inserted && "multiple MachineInstr -> index mappings");
124      i2miMap_.push_back(mi);
125      miIndex += InstrSlots::NUM;
126    }
127
128  // Note intervals due to live-in values.
129  if (fn.livein_begin() != fn.livein_end()) {
130    MachineBasicBlock *Entry = fn.begin();
131    for (MachineFunction::livein_iterator I = fn.livein_begin(),
132           E = fn.livein_end(); I != E; ++I) {
133      handlePhysicalRegisterDef(Entry, Entry->begin(),
134                                getOrCreateInterval(I->first), 0, 0);
135      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
136        handlePhysicalRegisterDef(Entry, Entry->begin(),
137                                  getOrCreateInterval(*AS), 0, 0);
138    }
139  }
140
141  computeIntervals();
142
143  numIntervals += getNumIntervals();
144
145  DEBUG(std::cerr << "********** INTERVALS **********\n";
146        for (iterator I = begin(), E = end(); I != E; ++I) {
147          I->second.print(std::cerr, mri_);
148          std::cerr << "\n";
149        });
150
151  // join intervals if requested
152  if (EnableJoining) joinIntervals();
153
154  numIntervalsAfter += getNumIntervals();
155
156  // perform a final pass over the instructions and compute spill
157  // weights, coalesce virtual registers and remove identity moves
158  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
159
160  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
161       mbbi != mbbe; ++mbbi) {
162    MachineBasicBlock* mbb = mbbi;
163    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
164
165    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
166         mii != mie; ) {
167      // if the move will be an identity move delete it
168      unsigned srcReg, dstReg, RegRep;
169      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
170          (RegRep = rep(srcReg)) == rep(dstReg)) {
171        // remove from def list
172        LiveInterval &interval = getOrCreateInterval(RegRep);
173        // remove index -> MachineInstr and
174        // MachineInstr -> index mappings
175        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
176        if (mi2i != mi2iMap_.end()) {
177          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
178          mi2iMap_.erase(mi2i);
179        }
180        mii = mbbi->erase(mii);
181        ++numPeep;
182      }
183      else {
184        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
185          const MachineOperand& mop = mii->getOperand(i);
186          if (mop.isRegister() && mop.getReg() &&
187              MRegisterInfo::isVirtualRegister(mop.getReg())) {
188            // replace register with representative register
189            unsigned reg = rep(mop.getReg());
190            mii->SetMachineOperandReg(i, reg);
191
192            LiveInterval &RegInt = getInterval(reg);
193            RegInt.weight +=
194              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
195          }
196        }
197        ++mii;
198      }
199    }
200  }
201
202  DEBUG(dump());
203  return true;
204}
205
206/// print - Implement the dump method.
207void LiveIntervals::print(std::ostream &O, const Module* ) const {
208  O << "********** INTERVALS **********\n";
209  for (const_iterator I = begin(), E = end(); I != E; ++I)
210    O << "  " << I->second << "\n";
211
212  O << "********** MACHINEINSTRS **********\n";
213  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
214       mbbi != mbbe; ++mbbi) {
215    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
216    for (MachineBasicBlock::iterator mii = mbbi->begin(),
217           mie = mbbi->end(); mii != mie; ++mii) {
218      O << getInstructionIndex(mii) << '\t' << *mii;
219    }
220  }
221}
222
223std::vector<LiveInterval*> LiveIntervals::
224addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
225  // since this is called after the analysis is done we don't know if
226  // LiveVariables is available
227  lv_ = getAnalysisToUpdate<LiveVariables>();
228
229  std::vector<LiveInterval*> added;
230
231  assert(li.weight != HUGE_VAL &&
232         "attempt to spill already spilled interval!");
233
234  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
235        << li << '\n');
236
237  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
238
239  for (LiveInterval::Ranges::const_iterator
240         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
241    unsigned index = getBaseIndex(i->start);
242    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
243    for (; index != end; index += InstrSlots::NUM) {
244      // skip deleted instructions
245      while (index != end && !getInstructionFromIndex(index))
246        index += InstrSlots::NUM;
247      if (index == end) break;
248
249      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
250
251    for_operand:
252      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
253        MachineOperand& mop = mi->getOperand(i);
254        if (mop.isRegister() && mop.getReg() == li.reg) {
255          // First thing, attempt to fold the memory reference into the
256          // instruction.  If we can do this, we don't need to insert spill
257          // code.
258          if (MachineInstr* fmi = mri_->foldMemoryOperand(mi, i, slot)) {
259            if (lv_)
260              lv_->instructionChanged(mi, fmi);
261            vrm.virtFolded(li.reg, mi, i, fmi);
262            mi2iMap_.erase(mi);
263            i2miMap_[index/InstrSlots::NUM] = fmi;
264            mi2iMap_[fmi] = index;
265            MachineBasicBlock &MBB = *mi->getParent();
266            mi = MBB.insert(MBB.erase(mi), fmi);
267            ++numFolded;
268
269            // Folding the load/store can completely change the instruction in
270            // unpredictable ways, rescan it from the beginning.
271            goto for_operand;
272          } else {
273            // This is tricky. We need to add information in the interval about
274            // the spill code so we have to use our extra load/store slots.
275            //
276            // If we have a use we are going to have a load so we start the
277            // interval from the load slot onwards. Otherwise we start from the
278            // def slot.
279            unsigned start = (mop.isUse() ?
280                              getLoadIndex(index) :
281                              getDefIndex(index));
282            // If we have a def we are going to have a store right after it so
283            // we end the interval after the use of the next
284            // instruction. Otherwise we end after the use of this instruction.
285            unsigned end = 1 + (mop.isDef() ?
286                                getStoreIndex(index) :
287                                getUseIndex(index));
288
289            // create a new register for this spill
290            unsigned nReg = mf_->getSSARegMap()->createVirtualRegister(rc);
291            mi->SetMachineOperandReg(i, nReg);
292            vrm.grow();
293            vrm.assignVirt2StackSlot(nReg, slot);
294            LiveInterval& nI = getOrCreateInterval(nReg);
295            assert(nI.empty());
296
297            // the spill weight is now infinity as it
298            // cannot be spilled again
299            nI.weight = float(HUGE_VAL);
300            LiveRange LR(start, end, nI.getNextValue());
301            DEBUG(std::cerr << " +" << LR);
302            nI.addRange(LR);
303            added.push_back(&nI);
304
305            // update live variables if it is available
306            if (lv_)
307              lv_->addVirtualRegisterKilled(nReg, mi);
308            DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
309          }
310        }
311      }
312    }
313  }
314
315  return added;
316}
317
318void LiveIntervals::printRegName(unsigned reg) const
319{
320  if (MRegisterInfo::isPhysicalRegister(reg))
321    std::cerr << mri_->getName(reg);
322  else
323    std::cerr << "%reg" << reg;
324}
325
326void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
327                                             MachineBasicBlock::iterator mi,
328                                             LiveInterval& interval)
329{
330  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
331  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
332
333  // Virtual registers may be defined multiple times (due to phi
334  // elimination and 2-addr elimination).  Much of what we do only has to be
335  // done once for the vreg.  We use an empty interval to detect the first
336  // time we see a vreg.
337  if (interval.empty()) {
338    // Get the Idx of the defining instructions.
339    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
340
341    unsigned ValNum = interval.getNextValue();
342    assert(ValNum == 0 && "First value in interval is not 0?");
343    ValNum = 0;  // Clue in the optimizer.
344
345    // Loop over all of the blocks that the vreg is defined in.  There are
346    // two cases we have to handle here.  The most common case is a vreg
347    // whose lifetime is contained within a basic block.  In this case there
348    // will be a single kill, in MBB, which comes after the definition.
349    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
350      // FIXME: what about dead vars?
351      unsigned killIdx;
352      if (vi.Kills[0] != mi)
353        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
354      else
355        killIdx = defIndex+1;
356
357      // If the kill happens after the definition, we have an intra-block
358      // live range.
359      if (killIdx > defIndex) {
360        assert(vi.AliveBlocks.empty() &&
361               "Shouldn't be alive across any blocks!");
362        LiveRange LR(defIndex, killIdx, ValNum);
363        interval.addRange(LR);
364        DEBUG(std::cerr << " +" << LR << "\n");
365        return;
366      }
367    }
368
369    // The other case we handle is when a virtual register lives to the end
370    // of the defining block, potentially live across some blocks, then is
371    // live into some number of blocks, but gets killed.  Start by adding a
372    // range that goes from this definition to the end of the defining block.
373    LiveRange NewLR(defIndex,
374                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
375                    ValNum);
376    DEBUG(std::cerr << " +" << NewLR);
377    interval.addRange(NewLR);
378
379    // Iterate over all of the blocks that the variable is completely
380    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
381    // live interval.
382    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
383      if (vi.AliveBlocks[i]) {
384        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
385        if (!mbb->empty()) {
386          LiveRange LR(getInstructionIndex(&mbb->front()),
387                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
388                       ValNum);
389          interval.addRange(LR);
390          DEBUG(std::cerr << " +" << LR);
391        }
392      }
393    }
394
395    // Finally, this virtual register is live from the start of any killing
396    // block to the 'use' slot of the killing instruction.
397    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
398      MachineInstr *Kill = vi.Kills[i];
399      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
400                   getUseIndex(getInstructionIndex(Kill))+1,
401                   ValNum);
402      interval.addRange(LR);
403      DEBUG(std::cerr << " +" << LR);
404    }
405
406  } else {
407    // If this is the second time we see a virtual register definition, it
408    // must be due to phi elimination or two addr elimination.  If this is
409    // the result of two address elimination, then the vreg is the first
410    // operand, and is a def-and-use.
411    if (mi->getOperand(0).isRegister() &&
412        mi->getOperand(0).getReg() == interval.reg &&
413        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
414      // If this is a two-address definition, then we have already processed
415      // the live range.  The only problem is that we didn't realize there
416      // are actually two values in the live interval.  Because of this we
417      // need to take the LiveRegion that defines this register and split it
418      // into two values.
419      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
420      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
421
422      // Delete the initial value, which should be short and continuous,
423      // becuase the 2-addr copy must be in the same MBB as the redef.
424      interval.removeRange(DefIndex, RedefIndex);
425
426      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
427      DEBUG(std::cerr << " replace range with " << LR);
428      interval.addRange(LR);
429
430      // If this redefinition is dead, we need to add a dummy unit live
431      // range covering the def slot.
432      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
433             E = lv_->dead_end(mi); KI != E; ++KI)
434        if (KI->second == interval.reg) {
435          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
436          break;
437        }
438
439      DEBUG(std::cerr << "RESULT: " << interval);
440
441    } else {
442      // Otherwise, this must be because of phi elimination.  If this is the
443      // first redefinition of the vreg that we have seen, go back and change
444      // the live range in the PHI block to be a different value number.
445      if (interval.containsOneValue()) {
446        assert(vi.Kills.size() == 1 &&
447               "PHI elimination vreg should have one kill, the PHI itself!");
448
449        // Remove the old range that we now know has an incorrect number.
450        MachineInstr *Killer = vi.Kills[0];
451        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
452        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
453        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
454              << interval << "\n");
455        interval.removeRange(Start, End);
456        DEBUG(std::cerr << "RESULT: " << interval);
457
458        // Replace the interval with one of a NEW value number.
459        LiveRange LR(Start, End, interval.getNextValue());
460        DEBUG(std::cerr << " replace range with " << LR);
461        interval.addRange(LR);
462        DEBUG(std::cerr << "RESULT: " << interval);
463      }
464
465      // In the case of PHI elimination, each variable definition is only
466      // live until the end of the block.  We've already taken care of the
467      // rest of the live range.
468      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
469      LiveRange LR(defIndex,
470                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
471                   interval.getNextValue());
472      interval.addRange(LR);
473      DEBUG(std::cerr << " +" << LR);
474    }
475  }
476
477  DEBUG(std::cerr << '\n');
478}
479
480void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
481                                              MachineBasicBlock::iterator mi,
482                                              LiveInterval& interval,
483                                              unsigned SrcReg, unsigned DestReg)
484{
485  // A physical register cannot be live across basic block, so its
486  // lifetime must end somewhere in its defining basic block.
487  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
488  typedef LiveVariables::killed_iterator KillIter;
489
490  unsigned baseIndex = getInstructionIndex(mi);
491  unsigned start = getDefIndex(baseIndex);
492  unsigned end = start;
493
494  // If it is not used after definition, it is considered dead at
495  // the instruction defining it. Hence its interval is:
496  // [defSlot(def), defSlot(def)+1)
497  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
498       ki != ke; ++ki) {
499    if (interval.reg == ki->second) {
500      DEBUG(std::cerr << " dead");
501      end = getDefIndex(start) + 1;
502      goto exit;
503    }
504  }
505
506  // If it is not dead on definition, it must be killed by a
507  // subsequent instruction. Hence its interval is:
508  // [defSlot(def), useSlot(kill)+1)
509  while (true) {
510    ++mi;
511    assert(mi != MBB->end() && "physreg was not killed in defining block!");
512    baseIndex += InstrSlots::NUM;
513    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
514         ki != ke; ++ki) {
515      if (interval.reg == ki->second) {
516        DEBUG(std::cerr << " killed");
517        end = getUseIndex(baseIndex) + 1;
518        goto exit;
519      }
520    }
521  }
522
523exit:
524  assert(start < end && "did not find end of interval?");
525
526  // Finally, if this is defining a new range for the physical register, and if
527  // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
528  // the physreg, then the new fragment has the same value as the one copied
529  // into the vreg.
530  if (interval.reg == DestReg && !interval.empty() &&
531      MRegisterInfo::isVirtualRegister(SrcReg)) {
532
533    // Get the live interval for the vreg, see if it is defined by a copy.
534    LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
535
536    if (SrcInterval.containsOneValue()) {
537      assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
538
539      // Get the first index of the first range.  Though the interval may have
540      // multiple liveranges in it, we only check the first.
541      unsigned StartIdx = SrcInterval.begin()->start;
542      MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
543
544      // Check to see if the vreg was defined by a copy instruction, and that
545      // the source was this physreg.
546      unsigned VRegSrcSrc, VRegSrcDest;
547      if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
548          SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
549        // Okay, now we know that the vreg was defined by a copy from this
550        // physreg.  Find the value number being copied and use it as the value
551        // for this range.
552        const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
553        if (DefRange) {
554          LiveRange LR(start, end, DefRange->ValId);
555          interval.addRange(LR);
556          DEBUG(std::cerr << " +" << LR << '\n');
557          return;
558        }
559      }
560    }
561  }
562
563
564  LiveRange LR(start, end, interval.getNextValue());
565  interval.addRange(LR);
566  DEBUG(std::cerr << " +" << LR << '\n');
567}
568
569void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
570                                      MachineBasicBlock::iterator MI,
571                                      unsigned reg) {
572  if (MRegisterInfo::isVirtualRegister(reg))
573    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
574  else if (allocatableRegs_[reg]) {
575    unsigned SrcReg = 0, DestReg = 0;
576    bool IsMove = tii_->isMoveInstr(*MI, SrcReg, DestReg);
577
578    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
579                              SrcReg, DestReg);
580    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
581      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
582                                SrcReg, DestReg);
583  }
584}
585
586/// computeIntervals - computes the live intervals for virtual
587/// registers. for some ordering of the machine instructions [1,N] a
588/// live interval is an interval [i, j) where 1 <= i <= j < N for
589/// which a variable is live
590void LiveIntervals::computeIntervals()
591{
592  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
593  DEBUG(std::cerr << "********** Function: "
594        << ((Value*)mf_->getFunction())->getName() << '\n');
595  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
596
597  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
598       I != E; ++I) {
599    MachineBasicBlock* mbb = I;
600    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
601
602    MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
603    if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
604    for (; mi != miEnd; ++mi) {
605      const TargetInstrDescriptor& tid =
606        tm_->getInstrInfo()->get(mi->getOpcode());
607      DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
608
609      // handle implicit defs
610      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
611        handleRegisterDef(mbb, mi, *id);
612
613      // handle explicit defs
614      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
615        MachineOperand& mop = mi->getOperand(i);
616        // handle register defs - build intervals
617        if (mop.isRegister() && mop.getReg() && mop.isDef())
618          handleRegisterDef(mbb, mi, mop.getReg());
619      }
620    }
621  }
622}
623
624void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
625  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
626
627  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
628       mi != mie; ++mi) {
629    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
630
631    // we only join virtual registers with allocatable
632    // physical registers since we do not have liveness information
633    // on not allocatable physical registers
634    unsigned regA, regB;
635    if (tii_->isMoveInstr(*mi, regA, regB) &&
636        (MRegisterInfo::isVirtualRegister(regA) || allocatableRegs_[regA]) &&
637        (MRegisterInfo::isVirtualRegister(regB) || allocatableRegs_[regB])) {
638
639      // Get representative registers.
640      regA = rep(regA);
641      regB = rep(regB);
642
643      // If they are already joined we continue.
644      if (regA == regB)
645        continue;
646
647      // If they are both physical registers, we cannot join them.
648      if (MRegisterInfo::isPhysicalRegister(regA) &&
649          MRegisterInfo::isPhysicalRegister(regB))
650        continue;
651
652      // If they are not of the same register class, we cannot join them.
653      if (differingRegisterClasses(regA, regB))
654        continue;
655
656      LiveInterval &IntA = getInterval(regA);
657      LiveInterval &IntB = getInterval(regB);
658      assert(IntA.reg == regA && IntB.reg == regB &&
659             "Register mapping is horribly broken!");
660
661      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
662
663      // If two intervals contain a single value and are joined by a copy, it
664      // does not matter if the intervals overlap, they can always be joined.
665      bool TriviallyJoinable =
666        IntA.containsOneValue() && IntB.containsOneValue();
667
668      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
669      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
670          !overlapsAliases(&IntA, &IntB)) {
671        IntB.join(IntA, MIDefIdx);
672
673        if (!MRegisterInfo::isPhysicalRegister(regA)) {
674          r2iMap_.erase(regA);
675          r2rMap_[regA] = regB;
676        } else {
677          // Otherwise merge the data structures the other way so we don't lose
678          // the physreg information.
679          r2rMap_[regB] = regA;
680          IntB.reg = regA;
681          IntA.swap(IntB);
682          r2iMap_.erase(regB);
683        }
684        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
685        ++numJoins;
686      } else {
687        DEBUG(std::cerr << "Interference!\n");
688      }
689    }
690  }
691}
692
693namespace {
694  // DepthMBBCompare - Comparison predicate that sort first based on the loop
695  // depth of the basic block (the unsigned), and then on the MBB number.
696  struct DepthMBBCompare {
697    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
698    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
699      if (LHS.first > RHS.first) return true;   // Deeper loops first
700      return LHS.first == RHS.first &&
701        LHS.second->getNumber() < RHS.second->getNumber();
702    }
703  };
704}
705
706void LiveIntervals::joinIntervals() {
707  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
708
709  const LoopInfo &LI = getAnalysis<LoopInfo>();
710  if (LI.begin() == LI.end()) {
711    // If there are no loops in the function, join intervals in function order.
712    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
713         I != E; ++I)
714      joinIntervalsInMachineBB(I);
715  } else {
716    // Otherwise, join intervals in inner loops before other intervals.
717    // Unfortunately we can't just iterate over loop hierarchy here because
718    // there may be more MBB's than BB's.  Collect MBB's for sorting.
719    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
720    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
721         I != E; ++I)
722      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
723
724    // Sort by loop depth.
725    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
726
727    // Finally, join intervals in loop nest order.
728    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
729      joinIntervalsInMachineBB(MBBs[i].second);
730  }
731
732  DEBUG(std::cerr << "*** Register mapping ***\n");
733  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
734          if (r2rMap_[i])
735             std::cerr << "  reg " << i << " -> reg " << r2rMap_[i] << "\n");
736}
737
738/// Return true if the two specified registers belong to different register
739/// classes.  The registers may be either phys or virt regs.
740bool LiveIntervals::differingRegisterClasses(unsigned RegA,
741                                             unsigned RegB) const {
742
743  // Get the register classes for the first reg.
744  if (MRegisterInfo::isPhysicalRegister(RegA)) {
745    assert(MRegisterInfo::isVirtualRegister(RegB) &&
746           "Shouldn't consider two physregs!");
747    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
748  }
749
750  // Compare against the regclass for the second reg.
751  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
752  if (MRegisterInfo::isVirtualRegister(RegB))
753    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
754  else
755    return !RegClass->contains(RegB);
756}
757
758bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
759                                    const LiveInterval *RHS) const {
760  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
761    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
762      return false;   // vreg-vreg merge has no aliases!
763    std::swap(LHS, RHS);
764  }
765
766  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
767         MRegisterInfo::isVirtualRegister(RHS->reg) &&
768         "first interval must describe a physical register");
769
770  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
771    if (RHS->overlaps(getInterval(*AS)))
772      return true;
773
774  return false;
775}
776
777LiveInterval LiveIntervals::createInterval(unsigned reg) {
778  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
779                       (float)HUGE_VAL :0.0F;
780  return LiveInterval(reg, Weight);
781}
782