LiveIntervalAnalysis.cpp revision 4151fde810668888a258896b44e75b6eb876695d
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40STATISTIC(numIntervals, "Number of original intervals");
41STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
42STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
43
44char LiveIntervals::ID = 0;
45namespace {
46  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
47}
48
49void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
50  AU.addPreserved<LiveVariables>();
51  AU.addRequired<LiveVariables>();
52  AU.addPreservedID(PHIEliminationID);
53  AU.addRequiredID(PHIEliminationID);
54  AU.addRequiredID(TwoAddressInstructionPassID);
55  AU.addRequired<LoopInfo>();
56  MachineFunctionPass::getAnalysisUsage(AU);
57}
58
59void LiveIntervals::releaseMemory() {
60  mi2iMap_.clear();
61  i2miMap_.clear();
62  r2iMap_.clear();
63}
64
65/// runOnMachineFunction - Register allocate the whole function
66///
67bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
68  mf_ = &fn;
69  tm_ = &fn.getTarget();
70  mri_ = tm_->getRegisterInfo();
71  tii_ = tm_->getInstrInfo();
72  lv_ = &getAnalysis<LiveVariables>();
73  allocatableRegs_ = mri_->getAllocatableSet(fn);
74
75  // Number MachineInstrs and MachineBasicBlocks.
76  // Initialize MBB indexes to a sentinal.
77  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
78
79  unsigned MIIndex = 0;
80  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
81       MBB != E; ++MBB) {
82    // Set the MBB2IdxMap entry for this MBB.
83    MBB2IdxMap[MBB->getNumber()] = MIIndex;
84
85    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
86         I != E; ++I) {
87      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
88      assert(inserted && "multiple MachineInstr -> index mappings");
89      i2miMap_.push_back(I);
90      MIIndex += InstrSlots::NUM;
91    }
92  }
93
94  computeIntervals();
95
96  numIntervals += getNumIntervals();
97
98  DOUT << "********** INTERVALS **********\n";
99  for (iterator I = begin(), E = end(); I != E; ++I) {
100    I->second.print(DOUT, mri_);
101    DOUT << "\n";
102  }
103
104  numIntervalsAfter += getNumIntervals();
105  DEBUG(dump());
106  return true;
107}
108
109/// print - Implement the dump method.
110void LiveIntervals::print(std::ostream &O, const Module* ) const {
111  O << "********** INTERVALS **********\n";
112  for (const_iterator I = begin(), E = end(); I != E; ++I) {
113    I->second.print(DOUT, mri_);
114    DOUT << "\n";
115  }
116
117  O << "********** MACHINEINSTRS **********\n";
118  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
119       mbbi != mbbe; ++mbbi) {
120    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
121    for (MachineBasicBlock::iterator mii = mbbi->begin(),
122           mie = mbbi->end(); mii != mie; ++mii) {
123      O << getInstructionIndex(mii) << '\t' << *mii;
124    }
125  }
126}
127
128// Not called?
129/// CreateNewLiveInterval - Create a new live interval with the given live
130/// ranges. The new live interval will have an infinite spill weight.
131LiveInterval&
132LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
133                                     const std::vector<LiveRange> &LRs) {
134  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
135
136  // Create a new virtual register for the spill interval.
137  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
138
139  // Replace the old virtual registers in the machine operands with the shiny
140  // new one.
141  for (std::vector<LiveRange>::const_iterator
142         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
143    unsigned Index = getBaseIndex(I->start);
144    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
145
146    for (; Index != End; Index += InstrSlots::NUM) {
147      // Skip deleted instructions
148      while (Index != End && !getInstructionFromIndex(Index))
149        Index += InstrSlots::NUM;
150
151      if (Index == End) break;
152
153      MachineInstr *MI = getInstructionFromIndex(Index);
154
155      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
156        MachineOperand &MOp = MI->getOperand(J);
157        if (MOp.isRegister() && MOp.getReg() == LI->reg)
158          MOp.setReg(NewVReg);
159      }
160    }
161  }
162
163  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
164
165  // The spill weight is now infinity as it cannot be spilled again
166  NewLI.weight = float(HUGE_VAL);
167
168  for (std::vector<LiveRange>::const_iterator
169         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
170    DOUT << "  Adding live range " << *I << " to new interval\n";
171    NewLI.addRange(*I);
172  }
173
174  DOUT << "Created new live interval " << NewLI << "\n";
175  return NewLI;
176}
177
178std::vector<LiveInterval*> LiveIntervals::
179addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
180  // since this is called after the analysis is done we don't know if
181  // LiveVariables is available
182  lv_ = getAnalysisToUpdate<LiveVariables>();
183
184  std::vector<LiveInterval*> added;
185
186  assert(li.weight != HUGE_VALF &&
187         "attempt to spill already spilled interval!");
188
189  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
190  li.print(DOUT, mri_);
191  DOUT << '\n';
192
193  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
194
195  for (LiveInterval::Ranges::const_iterator
196         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
197    unsigned index = getBaseIndex(i->start);
198    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
199    for (; index != end; index += InstrSlots::NUM) {
200      // skip deleted instructions
201      while (index != end && !getInstructionFromIndex(index))
202        index += InstrSlots::NUM;
203      if (index == end) break;
204
205      MachineInstr *MI = getInstructionFromIndex(index);
206
207    RestartInstruction:
208      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
209        MachineOperand& mop = MI->getOperand(i);
210        if (mop.isRegister() && mop.getReg() == li.reg) {
211          MachineInstr *fmi = li.remat ? NULL
212            : mri_->foldMemoryOperand(MI, i, slot);
213          if (fmi) {
214            // Attempt to fold the memory reference into the instruction.  If we
215            // can do this, we don't need to insert spill code.
216            if (lv_)
217              lv_->instructionChanged(MI, fmi);
218            MachineBasicBlock &MBB = *MI->getParent();
219            vrm.virtFolded(li.reg, MI, i, fmi);
220            mi2iMap_.erase(MI);
221            i2miMap_[index/InstrSlots::NUM] = fmi;
222            mi2iMap_[fmi] = index;
223            MI = MBB.insert(MBB.erase(MI), fmi);
224            ++numFolded;
225            // Folding the load/store can completely change the instruction in
226            // unpredictable ways, rescan it from the beginning.
227            goto RestartInstruction;
228          } else {
229            // Create a new virtual register for the spill interval.
230            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
231
232            // Scan all of the operands of this instruction rewriting operands
233            // to use NewVReg instead of li.reg as appropriate.  We do this for
234            // two reasons:
235            //
236            //   1. If the instr reads the same spilled vreg multiple times, we
237            //      want to reuse the NewVReg.
238            //   2. If the instr is a two-addr instruction, we are required to
239            //      keep the src/dst regs pinned.
240            //
241            // Keep track of whether we replace a use and/or def so that we can
242            // create the spill interval with the appropriate range.
243            mop.setReg(NewVReg);
244
245            bool HasUse = mop.isUse();
246            bool HasDef = mop.isDef();
247            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
248              if (MI->getOperand(j).isReg() &&
249                  MI->getOperand(j).getReg() == li.reg) {
250                MI->getOperand(j).setReg(NewVReg);
251                HasUse |= MI->getOperand(j).isUse();
252                HasDef |= MI->getOperand(j).isDef();
253              }
254            }
255
256            // create a new register for this spill
257            vrm.grow();
258            if (li.remat)
259              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
260            vrm.assignVirt2StackSlot(NewVReg, slot);
261            LiveInterval &nI = getOrCreateInterval(NewVReg);
262            nI.remat = li.remat;
263            assert(nI.empty());
264
265            // the spill weight is now infinity as it
266            // cannot be spilled again
267            nI.weight = HUGE_VALF;
268
269            if (HasUse) {
270              LiveRange LR(getLoadIndex(index), getUseIndex(index),
271                           nI.getNextValue(~0U, 0));
272              DOUT << " +" << LR;
273              nI.addRange(LR);
274            }
275            if (HasDef) {
276              LiveRange LR(getDefIndex(index), getStoreIndex(index),
277                           nI.getNextValue(~0U, 0));
278              DOUT << " +" << LR;
279              nI.addRange(LR);
280            }
281
282            added.push_back(&nI);
283
284            // update live variables if it is available
285            if (lv_)
286              lv_->addVirtualRegisterKilled(NewVReg, MI);
287
288            DOUT << "\t\t\t\tadded new interval: ";
289            nI.print(DOUT, mri_);
290            DOUT << '\n';
291          }
292        }
293      }
294    }
295  }
296
297  return added;
298}
299
300void LiveIntervals::printRegName(unsigned reg) const {
301  if (MRegisterInfo::isPhysicalRegister(reg))
302    cerr << mri_->getName(reg);
303  else
304    cerr << "%reg" << reg;
305}
306
307/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
308/// two addr elimination.
309static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
310                                const TargetInstrInfo *TII) {
311  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
312    MachineOperand &MO1 = MI->getOperand(i);
313    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
314      for (unsigned j = i+1; j < e; ++j) {
315        MachineOperand &MO2 = MI->getOperand(j);
316        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
317            MI->getInstrDescriptor()->
318            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
319          return true;
320      }
321    }
322  }
323  return false;
324}
325
326void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
327                                             MachineBasicBlock::iterator mi,
328                                             unsigned MIIdx,
329                                             LiveInterval &interval) {
330  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
331  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
332
333  // Virtual registers may be defined multiple times (due to phi
334  // elimination and 2-addr elimination).  Much of what we do only has to be
335  // done once for the vreg.  We use an empty interval to detect the first
336  // time we see a vreg.
337  if (interval.empty()) {
338    // Remember if the definition can be rematerialized. All load's from fixed
339    // stack slots are re-materializable. The target may permit other
340    // instructions to be re-materialized as well.
341    int FrameIdx = 0;
342    if (vi.DefInst &&
343        (tii_->isTriviallyReMaterializable(vi.DefInst) ||
344         (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
345          mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
346      interval.remat = vi.DefInst;
347
348    // Get the Idx of the defining instructions.
349    unsigned defIndex = getDefIndex(MIIdx);
350
351    unsigned ValNum;
352    unsigned SrcReg, DstReg;
353    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
354      ValNum = interval.getNextValue(defIndex, 0);
355    else
356      ValNum = interval.getNextValue(defIndex, SrcReg);
357
358    assert(ValNum == 0 && "First value in interval is not 0?");
359    ValNum = 0;  // Clue in the optimizer.
360
361    // Loop over all of the blocks that the vreg is defined in.  There are
362    // two cases we have to handle here.  The most common case is a vreg
363    // whose lifetime is contained within a basic block.  In this case there
364    // will be a single kill, in MBB, which comes after the definition.
365    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
366      // FIXME: what about dead vars?
367      unsigned killIdx;
368      if (vi.Kills[0] != mi)
369        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
370      else
371        killIdx = defIndex+1;
372
373      // If the kill happens after the definition, we have an intra-block
374      // live range.
375      if (killIdx > defIndex) {
376        assert(vi.AliveBlocks.none() &&
377               "Shouldn't be alive across any blocks!");
378        LiveRange LR(defIndex, killIdx, ValNum);
379        interval.addRange(LR);
380        DOUT << " +" << LR << "\n";
381        return;
382      }
383    }
384
385    // The other case we handle is when a virtual register lives to the end
386    // of the defining block, potentially live across some blocks, then is
387    // live into some number of blocks, but gets killed.  Start by adding a
388    // range that goes from this definition to the end of the defining block.
389    LiveRange NewLR(defIndex,
390                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
391                    ValNum);
392    DOUT << " +" << NewLR;
393    interval.addRange(NewLR);
394
395    // Iterate over all of the blocks that the variable is completely
396    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
397    // live interval.
398    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
399      if (vi.AliveBlocks[i]) {
400        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
401        if (!MBB->empty()) {
402          LiveRange LR(getMBBStartIdx(i),
403                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
404                       ValNum);
405          interval.addRange(LR);
406          DOUT << " +" << LR;
407        }
408      }
409    }
410
411    // Finally, this virtual register is live from the start of any killing
412    // block to the 'use' slot of the killing instruction.
413    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
414      MachineInstr *Kill = vi.Kills[i];
415      LiveRange LR(getMBBStartIdx(Kill->getParent()),
416                   getUseIndex(getInstructionIndex(Kill))+1,
417                   ValNum);
418      interval.addRange(LR);
419      DOUT << " +" << LR;
420    }
421
422  } else {
423    // Can no longer safely assume definition is rematerializable.
424    interval.remat = NULL;
425
426    // If this is the second time we see a virtual register definition, it
427    // must be due to phi elimination or two addr elimination.  If this is
428    // the result of two address elimination, then the vreg is one of the
429    // def-and-use register operand.
430    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
431      // If this is a two-address definition, then we have already processed
432      // the live range.  The only problem is that we didn't realize there
433      // are actually two values in the live interval.  Because of this we
434      // need to take the LiveRegion that defines this register and split it
435      // into two values.
436      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
437      unsigned RedefIndex = getDefIndex(MIIdx);
438
439      // Delete the initial value, which should be short and continuous,
440      // because the 2-addr copy must be in the same MBB as the redef.
441      interval.removeRange(DefIndex, RedefIndex);
442
443      // Two-address vregs should always only be redefined once.  This means
444      // that at this point, there should be exactly one value number in it.
445      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
446
447      // The new value number (#1) is defined by the instruction we claimed
448      // defined value #0.
449      unsigned ValNo = interval.getNextValue(0, 0);
450      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
451
452      // Value#0 is now defined by the 2-addr instruction.
453      interval.setValueNumberInfo(0, LiveInterval::VNInfo(DefIndex, ~0U, 0U));
454
455      // Add the new live interval which replaces the range for the input copy.
456      LiveRange LR(DefIndex, RedefIndex, ValNo);
457      DOUT << " replace range with " << LR;
458      interval.addRange(LR);
459
460      // If this redefinition is dead, we need to add a dummy unit live
461      // range covering the def slot.
462      if (lv_->RegisterDefIsDead(mi, interval.reg))
463        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
464
465      DOUT << " RESULT: ";
466      interval.print(DOUT, mri_);
467
468    } else {
469      // Otherwise, this must be because of phi elimination.  If this is the
470      // first redefinition of the vreg that we have seen, go back and change
471      // the live range in the PHI block to be a different value number.
472      if (interval.containsOneValue()) {
473        assert(vi.Kills.size() == 1 &&
474               "PHI elimination vreg should have one kill, the PHI itself!");
475
476        // Remove the old range that we now know has an incorrect number.
477        MachineInstr *Killer = vi.Kills[0];
478        unsigned Start = getMBBStartIdx(Killer->getParent());
479        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
480        DOUT << " Removing [" << Start << "," << End << "] from: ";
481        interval.print(DOUT, mri_); DOUT << "\n";
482        interval.removeRange(Start, End);
483        DOUT << " RESULT: "; interval.print(DOUT, mri_);
484
485        // Replace the interval with one of a NEW value number.  Note that this
486        // value number isn't actually defined by an instruction, weird huh? :)
487        LiveRange LR(Start, End, interval.getNextValue(~0, 0));
488        DOUT << " replace range with " << LR;
489        interval.addRange(LR);
490        DOUT << " RESULT: "; interval.print(DOUT, mri_);
491      }
492
493      // In the case of PHI elimination, each variable definition is only
494      // live until the end of the block.  We've already taken care of the
495      // rest of the live range.
496      unsigned defIndex = getDefIndex(MIIdx);
497
498      unsigned ValNum;
499      unsigned SrcReg, DstReg;
500      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
501        ValNum = interval.getNextValue(defIndex, 0);
502      else
503        ValNum = interval.getNextValue(defIndex, SrcReg);
504
505      LiveRange LR(defIndex,
506                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
507      interval.addRange(LR);
508      DOUT << " +" << LR;
509    }
510  }
511
512  DOUT << '\n';
513}
514
515void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
516                                              MachineBasicBlock::iterator mi,
517                                              unsigned MIIdx,
518                                              LiveInterval &interval,
519                                              unsigned SrcReg) {
520  // A physical register cannot be live across basic block, so its
521  // lifetime must end somewhere in its defining basic block.
522  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
523
524  unsigned baseIndex = MIIdx;
525  unsigned start = getDefIndex(baseIndex);
526  unsigned end = start;
527
528  // If it is not used after definition, it is considered dead at
529  // the instruction defining it. Hence its interval is:
530  // [defSlot(def), defSlot(def)+1)
531  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
532    DOUT << " dead";
533    end = getDefIndex(start) + 1;
534    goto exit;
535  }
536
537  // If it is not dead on definition, it must be killed by a
538  // subsequent instruction. Hence its interval is:
539  // [defSlot(def), useSlot(kill)+1)
540  while (++mi != MBB->end()) {
541    baseIndex += InstrSlots::NUM;
542    if (lv_->KillsRegister(mi, interval.reg)) {
543      DOUT << " killed";
544      end = getUseIndex(baseIndex) + 1;
545      goto exit;
546    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
547      // Another instruction redefines the register before it is ever read.
548      // Then the register is essentially dead at the instruction that defines
549      // it. Hence its interval is:
550      // [defSlot(def), defSlot(def)+1)
551      DOUT << " dead";
552      end = getDefIndex(start) + 1;
553      goto exit;
554    }
555  }
556
557  // The only case we should have a dead physreg here without a killing or
558  // instruction where we know it's dead is if it is live-in to the function
559  // and never used.
560  assert(!SrcReg && "physreg was not killed in defining block!");
561  end = getDefIndex(start) + 1;  // It's dead.
562
563exit:
564  assert(start < end && "did not find end of interval?");
565
566  // Already exists? Extend old live interval.
567  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
568  unsigned Id = (OldLR != interval.end())
569    ? OldLR->ValId : interval.getNextValue(start, SrcReg);
570  LiveRange LR(start, end, Id);
571  interval.addRange(LR);
572  DOUT << " +" << LR << '\n';
573}
574
575void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
576                                      MachineBasicBlock::iterator MI,
577                                      unsigned MIIdx,
578                                      unsigned reg) {
579  if (MRegisterInfo::isVirtualRegister(reg))
580    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
581  else if (allocatableRegs_[reg]) {
582    unsigned SrcReg, DstReg;
583    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
584      SrcReg = 0;
585    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
586    // Def of a register also defines its sub-registers.
587    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
588      // Avoid processing some defs more than once.
589      if (!MI->findRegisterDefOperand(*AS))
590        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
591  }
592}
593
594void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
595                                         unsigned MIIdx,
596                                         LiveInterval &interval, bool isAlias) {
597  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
598
599  // Look for kills, if it reaches a def before it's killed, then it shouldn't
600  // be considered a livein.
601  MachineBasicBlock::iterator mi = MBB->begin();
602  unsigned baseIndex = MIIdx;
603  unsigned start = baseIndex;
604  unsigned end = start;
605  while (mi != MBB->end()) {
606    if (lv_->KillsRegister(mi, interval.reg)) {
607      DOUT << " killed";
608      end = getUseIndex(baseIndex) + 1;
609      goto exit;
610    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
611      // Another instruction redefines the register before it is ever read.
612      // Then the register is essentially dead at the instruction that defines
613      // it. Hence its interval is:
614      // [defSlot(def), defSlot(def)+1)
615      DOUT << " dead";
616      end = getDefIndex(start) + 1;
617      goto exit;
618    }
619
620    baseIndex += InstrSlots::NUM;
621    ++mi;
622  }
623
624exit:
625  // Live-in register might not be used at all.
626  if (end == MIIdx) {
627    if (isAlias) {
628      DOUT << " dead";
629      end = getDefIndex(MIIdx) + 1;
630    } else {
631      DOUT << " live through";
632      end = baseIndex;
633    }
634  }
635
636  LiveRange LR(start, end, interval.getNextValue(start, 0));
637  DOUT << " +" << LR << '\n';
638  interval.addRange(LR);
639}
640
641/// computeIntervals - computes the live intervals for virtual
642/// registers. for some ordering of the machine instructions [1,N] a
643/// live interval is an interval [i, j) where 1 <= i <= j < N for
644/// which a variable is live
645void LiveIntervals::computeIntervals() {
646  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
647       << "********** Function: "
648       << ((Value*)mf_->getFunction())->getName() << '\n';
649  // Track the index of the current machine instr.
650  unsigned MIIndex = 0;
651  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
652       MBBI != E; ++MBBI) {
653    MachineBasicBlock *MBB = MBBI;
654    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
655
656    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
657
658    if (MBB->livein_begin() != MBB->livein_end()) {
659      // Create intervals for live-ins to this BB first.
660      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
661             LE = MBB->livein_end(); LI != LE; ++LI) {
662        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
663        // Multiple live-ins can alias the same register.
664        for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
665          if (!hasInterval(*AS))
666            handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
667                                 true);
668      }
669    }
670
671    for (; MI != miEnd; ++MI) {
672      DOUT << MIIndex << "\t" << *MI;
673
674      // Handle defs.
675      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
676        MachineOperand &MO = MI->getOperand(i);
677        // handle register defs - build intervals
678        if (MO.isRegister() && MO.getReg() && MO.isDef())
679          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
680      }
681
682      MIIndex += InstrSlots::NUM;
683    }
684  }
685}
686
687LiveInterval LiveIntervals::createInterval(unsigned reg) {
688  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
689                       HUGE_VALF : 0.0F;
690  return LiveInterval(reg, Weight);
691}
692