LiveIntervalAnalysis.cpp revision 5277e4304e9559c13aa42b1d056e828f8f75ff08
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37#include <iostream>
38using namespace llvm;
39
40namespace {
41  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
42
43  static Statistic<> numIntervals
44  ("liveintervals", "Number of original intervals");
45
46  static Statistic<> numIntervalsAfter
47  ("liveintervals", "Number of intervals after coalescing");
48
49  static Statistic<> numJoins
50  ("liveintervals", "Number of interval joins performed");
51
52  static Statistic<> numPeep
53  ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55  static Statistic<> numFolded
56  ("liveintervals", "Number of loads/stores folded into instructions");
57
58  static cl::opt<bool>
59  EnableJoining("join-liveintervals",
60                cl::desc("Join compatible live intervals"),
61                cl::init(true));
62}
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
65  AU.addRequired<LiveVariables>();
66  AU.addPreservedID(PHIEliminationID);
67  AU.addRequiredID(PHIEliminationID);
68  AU.addRequiredID(TwoAddressInstructionPassID);
69  AU.addRequired<LoopInfo>();
70  MachineFunctionPass::getAnalysisUsage(AU);
71}
72
73void LiveIntervals::releaseMemory() {
74  mi2iMap_.clear();
75  i2miMap_.clear();
76  r2iMap_.clear();
77  r2rMap_.clear();
78}
79
80
81static bool isZeroLengthInterval(LiveInterval *li) {
82  for (LiveInterval::Ranges::const_iterator
83         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
84    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
85      return false;
86  return true;
87}
88
89
90/// runOnMachineFunction - Register allocate the whole function
91///
92bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
93  mf_ = &fn;
94  tm_ = &fn.getTarget();
95  mri_ = tm_->getRegisterInfo();
96  tii_ = tm_->getInstrInfo();
97  lv_ = &getAnalysis<LiveVariables>();
98  allocatableRegs_ = mri_->getAllocatableSet(fn);
99  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
100
101  // If this function has any live ins, insert a dummy instruction at the
102  // beginning of the function that we will pretend "defines" the values.  This
103  // is to make the interval analysis simpler by providing a number.
104  if (fn.livein_begin() != fn.livein_end()) {
105    unsigned FirstLiveIn = fn.livein_begin()->first;
106
107    // Find a reg class that contains this live in.
108    const TargetRegisterClass *RC = 0;
109    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
110           E = mri_->regclass_end(); RCI != E; ++RCI)
111      if ((*RCI)->contains(FirstLiveIn)) {
112        RC = *RCI;
113        break;
114      }
115
116    MachineInstr *OldFirstMI = fn.begin()->begin();
117    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
118                       FirstLiveIn, FirstLiveIn, RC);
119    assert(OldFirstMI != fn.begin()->begin() &&
120           "copyRetToReg didn't insert anything!");
121  }
122
123  // number MachineInstrs
124  unsigned miIndex = 0;
125  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
126       mbb != mbbEnd; ++mbb)
127    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
128         mi != miEnd; ++mi) {
129      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
130      assert(inserted && "multiple MachineInstr -> index mappings");
131      i2miMap_.push_back(mi);
132      miIndex += InstrSlots::NUM;
133    }
134
135  // Note intervals due to live-in values.
136  if (fn.livein_begin() != fn.livein_end()) {
137    MachineBasicBlock *Entry = fn.begin();
138    for (MachineFunction::livein_iterator I = fn.livein_begin(),
139           E = fn.livein_end(); I != E; ++I) {
140      handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
141                                getOrCreateInterval(I->first), 0);
142      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
143        handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
144                                  getOrCreateInterval(*AS), 0);
145    }
146  }
147
148  computeIntervals();
149
150  numIntervals += getNumIntervals();
151
152  DEBUG(std::cerr << "********** INTERVALS **********\n";
153        for (iterator I = begin(), E = end(); I != E; ++I) {
154          I->second.print(std::cerr, mri_);
155          std::cerr << "\n";
156        });
157
158  // join intervals if requested
159  if (EnableJoining) joinIntervals();
160
161  numIntervalsAfter += getNumIntervals();
162
163  // perform a final pass over the instructions and compute spill
164  // weights, coalesce virtual registers and remove identity moves.
165  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
166
167  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
168       mbbi != mbbe; ++mbbi) {
169    MachineBasicBlock* mbb = mbbi;
170    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
171
172    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
173         mii != mie; ) {
174      // if the move will be an identity move delete it
175      unsigned srcReg, dstReg, RegRep;
176      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
177          (RegRep = rep(srcReg)) == rep(dstReg)) {
178        // remove from def list
179        LiveInterval &interval = getOrCreateInterval(RegRep);
180        RemoveMachineInstrFromMaps(mii);
181        mii = mbbi->erase(mii);
182        ++numPeep;
183      }
184      else {
185        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
186          const MachineOperand &mop = mii->getOperand(i);
187          if (mop.isRegister() && mop.getReg() &&
188              MRegisterInfo::isVirtualRegister(mop.getReg())) {
189            // replace register with representative register
190            unsigned reg = rep(mop.getReg());
191            mii->getOperand(i).setReg(reg);
192
193            LiveInterval &RegInt = getInterval(reg);
194            RegInt.weight +=
195              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
196          }
197        }
198        ++mii;
199      }
200    }
201  }
202
203  for (iterator I = begin(), E = end(); I != E; ++I) {
204    LiveInterval &li = I->second;
205    if (MRegisterInfo::isVirtualRegister(li.reg)) {
206      // If the live interval length is essentially zero, i.e. in every live
207      // range the use follows def immediately, it doesn't make sense to spill
208      // it and hope it will be easier to allocate for this li.
209      if (isZeroLengthInterval(&li))
210        li.weight = float(HUGE_VAL);
211    }
212  }
213
214  DEBUG(dump());
215  return true;
216}
217
218/// print - Implement the dump method.
219void LiveIntervals::print(std::ostream &O, const Module* ) const {
220  O << "********** INTERVALS **********\n";
221  for (const_iterator I = begin(), E = end(); I != E; ++I) {
222    I->second.print(std::cerr, mri_);
223    std::cerr << "\n";
224  }
225
226  O << "********** MACHINEINSTRS **********\n";
227  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
228       mbbi != mbbe; ++mbbi) {
229    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
230    for (MachineBasicBlock::iterator mii = mbbi->begin(),
231           mie = mbbi->end(); mii != mie; ++mii) {
232      O << getInstructionIndex(mii) << '\t' << *mii;
233    }
234  }
235}
236
237std::vector<LiveInterval*> LiveIntervals::
238addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
239  // since this is called after the analysis is done we don't know if
240  // LiveVariables is available
241  lv_ = getAnalysisToUpdate<LiveVariables>();
242
243  std::vector<LiveInterval*> added;
244
245  assert(li.weight != HUGE_VAL &&
246         "attempt to spill already spilled interval!");
247
248  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: ";
249        li.print(std::cerr, mri_); std::cerr << '\n');
250
251  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
252
253  for (LiveInterval::Ranges::const_iterator
254         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
255    unsigned index = getBaseIndex(i->start);
256    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
257    for (; index != end; index += InstrSlots::NUM) {
258      // skip deleted instructions
259      while (index != end && !getInstructionFromIndex(index))
260        index += InstrSlots::NUM;
261      if (index == end) break;
262
263      MachineInstr *MI = getInstructionFromIndex(index);
264
265      // NewRegLiveIn - This instruction might have multiple uses of the spilled
266      // register.  In this case, for the first use, keep track of the new vreg
267      // that we reload it into.  If we see a second use, reuse this vreg
268      // instead of creating live ranges for two reloads.
269      unsigned NewRegLiveIn = 0;
270
271    for_operand:
272      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
273        MachineOperand& mop = MI->getOperand(i);
274        if (mop.isRegister() && mop.getReg() == li.reg) {
275          if (NewRegLiveIn && mop.isUse()) {
276            // We already emitted a reload of this value, reuse it for
277            // subsequent operands.
278            MI->getOperand(i).setReg(NewRegLiveIn);
279            DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
280                            << " for operand #" << i << '\n');
281          } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
282            // Attempt to fold the memory reference into the instruction.  If we
283            // can do this, we don't need to insert spill code.
284            if (lv_)
285              lv_->instructionChanged(MI, fmi);
286            MachineBasicBlock &MBB = *MI->getParent();
287            vrm.virtFolded(li.reg, MI, i, fmi);
288            mi2iMap_.erase(MI);
289            i2miMap_[index/InstrSlots::NUM] = fmi;
290            mi2iMap_[fmi] = index;
291            MI = MBB.insert(MBB.erase(MI), fmi);
292            ++numFolded;
293            // Folding the load/store can completely change the instruction in
294            // unpredictable ways, rescan it from the beginning.
295            goto for_operand;
296          } else {
297            // This is tricky. We need to add information in the interval about
298            // the spill code so we have to use our extra load/store slots.
299            //
300            // If we have a use we are going to have a load so we start the
301            // interval from the load slot onwards. Otherwise we start from the
302            // def slot.
303            unsigned start = (mop.isUse() ?
304                              getLoadIndex(index) :
305                              getDefIndex(index));
306            // If we have a def we are going to have a store right after it so
307            // we end the interval after the use of the next
308            // instruction. Otherwise we end after the use of this instruction.
309            unsigned end = 1 + (mop.isDef() ?
310                                getStoreIndex(index) :
311                                getUseIndex(index));
312
313            // create a new register for this spill
314            NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
315            MI->getOperand(i).setReg(NewRegLiveIn);
316            vrm.grow();
317            vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
318            LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
319            assert(nI.empty());
320
321            // the spill weight is now infinity as it
322            // cannot be spilled again
323            nI.weight = float(HUGE_VAL);
324            LiveRange LR(start, end, nI.getNextValue(~0U, 0));
325            DEBUG(std::cerr << " +" << LR);
326            nI.addRange(LR);
327            added.push_back(&nI);
328
329            // update live variables if it is available
330            if (lv_)
331              lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
332
333            // If this is a live in, reuse it for subsequent live-ins.  If it's
334            // a def, we can't do this.
335            if (!mop.isUse()) NewRegLiveIn = 0;
336
337            DEBUG(std::cerr << "\t\t\t\tadded new interval: ";
338                  nI.print(std::cerr, mri_); std::cerr << '\n');
339          }
340        }
341      }
342    }
343  }
344
345  return added;
346}
347
348void LiveIntervals::printRegName(unsigned reg) const {
349  if (MRegisterInfo::isPhysicalRegister(reg))
350    std::cerr << mri_->getName(reg);
351  else
352    std::cerr << "%reg" << reg;
353}
354
355void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
356                                             MachineBasicBlock::iterator mi,
357                                             unsigned MIIdx,
358                                             LiveInterval &interval) {
359  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
360  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
361
362  // Virtual registers may be defined multiple times (due to phi
363  // elimination and 2-addr elimination).  Much of what we do only has to be
364  // done once for the vreg.  We use an empty interval to detect the first
365  // time we see a vreg.
366  if (interval.empty()) {
367    // Get the Idx of the defining instructions.
368    unsigned defIndex = getDefIndex(MIIdx);
369
370    unsigned ValNum;
371    unsigned SrcReg, DstReg;
372    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
373      ValNum = interval.getNextValue(~0U, 0);
374    else
375      ValNum = interval.getNextValue(defIndex, SrcReg);
376
377    assert(ValNum == 0 && "First value in interval is not 0?");
378    ValNum = 0;  // Clue in the optimizer.
379
380    // Loop over all of the blocks that the vreg is defined in.  There are
381    // two cases we have to handle here.  The most common case is a vreg
382    // whose lifetime is contained within a basic block.  In this case there
383    // will be a single kill, in MBB, which comes after the definition.
384    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
385      // FIXME: what about dead vars?
386      unsigned killIdx;
387      if (vi.Kills[0] != mi)
388        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
389      else
390        killIdx = defIndex+1;
391
392      // If the kill happens after the definition, we have an intra-block
393      // live range.
394      if (killIdx > defIndex) {
395        assert(vi.AliveBlocks.empty() &&
396               "Shouldn't be alive across any blocks!");
397        LiveRange LR(defIndex, killIdx, ValNum);
398        interval.addRange(LR);
399        DEBUG(std::cerr << " +" << LR << "\n");
400        return;
401      }
402    }
403
404    // The other case we handle is when a virtual register lives to the end
405    // of the defining block, potentially live across some blocks, then is
406    // live into some number of blocks, but gets killed.  Start by adding a
407    // range that goes from this definition to the end of the defining block.
408    LiveRange NewLR(defIndex,
409                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
410                    ValNum);
411    DEBUG(std::cerr << " +" << NewLR);
412    interval.addRange(NewLR);
413
414    // Iterate over all of the blocks that the variable is completely
415    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
416    // live interval.
417    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
418      if (vi.AliveBlocks[i]) {
419        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
420        if (!mbb->empty()) {
421          LiveRange LR(getInstructionIndex(&mbb->front()),
422                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
423                       ValNum);
424          interval.addRange(LR);
425          DEBUG(std::cerr << " +" << LR);
426        }
427      }
428    }
429
430    // Finally, this virtual register is live from the start of any killing
431    // block to the 'use' slot of the killing instruction.
432    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
433      MachineInstr *Kill = vi.Kills[i];
434      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
435                   getUseIndex(getInstructionIndex(Kill))+1,
436                   ValNum);
437      interval.addRange(LR);
438      DEBUG(std::cerr << " +" << LR);
439    }
440
441  } else {
442    // If this is the second time we see a virtual register definition, it
443    // must be due to phi elimination or two addr elimination.  If this is
444    // the result of two address elimination, then the vreg is the first
445    // operand, and is a def-and-use.
446    if (mi->getOperand(0).isRegister() &&
447        mi->getOperand(0).getReg() == interval.reg &&
448        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
449      // If this is a two-address definition, then we have already processed
450      // the live range.  The only problem is that we didn't realize there
451      // are actually two values in the live interval.  Because of this we
452      // need to take the LiveRegion that defines this register and split it
453      // into two values.
454      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
455      unsigned RedefIndex = getDefIndex(MIIdx);
456
457      // Delete the initial value, which should be short and continuous,
458      // because the 2-addr copy must be in the same MBB as the redef.
459      interval.removeRange(DefIndex, RedefIndex);
460
461      // Two-address vregs should always only be redefined once.  This means
462      // that at this point, there should be exactly one value number in it.
463      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
464
465      // The new value number (#1) is defined by the instruction we claimed
466      // defined value #0.
467      unsigned ValNo = interval.getNextValue(0, 0);
468      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
469
470      // Value#0 is now defined by the 2-addr instruction.
471      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
472
473      // Add the new live interval which replaces the range for the input copy.
474      LiveRange LR(DefIndex, RedefIndex, ValNo);
475      DEBUG(std::cerr << " replace range with " << LR);
476      interval.addRange(LR);
477
478      // If this redefinition is dead, we need to add a dummy unit live
479      // range covering the def slot.
480      if (lv_->RegisterDefIsDead(mi, interval.reg))
481        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
482
483      DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
484
485    } else {
486      // Otherwise, this must be because of phi elimination.  If this is the
487      // first redefinition of the vreg that we have seen, go back and change
488      // the live range in the PHI block to be a different value number.
489      if (interval.containsOneValue()) {
490        assert(vi.Kills.size() == 1 &&
491               "PHI elimination vreg should have one kill, the PHI itself!");
492
493        // Remove the old range that we now know has an incorrect number.
494        MachineInstr *Killer = vi.Kills[0];
495        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
496        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
497        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: ";
498              interval.print(std::cerr, mri_); std::cerr << "\n");
499        interval.removeRange(Start, End);
500        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
501
502        // Replace the interval with one of a NEW value number.  Note that this
503        // value number isn't actually defined by an instruction, weird huh? :)
504        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
505        DEBUG(std::cerr << " replace range with " << LR);
506        interval.addRange(LR);
507        DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
508      }
509
510      // In the case of PHI elimination, each variable definition is only
511      // live until the end of the block.  We've already taken care of the
512      // rest of the live range.
513      unsigned defIndex = getDefIndex(MIIdx);
514
515      unsigned ValNum;
516      unsigned SrcReg, DstReg;
517      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
518        ValNum = interval.getNextValue(~0U, 0);
519      else
520        ValNum = interval.getNextValue(defIndex, SrcReg);
521
522      LiveRange LR(defIndex,
523                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
524      interval.addRange(LR);
525      DEBUG(std::cerr << " +" << LR);
526    }
527  }
528
529  DEBUG(std::cerr << '\n');
530}
531
532void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
533                                              MachineBasicBlock::iterator mi,
534                                              unsigned MIIdx,
535                                              LiveInterval &interval,
536                                              unsigned SrcReg) {
537  // A physical register cannot be live across basic block, so its
538  // lifetime must end somewhere in its defining basic block.
539  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
540  typedef LiveVariables::killed_iterator KillIter;
541
542  unsigned baseIndex = MIIdx;
543  unsigned start = getDefIndex(baseIndex);
544  unsigned end = start;
545
546  // If it is not used after definition, it is considered dead at
547  // the instruction defining it. Hence its interval is:
548  // [defSlot(def), defSlot(def)+1)
549  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
550    DEBUG(std::cerr << " dead");
551    end = getDefIndex(start) + 1;
552    goto exit;
553  }
554
555  // If it is not dead on definition, it must be killed by a
556  // subsequent instruction. Hence its interval is:
557  // [defSlot(def), useSlot(kill)+1)
558  while (++mi != MBB->end()) {
559    baseIndex += InstrSlots::NUM;
560    if (lv_->KillsRegister(mi, interval.reg)) {
561      DEBUG(std::cerr << " killed");
562      end = getUseIndex(baseIndex) + 1;
563      goto exit;
564    }
565  }
566
567  // The only case we should have a dead physreg here without a killing or
568  // instruction where we know it's dead is if it is live-in to the function
569  // and never used.
570  assert(!SrcReg && "physreg was not killed in defining block!");
571  end = getDefIndex(start) + 1;  // It's dead.
572
573exit:
574  assert(start < end && "did not find end of interval?");
575
576  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
577                                                 SrcReg));
578  interval.addRange(LR);
579  DEBUG(std::cerr << " +" << LR << '\n');
580}
581
582void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
583                                      MachineBasicBlock::iterator MI,
584                                      unsigned MIIdx,
585                                      unsigned reg) {
586  if (MRegisterInfo::isVirtualRegister(reg))
587    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
588  else if (allocatableRegs_[reg]) {
589    unsigned SrcReg, DstReg;
590    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
591      SrcReg = 0;
592    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
593    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
594      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
595  }
596}
597
598/// computeIntervals - computes the live intervals for virtual
599/// registers. for some ordering of the machine instructions [1,N] a
600/// live interval is an interval [i, j) where 1 <= i <= j < N for
601/// which a variable is live
602void LiveIntervals::computeIntervals() {
603  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
604  DEBUG(std::cerr << "********** Function: "
605        << ((Value*)mf_->getFunction())->getName() << '\n');
606  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
607
608  // Track the index of the current machine instr.
609  unsigned MIIndex = 0;
610  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
611       I != E; ++I) {
612    MachineBasicBlock* mbb = I;
613    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
614
615    MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
616    if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
617    for (; mi != miEnd; ++mi) {
618      const TargetInstrDescriptor& tid =
619        tm_->getInstrInfo()->get(mi->getOpcode());
620      DEBUG(std::cerr << MIIndex << "\t" << *mi);
621
622      // FIXME: Why is  this needed?
623      MIIndex = getInstructionIndex(mi);
624
625      // handle implicit defs
626      if (tid.ImplicitDefs) {
627        for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
628          handleRegisterDef(mbb, mi, MIIndex, *id);
629      }
630
631      // handle explicit defs
632      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
633        MachineOperand& mop = mi->getOperand(i);
634        // handle register defs - build intervals
635        if (mop.isRegister() && mop.getReg() && mop.isDef())
636          handleRegisterDef(mbb, mi, MIIndex, mop.getReg());
637      }
638
639      MIIndex += InstrSlots::NUM;
640    }
641  }
642}
643
644/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
645/// being the source and IntB being the dest, thus this defines a value number
646/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
647/// see if we can merge these two pieces of B into a single value number,
648/// eliminating a copy.  For example:
649///
650///  A3 = B0
651///    ...
652///  B1 = A3      <- this copy
653///
654/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
655/// value number to be replaced with B0 (which simplifies the B liveinterval).
656///
657/// This returns true if an interval was modified.
658///
659bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
660                                         MachineInstr *CopyMI) {
661  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
662
663  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
664  // the example above.
665  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
666  unsigned BValNo = BLR->ValId;
667
668  // Get the location that B is defined at.  Two options: either this value has
669  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
670  // can't process it.
671  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
672  if (BValNoDefIdx == ~0U) return false;
673  assert(BValNoDefIdx == CopyIdx &&
674         "Copy doesn't define the value?");
675
676  // AValNo is the value number in A that defines the copy, A0 in the example.
677  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
678  unsigned AValNo = AValLR->ValId;
679
680  // If AValNo is defined as a copy from IntB, we can potentially process this.
681
682  // Get the instruction that defines this value number.
683  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
684  if (!SrcReg) return false;  // Not defined by a copy.
685
686  // If the value number is not defined by a copy instruction, ignore it.
687
688  // If the source register comes from an interval other than IntB, we can't
689  // handle this.
690  if (rep(SrcReg) != IntB.reg) return false;
691
692  // Get the LiveRange in IntB that this value number starts with.
693  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
694  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
695
696  // Make sure that the end of the live range is inside the same block as
697  // CopyMI.
698  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
699  if (!ValLREndInst ||
700      ValLREndInst->getParent() != CopyMI->getParent()) return false;
701
702  // Okay, we now know that ValLR ends in the same block that the CopyMI
703  // live-range starts.  If there are no intervening live ranges between them in
704  // IntB, we can merge them.
705  if (ValLR+1 != BLR) return false;
706
707  DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_));
708
709  // We are about to delete CopyMI, so need to remove it as the 'instruction
710  // that defines this value #'.
711  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
712
713  // Okay, we can merge them.  We need to insert a new liverange:
714  // [ValLR.end, BLR.begin) of either value number, then we merge the
715  // two value numbers.
716  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
717  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
718
719  // If the IntB live range is assigned to a physical register, and if that
720  // physreg has aliases,
721  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
722    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
723      LiveInterval &AliasLI = getInterval(*AS);
724      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
725                                 AliasLI.getNextValue(~0U, 0)));
726    }
727  }
728
729  // Okay, merge "B1" into the same value number as "B0".
730  if (BValNo != ValLR->ValId)
731    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
732  DEBUG(std::cerr << "   result = "; IntB.print(std::cerr, mri_);
733        std::cerr << "\n");
734
735  // Finally, delete the copy instruction.
736  RemoveMachineInstrFromMaps(CopyMI);
737  CopyMI->eraseFromParent();
738  ++numPeep;
739  return true;
740}
741
742
743/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
744/// which are the src/dst of the copy instruction CopyMI.  This returns true
745/// if the copy was successfully coallesced away, or if it is never possible
746/// to coallesce these this copy, due to register constraints.  It returns
747/// false if it is not currently possible to coallesce this interval, but
748/// it may be possible if other things get coallesced.
749bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
750                             unsigned SrcReg, unsigned DstReg) {
751
752
753  DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI);
754
755  // Get representative registers.
756  SrcReg = rep(SrcReg);
757  DstReg = rep(DstReg);
758
759  // If they are already joined we continue.
760  if (SrcReg == DstReg) {
761    DEBUG(std::cerr << "\tCopy already coallesced.\n");
762    return true;  // Not coallescable.
763  }
764
765  // If they are both physical registers, we cannot join them.
766  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
767      MRegisterInfo::isPhysicalRegister(DstReg)) {
768    DEBUG(std::cerr << "\tCan not coallesce physregs.\n");
769    return true;  // Not coallescable.
770  }
771
772  // We only join virtual registers with allocatable physical registers.
773  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
774    DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n");
775    return true;  // Not coallescable.
776  }
777  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
778    DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n");
779    return true;  // Not coallescable.
780  }
781
782  // If they are not of the same register class, we cannot join them.
783  if (differingRegisterClasses(SrcReg, DstReg)) {
784    DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n");
785    return true;  // Not coallescable.
786  }
787
788  LiveInterval &SrcInt = getInterval(SrcReg);
789  LiveInterval &DestInt = getInterval(DstReg);
790  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
791         "Register mapping is horribly broken!");
792
793  DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_);
794        std::cerr << " and "; DestInt.print(std::cerr, mri_);
795        std::cerr << ": ");
796
797  // Okay, attempt to join these two intervals.  On failure, this returns false.
798  // Otherwise, if one of the intervals being joined is a physreg, this method
799  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
800  // been modified, so we can use this information below to update aliases.
801  if (!JoinIntervals(DestInt, SrcInt)) {
802    // Coallescing failed.
803
804    // If we can eliminate the copy without merging the live ranges, do so now.
805    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
806      return true;
807
808    // Otherwise, we are unable to join the intervals.
809    DEBUG(std::cerr << "Interference!\n");
810    return false;
811  }
812
813  bool Swapped = SrcReg == DestInt.reg;
814  if (Swapped)
815    std::swap(SrcReg, DstReg);
816  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
817         "LiveInterval::join didn't work right!");
818
819  // If we're about to merge live ranges into a physical register live range,
820  // we have to update any aliased register's live ranges to indicate that they
821  // have clobbered values for this range.
822  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
823    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
824      getInterval(*AS).MergeInClobberRanges(SrcInt);
825  }
826
827  DEBUG(std::cerr << "\n\t\tJoined.  Result = "; DestInt.print(std::cerr, mri_);
828        std::cerr << "\n");
829
830  // If the intervals were swapped by Join, swap them back so that the register
831  // mapping (in the r2i map) is correct.
832  if (Swapped) SrcInt.swap(DestInt);
833  r2iMap_.erase(SrcReg);
834  r2rMap_[SrcReg] = DstReg;
835
836  // Finally, delete the copy instruction.
837  RemoveMachineInstrFromMaps(CopyMI);
838  CopyMI->eraseFromParent();
839  ++numPeep;
840  ++numJoins;
841  return true;
842}
843
844/// ComputeUltimateVN - Assuming we are going to join two live intervals,
845/// compute what the resultant value numbers for each value in the input two
846/// ranges will be.  This is complicated by copies between the two which can
847/// and will commonly cause multiple value numbers to be merged into one.
848///
849/// VN is the value number that we're trying to resolve.  InstDefiningValue
850/// keeps track of the new InstDefiningValue assignment for the result
851/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
852/// whether a value in this or other is a copy from the opposite set.
853/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
854/// already been assigned.
855///
856/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
857/// contains the value number the copy is from.
858///
859static unsigned ComputeUltimateVN(unsigned VN,
860                                  SmallVector<std::pair<unsigned,
861                                                unsigned>, 16> &ValueNumberInfo,
862                                  SmallVector<int, 16> &ThisFromOther,
863                                  SmallVector<int, 16> &OtherFromThis,
864                                  SmallVector<int, 16> &ThisValNoAssignments,
865                                  SmallVector<int, 16> &OtherValNoAssignments,
866                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
867  // If the VN has already been computed, just return it.
868  if (ThisValNoAssignments[VN] >= 0)
869    return ThisValNoAssignments[VN];
870//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
871
872  // If this val is not a copy from the other val, then it must be a new value
873  // number in the destination.
874  int OtherValNo = ThisFromOther[VN];
875  if (OtherValNo == -1) {
876    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
877    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
878  }
879
880  // Otherwise, this *is* a copy from the RHS.  If the other side has already
881  // been computed, return it.
882  if (OtherValNoAssignments[OtherValNo] >= 0)
883    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
884
885  // Mark this value number as currently being computed, then ask what the
886  // ultimate value # of the other value is.
887  ThisValNoAssignments[VN] = -2;
888  unsigned UltimateVN =
889    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
890                      OtherFromThis, ThisFromOther,
891                      OtherValNoAssignments, ThisValNoAssignments,
892                      OtherLI, ThisLI);
893  return ThisValNoAssignments[VN] = UltimateVN;
894}
895
896static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
897  return std::find(V.begin(), V.end(), Val) != V.end();
898}
899
900/// SimpleJoin - Attempt to joint the specified interval into this one. The
901/// caller of this method must guarantee that the RHS only contains a single
902/// value number and that the RHS is not defined by a copy from this
903/// interval.  This returns false if the intervals are not joinable, or it
904/// joins them and returns true.
905bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
906  assert(RHS.containsOneValue());
907
908  // Some number (potentially more than one) value numbers in the current
909  // interval may be defined as copies from the RHS.  Scan the overlapping
910  // portions of the LHS and RHS, keeping track of this and looking for
911  // overlapping live ranges that are NOT defined as copies.  If these exist, we
912  // cannot coallesce.
913
914  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
915  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
916
917  if (LHSIt->start < RHSIt->start) {
918    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
919    if (LHSIt != LHS.begin()) --LHSIt;
920  } else if (RHSIt->start < LHSIt->start) {
921    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
922    if (RHSIt != RHS.begin()) --RHSIt;
923  }
924
925  SmallVector<unsigned, 8> EliminatedLHSVals;
926
927  while (1) {
928    // Determine if these live intervals overlap.
929    bool Overlaps = false;
930    if (LHSIt->start <= RHSIt->start)
931      Overlaps = LHSIt->end > RHSIt->start;
932    else
933      Overlaps = RHSIt->end > LHSIt->start;
934
935    // If the live intervals overlap, there are two interesting cases: if the
936    // LHS interval is defined by a copy from the RHS, it's ok and we record
937    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
938    // coallesce these live ranges and we bail out.
939    if (Overlaps) {
940      // If we haven't already recorded that this value # is safe, check it.
941      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
942        // Copy from the RHS?
943        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
944        if (rep(SrcReg) != RHS.reg)
945          return false;    // Nope, bail out.
946
947        EliminatedLHSVals.push_back(LHSIt->ValId);
948      }
949
950      // We know this entire LHS live range is okay, so skip it now.
951      if (++LHSIt == LHSEnd) break;
952      continue;
953    }
954
955    if (LHSIt->end < RHSIt->end) {
956      if (++LHSIt == LHSEnd) break;
957    } else {
958      // One interesting case to check here.  It's possible that we have
959      // something like "X3 = Y" which defines a new value number in the LHS,
960      // and is the last use of this liverange of the RHS.  In this case, we
961      // want to notice this copy (so that it gets coallesced away) even though
962      // the live ranges don't actually overlap.
963      if (LHSIt->start == RHSIt->end) {
964        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
965          // We already know that this value number is going to be merged in
966          // if coallescing succeeds.  Just skip the liverange.
967          if (++LHSIt == LHSEnd) break;
968        } else {
969          // Otherwise, if this is a copy from the RHS, mark it as being merged
970          // in.
971          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
972            EliminatedLHSVals.push_back(LHSIt->ValId);
973
974            // We know this entire LHS live range is okay, so skip it now.
975            if (++LHSIt == LHSEnd) break;
976          }
977        }
978      }
979
980      if (++RHSIt == RHSEnd) break;
981    }
982  }
983
984  // If we got here, we know that the coallescing will be successful and that
985  // the value numbers in EliminatedLHSVals will all be merged together.  Since
986  // the most common case is that EliminatedLHSVals has a single number, we
987  // optimize for it: if there is more than one value, we merge them all into
988  // the lowest numbered one, then handle the interval as if we were merging
989  // with one value number.
990  unsigned LHSValNo;
991  if (EliminatedLHSVals.size() > 1) {
992    // Loop through all the equal value numbers merging them into the smallest
993    // one.
994    unsigned Smallest = EliminatedLHSVals[0];
995    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
996      if (EliminatedLHSVals[i] < Smallest) {
997        // Merge the current notion of the smallest into the smaller one.
998        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
999        Smallest = EliminatedLHSVals[i];
1000      } else {
1001        // Merge into the smallest.
1002        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1003      }
1004    }
1005    LHSValNo = Smallest;
1006  } else {
1007    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1008    LHSValNo = EliminatedLHSVals[0];
1009  }
1010
1011  // Okay, now that there is a single LHS value number that we're merging the
1012  // RHS into, update the value number info for the LHS to indicate that the
1013  // value number is defined where the RHS value number was.
1014  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1015
1016  // Okay, the final step is to loop over the RHS live intervals, adding them to
1017  // the LHS.
1018  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1019  LHS.weight += RHS.weight;
1020
1021  return true;
1022}
1023
1024/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1025/// returns false.  Otherwise, if one of the intervals being joined is a
1026/// physreg, this method always canonicalizes LHS to be it.  The output
1027/// "RHS" will not have been modified, so we can use this information
1028/// below to update aliases.
1029bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1030  // Compute the final value assignment, assuming that the live ranges can be
1031  // coallesced.
1032  SmallVector<int, 16> LHSValNoAssignments;
1033  SmallVector<int, 16> RHSValNoAssignments;
1034  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1035
1036  // Compute ultimate value numbers for the LHS and RHS values.
1037  if (RHS.containsOneValue()) {
1038    // Copies from a liveinterval with a single value are simple to handle and
1039    // very common, handle the special case here.  This is important, because
1040    // often RHS is small and LHS is large (e.g. a physreg).
1041
1042    // Find out if the RHS is defined as a copy from some value in the LHS.
1043    int RHSValID = -1;
1044    std::pair<unsigned,unsigned> RHSValNoInfo;
1045    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1046    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1047      // If RHS is not defined as a copy from the LHS, we can use simpler and
1048      // faster checks to see if the live ranges are coallescable.  This joiner
1049      // can't swap the LHS/RHS intervals though.
1050      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1051        return SimpleJoin(LHS, RHS);
1052      } else {
1053        RHSValNoInfo = RHS.getValNumInfo(0);
1054      }
1055    } else {
1056      // It was defined as a copy from the LHS, find out what value # it is.
1057      unsigned ValInst = RHS.getInstForValNum(0);
1058      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1059      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1060    }
1061
1062    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1063    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1064    ValueNumberInfo.resize(LHS.getNumValNums());
1065
1066    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1067    // should now get updated.
1068    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1069      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1070        if (rep(LHSSrcReg) != RHS.reg) {
1071          // If this is not a copy from the RHS, its value number will be
1072          // unmodified by the coallescing.
1073          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1074          LHSValNoAssignments[VN] = VN;
1075        } else if (RHSValID == -1) {
1076          // Otherwise, it is a copy from the RHS, and we don't already have a
1077          // value# for it.  Keep the current value number, but remember it.
1078          LHSValNoAssignments[VN] = RHSValID = VN;
1079          ValueNumberInfo[VN] = RHSValNoInfo;
1080        } else {
1081          // Otherwise, use the specified value #.
1082          LHSValNoAssignments[VN] = RHSValID;
1083          if (VN != (unsigned)RHSValID)
1084            ValueNumberInfo[VN].first = ~1U;
1085          else
1086            ValueNumberInfo[VN] = RHSValNoInfo;
1087        }
1088      } else {
1089        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1090        LHSValNoAssignments[VN] = VN;
1091      }
1092    }
1093
1094    assert(RHSValID != -1 && "Didn't find value #?");
1095    RHSValNoAssignments[0] = RHSValID;
1096
1097  } else {
1098    // Loop over the value numbers of the LHS, seeing if any are defined from
1099    // the RHS.
1100    SmallVector<int, 16> LHSValsDefinedFromRHS;
1101    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1102    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1103      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1104      if (ValSrcReg == 0)  // Src not defined by a copy?
1105        continue;
1106
1107      // DstReg is known to be a register in the LHS interval.  If the src is
1108      // from the RHS interval, we can use its value #.
1109      if (rep(ValSrcReg) != RHS.reg)
1110        continue;
1111
1112      // Figure out the value # from the RHS.
1113      unsigned ValInst = LHS.getInstForValNum(VN);
1114      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1115    }
1116
1117    // Loop over the value numbers of the RHS, seeing if any are defined from
1118    // the LHS.
1119    SmallVector<int, 16> RHSValsDefinedFromLHS;
1120    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1121    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1122      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1123      if (ValSrcReg == 0)  // Src not defined by a copy?
1124        continue;
1125
1126      // DstReg is known to be a register in the RHS interval.  If the src is
1127      // from the LHS interval, we can use its value #.
1128      if (rep(ValSrcReg) != LHS.reg)
1129        continue;
1130
1131      // Figure out the value # from the LHS.
1132      unsigned ValInst = RHS.getInstForValNum(VN);
1133      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1134    }
1135
1136    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1137    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1138    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1139
1140    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1141      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1142        continue;
1143      ComputeUltimateVN(VN, ValueNumberInfo,
1144                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1145                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1146    }
1147    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1148      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1149        continue;
1150      // If this value number isn't a copy from the LHS, it's a new number.
1151      if (RHSValsDefinedFromLHS[VN] == -1) {
1152        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1153        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1154        continue;
1155      }
1156
1157      ComputeUltimateVN(VN, ValueNumberInfo,
1158                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1159                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1160    }
1161  }
1162
1163  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1164  // interval lists to see if these intervals are coallescable.
1165  LiveInterval::const_iterator I = LHS.begin();
1166  LiveInterval::const_iterator IE = LHS.end();
1167  LiveInterval::const_iterator J = RHS.begin();
1168  LiveInterval::const_iterator JE = RHS.end();
1169
1170  // Skip ahead until the first place of potential sharing.
1171  if (I->start < J->start) {
1172    I = std::upper_bound(I, IE, J->start);
1173    if (I != LHS.begin()) --I;
1174  } else if (J->start < I->start) {
1175    J = std::upper_bound(J, JE, I->start);
1176    if (J != RHS.begin()) --J;
1177  }
1178
1179  while (1) {
1180    // Determine if these two live ranges overlap.
1181    bool Overlaps;
1182    if (I->start < J->start) {
1183      Overlaps = I->end > J->start;
1184    } else {
1185      Overlaps = J->end > I->start;
1186    }
1187
1188    // If so, check value # info to determine if they are really different.
1189    if (Overlaps) {
1190      // If the live range overlap will map to the same value number in the
1191      // result liverange, we can still coallesce them.  If not, we can't.
1192      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1193        return false;
1194    }
1195
1196    if (I->end < J->end) {
1197      ++I;
1198      if (I == IE) break;
1199    } else {
1200      ++J;
1201      if (J == JE) break;
1202    }
1203  }
1204
1205  // If we get here, we know that we can coallesce the live ranges.  Ask the
1206  // intervals to coallesce themselves now.
1207  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1208           ValueNumberInfo);
1209  return true;
1210}
1211
1212
1213namespace {
1214  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1215  // depth of the basic block (the unsigned), and then on the MBB number.
1216  struct DepthMBBCompare {
1217    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1218    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1219      if (LHS.first > RHS.first) return true;   // Deeper loops first
1220      return LHS.first == RHS.first &&
1221        LHS.second->getNumber() < RHS.second->getNumber();
1222    }
1223  };
1224}
1225
1226
1227void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1228                                       std::vector<CopyRec> &TryAgain) {
1229  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
1230
1231  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1232       MII != E;) {
1233    MachineInstr *Inst = MII++;
1234
1235    // If this isn't a copy, we can't join intervals.
1236    unsigned SrcReg, DstReg;
1237    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1238
1239    if (!JoinCopy(Inst, SrcReg, DstReg))
1240      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1241  }
1242}
1243
1244
1245void LiveIntervals::joinIntervals() {
1246  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
1247
1248  std::vector<CopyRec> TryAgainList;
1249
1250  const LoopInfo &LI = getAnalysis<LoopInfo>();
1251  if (LI.begin() == LI.end()) {
1252    // If there are no loops in the function, join intervals in function order.
1253    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1254         I != E; ++I)
1255      CopyCoallesceInMBB(I, TryAgainList);
1256  } else {
1257    // Otherwise, join intervals in inner loops before other intervals.
1258    // Unfortunately we can't just iterate over loop hierarchy here because
1259    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1260    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1261    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1262         I != E; ++I)
1263      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1264
1265    // Sort by loop depth.
1266    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1267
1268    // Finally, join intervals in loop nest order.
1269    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1270      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1271  }
1272
1273  // Joining intervals can allow other intervals to be joined.  Iteratively join
1274  // until we make no progress.
1275  bool ProgressMade = true;
1276  while (ProgressMade) {
1277    ProgressMade = false;
1278
1279    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1280      CopyRec &TheCopy = TryAgainList[i];
1281      if (TheCopy.MI &&
1282          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1283        TheCopy.MI = 0;   // Mark this one as done.
1284        ProgressMade = true;
1285      }
1286    }
1287  }
1288
1289  DEBUG(std::cerr << "*** Register mapping ***\n");
1290  DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1291          if (r2rMap_[i]) {
1292            std::cerr << "  reg " << i << " -> ";
1293            printRegName(r2rMap_[i]);
1294            std::cerr << "\n";
1295          });
1296}
1297
1298/// Return true if the two specified registers belong to different register
1299/// classes.  The registers may be either phys or virt regs.
1300bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1301                                             unsigned RegB) const {
1302
1303  // Get the register classes for the first reg.
1304  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1305    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1306           "Shouldn't consider two physregs!");
1307    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1308  }
1309
1310  // Compare against the regclass for the second reg.
1311  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1312  if (MRegisterInfo::isVirtualRegister(RegB))
1313    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1314  else
1315    return !RegClass->contains(RegB);
1316}
1317
1318LiveInterval LiveIntervals::createInterval(unsigned reg) {
1319  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1320                       (float)HUGE_VAL : 0.0F;
1321  return LiveInterval(reg, Weight);
1322}
1323