LiveIntervalAnalysis.cpp revision 428b92eb83b457b71d29d1d4b7900d36a0ce9a53
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37#include <iostream>
38using namespace llvm;
39
40namespace {
41  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
42
43  static Statistic<> numIntervals
44  ("liveintervals", "Number of original intervals");
45
46  static Statistic<> numIntervalsAfter
47  ("liveintervals", "Number of intervals after coalescing");
48
49  static Statistic<> numJoins
50  ("liveintervals", "Number of interval joins performed");
51
52  static Statistic<> numPeep
53  ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55  static Statistic<> numFolded
56  ("liveintervals", "Number of loads/stores folded into instructions");
57
58  static cl::opt<bool>
59  EnableJoining("join-liveintervals",
60                cl::desc("Coallesce copies (default=true)"),
61                cl::init(true));
62}
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
65  AU.addRequired<LiveVariables>();
66  AU.addPreservedID(PHIEliminationID);
67  AU.addRequiredID(PHIEliminationID);
68  AU.addRequiredID(TwoAddressInstructionPassID);
69  AU.addRequired<LoopInfo>();
70  MachineFunctionPass::getAnalysisUsage(AU);
71}
72
73void LiveIntervals::releaseMemory() {
74  mi2iMap_.clear();
75  i2miMap_.clear();
76  r2iMap_.clear();
77  r2rMap_.clear();
78}
79
80
81static bool isZeroLengthInterval(LiveInterval *li) {
82  for (LiveInterval::Ranges::const_iterator
83         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
84    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
85      return false;
86  return true;
87}
88
89
90/// runOnMachineFunction - Register allocate the whole function
91///
92bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
93  mf_ = &fn;
94  tm_ = &fn.getTarget();
95  mri_ = tm_->getRegisterInfo();
96  tii_ = tm_->getInstrInfo();
97  lv_ = &getAnalysis<LiveVariables>();
98  allocatableRegs_ = mri_->getAllocatableSet(fn);
99  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
100
101  // If this function has any live ins, insert a dummy instruction at the
102  // beginning of the function that we will pretend "defines" the values.  This
103  // is to make the interval analysis simpler by providing a number.
104  if (fn.livein_begin() != fn.livein_end()) {
105    unsigned FirstLiveIn = fn.livein_begin()->first;
106
107    // Find a reg class that contains this live in.
108    const TargetRegisterClass *RC = 0;
109    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
110           E = mri_->regclass_end(); RCI != E; ++RCI)
111      if ((*RCI)->contains(FirstLiveIn)) {
112        RC = *RCI;
113        break;
114      }
115
116    MachineInstr *OldFirstMI = fn.begin()->begin();
117    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
118                       FirstLiveIn, FirstLiveIn, RC);
119    assert(OldFirstMI != fn.begin()->begin() &&
120           "copyRetToReg didn't insert anything!");
121  }
122
123  // Number MachineInstrs and MachineBasicBlocks.
124  // Initialize MBB indexes to a sentinal.
125  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
126
127  unsigned MIIndex = 0;
128  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
129       MBB != E; ++MBB) {
130    // Set the MBB2IdxMap entry for this MBB.
131    MBB2IdxMap[MBB->getNumber()] = MIIndex;
132
133    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
134         I != E; ++I) {
135      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
136      assert(inserted && "multiple MachineInstr -> index mappings");
137      i2miMap_.push_back(I);
138      MIIndex += InstrSlots::NUM;
139    }
140  }
141
142  // Note intervals due to live-in values.
143  if (fn.livein_begin() != fn.livein_end()) {
144    MachineBasicBlock *Entry = fn.begin();
145    for (MachineFunction::livein_iterator I = fn.livein_begin(),
146           E = fn.livein_end(); I != E; ++I) {
147      handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
148                                getOrCreateInterval(I->first), 0);
149      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
150        handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
151                                  getOrCreateInterval(*AS), 0);
152    }
153  }
154
155  computeIntervals();
156
157  numIntervals += getNumIntervals();
158
159  DEBUG(std::cerr << "********** INTERVALS **********\n";
160        for (iterator I = begin(), E = end(); I != E; ++I) {
161          I->second.print(std::cerr, mri_);
162          std::cerr << "\n";
163        });
164
165  // Join (coallesce) intervals if requested.
166  if (EnableJoining) joinIntervals();
167
168  numIntervalsAfter += getNumIntervals();
169
170
171  // perform a final pass over the instructions and compute spill
172  // weights, coalesce virtual registers and remove identity moves.
173  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
174
175  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
176       mbbi != mbbe; ++mbbi) {
177    MachineBasicBlock* mbb = mbbi;
178    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
179
180    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
181         mii != mie; ) {
182      // if the move will be an identity move delete it
183      unsigned srcReg, dstReg, RegRep;
184      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
185          (RegRep = rep(srcReg)) == rep(dstReg)) {
186        // remove from def list
187        LiveInterval &interval = getOrCreateInterval(RegRep);
188        RemoveMachineInstrFromMaps(mii);
189        mii = mbbi->erase(mii);
190        ++numPeep;
191      }
192      else {
193        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
194          const MachineOperand &mop = mii->getOperand(i);
195          if (mop.isRegister() && mop.getReg() &&
196              MRegisterInfo::isVirtualRegister(mop.getReg())) {
197            // replace register with representative register
198            unsigned reg = rep(mop.getReg());
199            mii->getOperand(i).setReg(reg);
200
201            LiveInterval &RegInt = getInterval(reg);
202            RegInt.weight +=
203              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
204          }
205        }
206        ++mii;
207      }
208    }
209  }
210
211  for (iterator I = begin(), E = end(); I != E; ++I) {
212    LiveInterval &li = I->second;
213    if (MRegisterInfo::isVirtualRegister(li.reg)) {
214      // If the live interval length is essentially zero, i.e. in every live
215      // range the use follows def immediately, it doesn't make sense to spill
216      // it and hope it will be easier to allocate for this li.
217      if (isZeroLengthInterval(&li))
218        li.weight = float(HUGE_VAL);
219    }
220  }
221
222  DEBUG(dump());
223  return true;
224}
225
226/// print - Implement the dump method.
227void LiveIntervals::print(std::ostream &O, const Module* ) const {
228  O << "********** INTERVALS **********\n";
229  for (const_iterator I = begin(), E = end(); I != E; ++I) {
230    I->second.print(std::cerr, mri_);
231    std::cerr << "\n";
232  }
233
234  O << "********** MACHINEINSTRS **********\n";
235  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
236       mbbi != mbbe; ++mbbi) {
237    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
238    for (MachineBasicBlock::iterator mii = mbbi->begin(),
239           mie = mbbi->end(); mii != mie; ++mii) {
240      O << getInstructionIndex(mii) << '\t' << *mii;
241    }
242  }
243}
244
245std::vector<LiveInterval*> LiveIntervals::
246addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
247  // since this is called after the analysis is done we don't know if
248  // LiveVariables is available
249  lv_ = getAnalysisToUpdate<LiveVariables>();
250
251  std::vector<LiveInterval*> added;
252
253  assert(li.weight != HUGE_VAL &&
254         "attempt to spill already spilled interval!");
255
256  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: ";
257        li.print(std::cerr, mri_); std::cerr << '\n');
258
259  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
260
261  for (LiveInterval::Ranges::const_iterator
262         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
263    unsigned index = getBaseIndex(i->start);
264    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
265    for (; index != end; index += InstrSlots::NUM) {
266      // skip deleted instructions
267      while (index != end && !getInstructionFromIndex(index))
268        index += InstrSlots::NUM;
269      if (index == end) break;
270
271      MachineInstr *MI = getInstructionFromIndex(index);
272
273    RestartInstruction:
274      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
275        MachineOperand& mop = MI->getOperand(i);
276        if (mop.isRegister() && mop.getReg() == li.reg) {
277          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
278            // Attempt to fold the memory reference into the instruction.  If we
279            // can do this, we don't need to insert spill code.
280            if (lv_)
281              lv_->instructionChanged(MI, fmi);
282            MachineBasicBlock &MBB = *MI->getParent();
283            vrm.virtFolded(li.reg, MI, i, fmi);
284            mi2iMap_.erase(MI);
285            i2miMap_[index/InstrSlots::NUM] = fmi;
286            mi2iMap_[fmi] = index;
287            MI = MBB.insert(MBB.erase(MI), fmi);
288            ++numFolded;
289            // Folding the load/store can completely change the instruction in
290            // unpredictable ways, rescan it from the beginning.
291            goto RestartInstruction;
292          } else {
293            // Create a new virtual register for the spill interval.
294            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
295
296            // Scan all of the operands of this instruction rewriting operands
297            // to use NewVReg instead of li.reg as appropriate.  We do this for
298            // two reasons:
299            //
300            //   1. If the instr reads the same spilled vreg multiple times, we
301            //      want to reuse the NewVReg.
302            //   2. If the instr is a two-addr instruction, we are required to
303            //      keep the src/dst regs pinned.
304            //
305            // Keep track of whether we replace a use and/or def so that we can
306            // create the spill interval with the appropriate range.
307            mop.setReg(NewVReg);
308
309            bool HasUse = mop.isUse();
310            bool HasDef = mop.isDef();
311            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
312              if (MI->getOperand(j).isReg() &&
313                  MI->getOperand(j).getReg() == li.reg) {
314                MI->getOperand(j).setReg(NewVReg);
315                HasUse |= MI->getOperand(j).isUse();
316                HasDef |= MI->getOperand(j).isDef();
317              }
318            }
319
320            // create a new register for this spill
321            vrm.grow();
322            vrm.assignVirt2StackSlot(NewVReg, slot);
323            LiveInterval &nI = getOrCreateInterval(NewVReg);
324            assert(nI.empty());
325
326            // the spill weight is now infinity as it
327            // cannot be spilled again
328            nI.weight = float(HUGE_VAL);
329
330            if (HasUse) {
331              LiveRange LR(getLoadIndex(index), getUseIndex(index),
332                           nI.getNextValue(~0U, 0));
333              DEBUG(std::cerr << " +" << LR);
334              nI.addRange(LR);
335            }
336            if (HasDef) {
337              LiveRange LR(getDefIndex(index), getStoreIndex(index),
338                           nI.getNextValue(~0U, 0));
339              DEBUG(std::cerr << " +" << LR);
340              nI.addRange(LR);
341            }
342
343            added.push_back(&nI);
344
345            // update live variables if it is available
346            if (lv_)
347              lv_->addVirtualRegisterKilled(NewVReg, MI);
348
349            DEBUG(std::cerr << "\t\t\t\tadded new interval: ";
350                  nI.print(std::cerr, mri_); std::cerr << '\n');
351          }
352        }
353      }
354    }
355  }
356
357  return added;
358}
359
360void LiveIntervals::printRegName(unsigned reg) const {
361  if (MRegisterInfo::isPhysicalRegister(reg))
362    std::cerr << mri_->getName(reg);
363  else
364    std::cerr << "%reg" << reg;
365}
366
367void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
368                                             MachineBasicBlock::iterator mi,
369                                             unsigned MIIdx,
370                                             LiveInterval &interval) {
371  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
372  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
373
374  // Virtual registers may be defined multiple times (due to phi
375  // elimination and 2-addr elimination).  Much of what we do only has to be
376  // done once for the vreg.  We use an empty interval to detect the first
377  // time we see a vreg.
378  if (interval.empty()) {
379    // Get the Idx of the defining instructions.
380    unsigned defIndex = getDefIndex(MIIdx);
381
382    unsigned ValNum;
383    unsigned SrcReg, DstReg;
384    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
385      ValNum = interval.getNextValue(~0U, 0);
386    else
387      ValNum = interval.getNextValue(defIndex, SrcReg);
388
389    assert(ValNum == 0 && "First value in interval is not 0?");
390    ValNum = 0;  // Clue in the optimizer.
391
392    // Loop over all of the blocks that the vreg is defined in.  There are
393    // two cases we have to handle here.  The most common case is a vreg
394    // whose lifetime is contained within a basic block.  In this case there
395    // will be a single kill, in MBB, which comes after the definition.
396    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
397      // FIXME: what about dead vars?
398      unsigned killIdx;
399      if (vi.Kills[0] != mi)
400        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
401      else
402        killIdx = defIndex+1;
403
404      // If the kill happens after the definition, we have an intra-block
405      // live range.
406      if (killIdx > defIndex) {
407        assert(vi.AliveBlocks.empty() &&
408               "Shouldn't be alive across any blocks!");
409        LiveRange LR(defIndex, killIdx, ValNum);
410        interval.addRange(LR);
411        DEBUG(std::cerr << " +" << LR << "\n");
412        return;
413      }
414    }
415
416    // The other case we handle is when a virtual register lives to the end
417    // of the defining block, potentially live across some blocks, then is
418    // live into some number of blocks, but gets killed.  Start by adding a
419    // range that goes from this definition to the end of the defining block.
420    LiveRange NewLR(defIndex,
421                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
422                    ValNum);
423    DEBUG(std::cerr << " +" << NewLR);
424    interval.addRange(NewLR);
425
426    // Iterate over all of the blocks that the variable is completely
427    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
428    // live interval.
429    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
430      if (vi.AliveBlocks[i]) {
431        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
432        if (!MBB->empty()) {
433          LiveRange LR(getMBBStartIdx(i),
434                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
435                       ValNum);
436          interval.addRange(LR);
437          DEBUG(std::cerr << " +" << LR);
438        }
439      }
440    }
441
442    // Finally, this virtual register is live from the start of any killing
443    // block to the 'use' slot of the killing instruction.
444    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
445      MachineInstr *Kill = vi.Kills[i];
446      LiveRange LR(getMBBStartIdx(Kill->getParent()),
447                   getUseIndex(getInstructionIndex(Kill))+1,
448                   ValNum);
449      interval.addRange(LR);
450      DEBUG(std::cerr << " +" << LR);
451    }
452
453  } else {
454    // If this is the second time we see a virtual register definition, it
455    // must be due to phi elimination or two addr elimination.  If this is
456    // the result of two address elimination, then the vreg is the first
457    // operand, and is a def-and-use.
458    if (mi->getOperand(0).isRegister() &&
459        mi->getOperand(0).getReg() == interval.reg &&
460        mi->getNumOperands() > 1 && mi->getOperand(1).isRegister() &&
461        mi->getOperand(1).getReg() == interval.reg &&
462        mi->getOperand(0).isDef() && mi->getOperand(1).isUse()) {
463      // If this is a two-address definition, then we have already processed
464      // the live range.  The only problem is that we didn't realize there
465      // are actually two values in the live interval.  Because of this we
466      // need to take the LiveRegion that defines this register and split it
467      // into two values.
468      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
469      unsigned RedefIndex = getDefIndex(MIIdx);
470
471      // Delete the initial value, which should be short and continuous,
472      // because the 2-addr copy must be in the same MBB as the redef.
473      interval.removeRange(DefIndex, RedefIndex);
474
475      // Two-address vregs should always only be redefined once.  This means
476      // that at this point, there should be exactly one value number in it.
477      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
478
479      // The new value number (#1) is defined by the instruction we claimed
480      // defined value #0.
481      unsigned ValNo = interval.getNextValue(0, 0);
482      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
483
484      // Value#0 is now defined by the 2-addr instruction.
485      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
486
487      // Add the new live interval which replaces the range for the input copy.
488      LiveRange LR(DefIndex, RedefIndex, ValNo);
489      DEBUG(std::cerr << " replace range with " << LR);
490      interval.addRange(LR);
491
492      // If this redefinition is dead, we need to add a dummy unit live
493      // range covering the def slot.
494      if (lv_->RegisterDefIsDead(mi, interval.reg))
495        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
496
497      DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
498
499    } else {
500      // Otherwise, this must be because of phi elimination.  If this is the
501      // first redefinition of the vreg that we have seen, go back and change
502      // the live range in the PHI block to be a different value number.
503      if (interval.containsOneValue()) {
504        assert(vi.Kills.size() == 1 &&
505               "PHI elimination vreg should have one kill, the PHI itself!");
506
507        // Remove the old range that we now know has an incorrect number.
508        MachineInstr *Killer = vi.Kills[0];
509        unsigned Start = getMBBStartIdx(Killer->getParent());
510        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
511        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: ";
512              interval.print(std::cerr, mri_); std::cerr << "\n");
513        interval.removeRange(Start, End);
514        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
515
516        // Replace the interval with one of a NEW value number.  Note that this
517        // value number isn't actually defined by an instruction, weird huh? :)
518        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
519        DEBUG(std::cerr << " replace range with " << LR);
520        interval.addRange(LR);
521        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
522      }
523
524      // In the case of PHI elimination, each variable definition is only
525      // live until the end of the block.  We've already taken care of the
526      // rest of the live range.
527      unsigned defIndex = getDefIndex(MIIdx);
528
529      unsigned ValNum;
530      unsigned SrcReg, DstReg;
531      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
532        ValNum = interval.getNextValue(~0U, 0);
533      else
534        ValNum = interval.getNextValue(defIndex, SrcReg);
535
536      LiveRange LR(defIndex,
537                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
538      interval.addRange(LR);
539      DEBUG(std::cerr << " +" << LR);
540    }
541  }
542
543  DEBUG(std::cerr << '\n');
544}
545
546void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
547                                              MachineBasicBlock::iterator mi,
548                                              unsigned MIIdx,
549                                              LiveInterval &interval,
550                                              unsigned SrcReg) {
551  // A physical register cannot be live across basic block, so its
552  // lifetime must end somewhere in its defining basic block.
553  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
554  typedef LiveVariables::killed_iterator KillIter;
555
556  unsigned baseIndex = MIIdx;
557  unsigned start = getDefIndex(baseIndex);
558  unsigned end = start;
559
560  // If it is not used after definition, it is considered dead at
561  // the instruction defining it. Hence its interval is:
562  // [defSlot(def), defSlot(def)+1)
563  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
564    DEBUG(std::cerr << " dead");
565    end = getDefIndex(start) + 1;
566    goto exit;
567  }
568
569  // If it is not dead on definition, it must be killed by a
570  // subsequent instruction. Hence its interval is:
571  // [defSlot(def), useSlot(kill)+1)
572  while (++mi != MBB->end()) {
573    baseIndex += InstrSlots::NUM;
574    if (lv_->KillsRegister(mi, interval.reg)) {
575      DEBUG(std::cerr << " killed");
576      end = getUseIndex(baseIndex) + 1;
577      goto exit;
578    }
579  }
580
581  // The only case we should have a dead physreg here without a killing or
582  // instruction where we know it's dead is if it is live-in to the function
583  // and never used.
584  assert(!SrcReg && "physreg was not killed in defining block!");
585  end = getDefIndex(start) + 1;  // It's dead.
586
587exit:
588  assert(start < end && "did not find end of interval?");
589
590  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
591                                                 SrcReg));
592  interval.addRange(LR);
593  DEBUG(std::cerr << " +" << LR << '\n');
594}
595
596void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
597                                      MachineBasicBlock::iterator MI,
598                                      unsigned MIIdx,
599                                      unsigned reg) {
600  if (MRegisterInfo::isVirtualRegister(reg))
601    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
602  else if (allocatableRegs_[reg]) {
603    unsigned SrcReg, DstReg;
604    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
605      SrcReg = 0;
606    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
607    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
608      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
609  }
610}
611
612/// computeIntervals - computes the live intervals for virtual
613/// registers. for some ordering of the machine instructions [1,N] a
614/// live interval is an interval [i, j) where 1 <= i <= j < N for
615/// which a variable is live
616void LiveIntervals::computeIntervals() {
617  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
618  DEBUG(std::cerr << "********** Function: "
619        << ((Value*)mf_->getFunction())->getName() << '\n');
620  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
621
622  // Track the index of the current machine instr.
623  unsigned MIIndex = 0;
624  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
625       MBBI != E; ++MBBI) {
626    MachineBasicBlock *MBB = MBBI;
627    DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
628
629    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
630    if (IgnoreFirstInstr) {
631      ++MI;
632      IgnoreFirstInstr = false;
633      MIIndex += InstrSlots::NUM;
634    }
635
636    for (; MI != miEnd; ++MI) {
637      const TargetInstrDescriptor &TID = tii_->get(MI->getOpcode());
638      DEBUG(std::cerr << MIIndex << "\t" << *MI);
639
640      // Handle implicit defs.
641      if (TID.ImplicitDefs) {
642        for (const unsigned *ImpDef = TID.ImplicitDefs; *ImpDef; ++ImpDef)
643          handleRegisterDef(MBB, MI, MIIndex, *ImpDef);
644      }
645
646      // Handle explicit defs.
647      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
648        MachineOperand &MO = MI->getOperand(i);
649        // handle register defs - build intervals
650        if (MO.isRegister() && MO.getReg() && MO.isDef())
651          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
652      }
653
654      MIIndex += InstrSlots::NUM;
655    }
656  }
657}
658
659/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
660/// being the source and IntB being the dest, thus this defines a value number
661/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
662/// see if we can merge these two pieces of B into a single value number,
663/// eliminating a copy.  For example:
664///
665///  A3 = B0
666///    ...
667///  B1 = A3      <- this copy
668///
669/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
670/// value number to be replaced with B0 (which simplifies the B liveinterval).
671///
672/// This returns true if an interval was modified.
673///
674bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
675                                         MachineInstr *CopyMI) {
676  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
677
678  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
679  // the example above.
680  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
681  unsigned BValNo = BLR->ValId;
682
683  // Get the location that B is defined at.  Two options: either this value has
684  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
685  // can't process it.
686  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
687  if (BValNoDefIdx == ~0U) return false;
688  assert(BValNoDefIdx == CopyIdx &&
689         "Copy doesn't define the value?");
690
691  // AValNo is the value number in A that defines the copy, A0 in the example.
692  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
693  unsigned AValNo = AValLR->ValId;
694
695  // If AValNo is defined as a copy from IntB, we can potentially process this.
696
697  // Get the instruction that defines this value number.
698  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
699  if (!SrcReg) return false;  // Not defined by a copy.
700
701  // If the value number is not defined by a copy instruction, ignore it.
702
703  // If the source register comes from an interval other than IntB, we can't
704  // handle this.
705  if (rep(SrcReg) != IntB.reg) return false;
706
707  // Get the LiveRange in IntB that this value number starts with.
708  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
709  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
710
711  // Make sure that the end of the live range is inside the same block as
712  // CopyMI.
713  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
714  if (!ValLREndInst ||
715      ValLREndInst->getParent() != CopyMI->getParent()) return false;
716
717  // Okay, we now know that ValLR ends in the same block that the CopyMI
718  // live-range starts.  If there are no intervening live ranges between them in
719  // IntB, we can merge them.
720  if (ValLR+1 != BLR) return false;
721
722  DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_));
723
724  // We are about to delete CopyMI, so need to remove it as the 'instruction
725  // that defines this value #'.
726  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
727
728  // Okay, we can merge them.  We need to insert a new liverange:
729  // [ValLR.end, BLR.begin) of either value number, then we merge the
730  // two value numbers.
731  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
732  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
733
734  // If the IntB live range is assigned to a physical register, and if that
735  // physreg has aliases,
736  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
737    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
738      LiveInterval &AliasLI = getInterval(*AS);
739      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
740                                 AliasLI.getNextValue(~0U, 0)));
741    }
742  }
743
744  // Okay, merge "B1" into the same value number as "B0".
745  if (BValNo != ValLR->ValId)
746    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
747  DEBUG(std::cerr << "   result = "; IntB.print(std::cerr, mri_);
748        std::cerr << "\n");
749
750  // Finally, delete the copy instruction.
751  RemoveMachineInstrFromMaps(CopyMI);
752  CopyMI->eraseFromParent();
753  ++numPeep;
754  return true;
755}
756
757
758/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
759/// which are the src/dst of the copy instruction CopyMI.  This returns true
760/// if the copy was successfully coallesced away, or if it is never possible
761/// to coallesce these this copy, due to register constraints.  It returns
762/// false if it is not currently possible to coallesce this interval, but
763/// it may be possible if other things get coallesced.
764bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
765                             unsigned SrcReg, unsigned DstReg) {
766
767
768  DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI);
769
770  // Get representative registers.
771  SrcReg = rep(SrcReg);
772  DstReg = rep(DstReg);
773
774  // If they are already joined we continue.
775  if (SrcReg == DstReg) {
776    DEBUG(std::cerr << "\tCopy already coallesced.\n");
777    return true;  // Not coallescable.
778  }
779
780  // If they are both physical registers, we cannot join them.
781  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
782      MRegisterInfo::isPhysicalRegister(DstReg)) {
783    DEBUG(std::cerr << "\tCan not coallesce physregs.\n");
784    return true;  // Not coallescable.
785  }
786
787  // We only join virtual registers with allocatable physical registers.
788  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
789    DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n");
790    return true;  // Not coallescable.
791  }
792  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
793    DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n");
794    return true;  // Not coallescable.
795  }
796
797  // If they are not of the same register class, we cannot join them.
798  if (differingRegisterClasses(SrcReg, DstReg)) {
799    DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n");
800    return true;  // Not coallescable.
801  }
802
803  LiveInterval &SrcInt = getInterval(SrcReg);
804  LiveInterval &DestInt = getInterval(DstReg);
805  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
806         "Register mapping is horribly broken!");
807
808  DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_);
809        std::cerr << " and "; DestInt.print(std::cerr, mri_);
810        std::cerr << ": ");
811
812  // Okay, attempt to join these two intervals.  On failure, this returns false.
813  // Otherwise, if one of the intervals being joined is a physreg, this method
814  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
815  // been modified, so we can use this information below to update aliases.
816  if (!JoinIntervals(DestInt, SrcInt)) {
817    // Coallescing failed.
818
819    // If we can eliminate the copy without merging the live ranges, do so now.
820    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
821      return true;
822
823    // Otherwise, we are unable to join the intervals.
824    DEBUG(std::cerr << "Interference!\n");
825    return false;
826  }
827
828  bool Swapped = SrcReg == DestInt.reg;
829  if (Swapped)
830    std::swap(SrcReg, DstReg);
831  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
832         "LiveInterval::join didn't work right!");
833
834  // If we're about to merge live ranges into a physical register live range,
835  // we have to update any aliased register's live ranges to indicate that they
836  // have clobbered values for this range.
837  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
838    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
839      getInterval(*AS).MergeInClobberRanges(SrcInt);
840  }
841
842  DEBUG(std::cerr << "\n\t\tJoined.  Result = "; DestInt.print(std::cerr, mri_);
843        std::cerr << "\n");
844
845  // If the intervals were swapped by Join, swap them back so that the register
846  // mapping (in the r2i map) is correct.
847  if (Swapped) SrcInt.swap(DestInt);
848  r2iMap_.erase(SrcReg);
849  r2rMap_[SrcReg] = DstReg;
850
851  // Finally, delete the copy instruction.
852  RemoveMachineInstrFromMaps(CopyMI);
853  CopyMI->eraseFromParent();
854  ++numPeep;
855  ++numJoins;
856  return true;
857}
858
859/// ComputeUltimateVN - Assuming we are going to join two live intervals,
860/// compute what the resultant value numbers for each value in the input two
861/// ranges will be.  This is complicated by copies between the two which can
862/// and will commonly cause multiple value numbers to be merged into one.
863///
864/// VN is the value number that we're trying to resolve.  InstDefiningValue
865/// keeps track of the new InstDefiningValue assignment for the result
866/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
867/// whether a value in this or other is a copy from the opposite set.
868/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
869/// already been assigned.
870///
871/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
872/// contains the value number the copy is from.
873///
874static unsigned ComputeUltimateVN(unsigned VN,
875                                  SmallVector<std::pair<unsigned,
876                                                unsigned>, 16> &ValueNumberInfo,
877                                  SmallVector<int, 16> &ThisFromOther,
878                                  SmallVector<int, 16> &OtherFromThis,
879                                  SmallVector<int, 16> &ThisValNoAssignments,
880                                  SmallVector<int, 16> &OtherValNoAssignments,
881                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
882  // If the VN has already been computed, just return it.
883  if (ThisValNoAssignments[VN] >= 0)
884    return ThisValNoAssignments[VN];
885//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
886
887  // If this val is not a copy from the other val, then it must be a new value
888  // number in the destination.
889  int OtherValNo = ThisFromOther[VN];
890  if (OtherValNo == -1) {
891    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
892    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
893  }
894
895  // Otherwise, this *is* a copy from the RHS.  If the other side has already
896  // been computed, return it.
897  if (OtherValNoAssignments[OtherValNo] >= 0)
898    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
899
900  // Mark this value number as currently being computed, then ask what the
901  // ultimate value # of the other value is.
902  ThisValNoAssignments[VN] = -2;
903  unsigned UltimateVN =
904    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
905                      OtherFromThis, ThisFromOther,
906                      OtherValNoAssignments, ThisValNoAssignments,
907                      OtherLI, ThisLI);
908  return ThisValNoAssignments[VN] = UltimateVN;
909}
910
911static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
912  return std::find(V.begin(), V.end(), Val) != V.end();
913}
914
915/// SimpleJoin - Attempt to joint the specified interval into this one. The
916/// caller of this method must guarantee that the RHS only contains a single
917/// value number and that the RHS is not defined by a copy from this
918/// interval.  This returns false if the intervals are not joinable, or it
919/// joins them and returns true.
920bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
921  assert(RHS.containsOneValue());
922
923  // Some number (potentially more than one) value numbers in the current
924  // interval may be defined as copies from the RHS.  Scan the overlapping
925  // portions of the LHS and RHS, keeping track of this and looking for
926  // overlapping live ranges that are NOT defined as copies.  If these exist, we
927  // cannot coallesce.
928
929  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
930  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
931
932  if (LHSIt->start < RHSIt->start) {
933    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
934    if (LHSIt != LHS.begin()) --LHSIt;
935  } else if (RHSIt->start < LHSIt->start) {
936    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
937    if (RHSIt != RHS.begin()) --RHSIt;
938  }
939
940  SmallVector<unsigned, 8> EliminatedLHSVals;
941
942  while (1) {
943    // Determine if these live intervals overlap.
944    bool Overlaps = false;
945    if (LHSIt->start <= RHSIt->start)
946      Overlaps = LHSIt->end > RHSIt->start;
947    else
948      Overlaps = RHSIt->end > LHSIt->start;
949
950    // If the live intervals overlap, there are two interesting cases: if the
951    // LHS interval is defined by a copy from the RHS, it's ok and we record
952    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
953    // coallesce these live ranges and we bail out.
954    if (Overlaps) {
955      // If we haven't already recorded that this value # is safe, check it.
956      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
957        // Copy from the RHS?
958        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
959        if (rep(SrcReg) != RHS.reg)
960          return false;    // Nope, bail out.
961
962        EliminatedLHSVals.push_back(LHSIt->ValId);
963      }
964
965      // We know this entire LHS live range is okay, so skip it now.
966      if (++LHSIt == LHSEnd) break;
967      continue;
968    }
969
970    if (LHSIt->end < RHSIt->end) {
971      if (++LHSIt == LHSEnd) break;
972    } else {
973      // One interesting case to check here.  It's possible that we have
974      // something like "X3 = Y" which defines a new value number in the LHS,
975      // and is the last use of this liverange of the RHS.  In this case, we
976      // want to notice this copy (so that it gets coallesced away) even though
977      // the live ranges don't actually overlap.
978      if (LHSIt->start == RHSIt->end) {
979        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
980          // We already know that this value number is going to be merged in
981          // if coallescing succeeds.  Just skip the liverange.
982          if (++LHSIt == LHSEnd) break;
983        } else {
984          // Otherwise, if this is a copy from the RHS, mark it as being merged
985          // in.
986          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
987            EliminatedLHSVals.push_back(LHSIt->ValId);
988
989            // We know this entire LHS live range is okay, so skip it now.
990            if (++LHSIt == LHSEnd) break;
991          }
992        }
993      }
994
995      if (++RHSIt == RHSEnd) break;
996    }
997  }
998
999  // If we got here, we know that the coallescing will be successful and that
1000  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1001  // the most common case is that EliminatedLHSVals has a single number, we
1002  // optimize for it: if there is more than one value, we merge them all into
1003  // the lowest numbered one, then handle the interval as if we were merging
1004  // with one value number.
1005  unsigned LHSValNo;
1006  if (EliminatedLHSVals.size() > 1) {
1007    // Loop through all the equal value numbers merging them into the smallest
1008    // one.
1009    unsigned Smallest = EliminatedLHSVals[0];
1010    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1011      if (EliminatedLHSVals[i] < Smallest) {
1012        // Merge the current notion of the smallest into the smaller one.
1013        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1014        Smallest = EliminatedLHSVals[i];
1015      } else {
1016        // Merge into the smallest.
1017        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1018      }
1019    }
1020    LHSValNo = Smallest;
1021  } else {
1022    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1023    LHSValNo = EliminatedLHSVals[0];
1024  }
1025
1026  // Okay, now that there is a single LHS value number that we're merging the
1027  // RHS into, update the value number info for the LHS to indicate that the
1028  // value number is defined where the RHS value number was.
1029  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1030
1031  // Okay, the final step is to loop over the RHS live intervals, adding them to
1032  // the LHS.
1033  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1034  LHS.weight += RHS.weight;
1035
1036  return true;
1037}
1038
1039/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1040/// returns false.  Otherwise, if one of the intervals being joined is a
1041/// physreg, this method always canonicalizes LHS to be it.  The output
1042/// "RHS" will not have been modified, so we can use this information
1043/// below to update aliases.
1044bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1045  // Compute the final value assignment, assuming that the live ranges can be
1046  // coallesced.
1047  SmallVector<int, 16> LHSValNoAssignments;
1048  SmallVector<int, 16> RHSValNoAssignments;
1049  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1050
1051  // Compute ultimate value numbers for the LHS and RHS values.
1052  if (RHS.containsOneValue()) {
1053    // Copies from a liveinterval with a single value are simple to handle and
1054    // very common, handle the special case here.  This is important, because
1055    // often RHS is small and LHS is large (e.g. a physreg).
1056
1057    // Find out if the RHS is defined as a copy from some value in the LHS.
1058    int RHSValID = -1;
1059    std::pair<unsigned,unsigned> RHSValNoInfo;
1060    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1061    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1062      // If RHS is not defined as a copy from the LHS, we can use simpler and
1063      // faster checks to see if the live ranges are coallescable.  This joiner
1064      // can't swap the LHS/RHS intervals though.
1065      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1066        return SimpleJoin(LHS, RHS);
1067      } else {
1068        RHSValNoInfo = RHS.getValNumInfo(0);
1069      }
1070    } else {
1071      // It was defined as a copy from the LHS, find out what value # it is.
1072      unsigned ValInst = RHS.getInstForValNum(0);
1073      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1074      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1075    }
1076
1077    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1078    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1079    ValueNumberInfo.resize(LHS.getNumValNums());
1080
1081    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1082    // should now get updated.
1083    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1084      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1085        if (rep(LHSSrcReg) != RHS.reg) {
1086          // If this is not a copy from the RHS, its value number will be
1087          // unmodified by the coallescing.
1088          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1089          LHSValNoAssignments[VN] = VN;
1090        } else if (RHSValID == -1) {
1091          // Otherwise, it is a copy from the RHS, and we don't already have a
1092          // value# for it.  Keep the current value number, but remember it.
1093          LHSValNoAssignments[VN] = RHSValID = VN;
1094          ValueNumberInfo[VN] = RHSValNoInfo;
1095        } else {
1096          // Otherwise, use the specified value #.
1097          LHSValNoAssignments[VN] = RHSValID;
1098          if (VN != (unsigned)RHSValID)
1099            ValueNumberInfo[VN].first = ~1U;
1100          else
1101            ValueNumberInfo[VN] = RHSValNoInfo;
1102        }
1103      } else {
1104        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1105        LHSValNoAssignments[VN] = VN;
1106      }
1107    }
1108
1109    assert(RHSValID != -1 && "Didn't find value #?");
1110    RHSValNoAssignments[0] = RHSValID;
1111
1112  } else {
1113    // Loop over the value numbers of the LHS, seeing if any are defined from
1114    // the RHS.
1115    SmallVector<int, 16> LHSValsDefinedFromRHS;
1116    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1117    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1118      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1119      if (ValSrcReg == 0)  // Src not defined by a copy?
1120        continue;
1121
1122      // DstReg is known to be a register in the LHS interval.  If the src is
1123      // from the RHS interval, we can use its value #.
1124      if (rep(ValSrcReg) != RHS.reg)
1125        continue;
1126
1127      // Figure out the value # from the RHS.
1128      unsigned ValInst = LHS.getInstForValNum(VN);
1129      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1130    }
1131
1132    // Loop over the value numbers of the RHS, seeing if any are defined from
1133    // the LHS.
1134    SmallVector<int, 16> RHSValsDefinedFromLHS;
1135    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1136    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1137      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1138      if (ValSrcReg == 0)  // Src not defined by a copy?
1139        continue;
1140
1141      // DstReg is known to be a register in the RHS interval.  If the src is
1142      // from the LHS interval, we can use its value #.
1143      if (rep(ValSrcReg) != LHS.reg)
1144        continue;
1145
1146      // Figure out the value # from the LHS.
1147      unsigned ValInst = RHS.getInstForValNum(VN);
1148      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1149    }
1150
1151    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1152    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1153    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1154
1155    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1156      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1157        continue;
1158      ComputeUltimateVN(VN, ValueNumberInfo,
1159                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1160                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1161    }
1162    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1163      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1164        continue;
1165      // If this value number isn't a copy from the LHS, it's a new number.
1166      if (RHSValsDefinedFromLHS[VN] == -1) {
1167        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1168        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1169        continue;
1170      }
1171
1172      ComputeUltimateVN(VN, ValueNumberInfo,
1173                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1174                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1175    }
1176  }
1177
1178  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1179  // interval lists to see if these intervals are coallescable.
1180  LiveInterval::const_iterator I = LHS.begin();
1181  LiveInterval::const_iterator IE = LHS.end();
1182  LiveInterval::const_iterator J = RHS.begin();
1183  LiveInterval::const_iterator JE = RHS.end();
1184
1185  // Skip ahead until the first place of potential sharing.
1186  if (I->start < J->start) {
1187    I = std::upper_bound(I, IE, J->start);
1188    if (I != LHS.begin()) --I;
1189  } else if (J->start < I->start) {
1190    J = std::upper_bound(J, JE, I->start);
1191    if (J != RHS.begin()) --J;
1192  }
1193
1194  while (1) {
1195    // Determine if these two live ranges overlap.
1196    bool Overlaps;
1197    if (I->start < J->start) {
1198      Overlaps = I->end > J->start;
1199    } else {
1200      Overlaps = J->end > I->start;
1201    }
1202
1203    // If so, check value # info to determine if they are really different.
1204    if (Overlaps) {
1205      // If the live range overlap will map to the same value number in the
1206      // result liverange, we can still coallesce them.  If not, we can't.
1207      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1208        return false;
1209    }
1210
1211    if (I->end < J->end) {
1212      ++I;
1213      if (I == IE) break;
1214    } else {
1215      ++J;
1216      if (J == JE) break;
1217    }
1218  }
1219
1220  // If we get here, we know that we can coallesce the live ranges.  Ask the
1221  // intervals to coallesce themselves now.
1222  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1223           ValueNumberInfo);
1224  return true;
1225}
1226
1227
1228namespace {
1229  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1230  // depth of the basic block (the unsigned), and then on the MBB number.
1231  struct DepthMBBCompare {
1232    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1233    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1234      if (LHS.first > RHS.first) return true;   // Deeper loops first
1235      return LHS.first == RHS.first &&
1236        LHS.second->getNumber() < RHS.second->getNumber();
1237    }
1238  };
1239}
1240
1241
1242void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1243                                       std::vector<CopyRec> &TryAgain) {
1244  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
1245
1246  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1247       MII != E;) {
1248    MachineInstr *Inst = MII++;
1249
1250    // If this isn't a copy, we can't join intervals.
1251    unsigned SrcReg, DstReg;
1252    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1253
1254    if (!JoinCopy(Inst, SrcReg, DstReg))
1255      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1256  }
1257}
1258
1259
1260void LiveIntervals::joinIntervals() {
1261  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
1262
1263  std::vector<CopyRec> TryAgainList;
1264
1265  const LoopInfo &LI = getAnalysis<LoopInfo>();
1266  if (LI.begin() == LI.end()) {
1267    // If there are no loops in the function, join intervals in function order.
1268    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1269         I != E; ++I)
1270      CopyCoallesceInMBB(I, TryAgainList);
1271  } else {
1272    // Otherwise, join intervals in inner loops before other intervals.
1273    // Unfortunately we can't just iterate over loop hierarchy here because
1274    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1275    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1276    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1277         I != E; ++I)
1278      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1279
1280    // Sort by loop depth.
1281    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1282
1283    // Finally, join intervals in loop nest order.
1284    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1285      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1286  }
1287
1288  // Joining intervals can allow other intervals to be joined.  Iteratively join
1289  // until we make no progress.
1290  bool ProgressMade = true;
1291  while (ProgressMade) {
1292    ProgressMade = false;
1293
1294    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1295      CopyRec &TheCopy = TryAgainList[i];
1296      if (TheCopy.MI &&
1297          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1298        TheCopy.MI = 0;   // Mark this one as done.
1299        ProgressMade = true;
1300      }
1301    }
1302  }
1303
1304  DEBUG(std::cerr << "*** Register mapping ***\n");
1305  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1306          if (r2rMap_[i]) {
1307            std::cerr << "  reg " << i << " -> ";
1308            printRegName(r2rMap_[i]);
1309            std::cerr << "\n";
1310          });
1311}
1312
1313/// Return true if the two specified registers belong to different register
1314/// classes.  The registers may be either phys or virt regs.
1315bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1316                                             unsigned RegB) const {
1317
1318  // Get the register classes for the first reg.
1319  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1320    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1321           "Shouldn't consider two physregs!");
1322    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1323  }
1324
1325  // Compare against the regclass for the second reg.
1326  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1327  if (MRegisterInfo::isVirtualRegister(RegB))
1328    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1329  else
1330    return !RegClass->contains(RegB);
1331}
1332
1333LiveInterval LiveIntervals::createInterval(unsigned reg) {
1334  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1335                       (float)HUGE_VAL : 0.0F;
1336  return LiveInterval(reg, Weight);
1337}
1338