LiveIntervalAnalysis.cpp revision 5f5f3b6333ed5ecaf40699e8cd0b1aba524cbf0f
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  // Hidden options for help debugging.
41  cl::opt<bool> DisableReMat("disable-rematerialization",
42                              cl::init(false), cl::Hidden);
43}
44
45STATISTIC(numIntervals, "Number of original intervals");
46STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
47STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
48
49char LiveIntervals::ID = 0;
50namespace {
51  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.addPreserved<LiveVariables>();
56  AU.addRequired<LiveVariables>();
57  AU.addPreservedID(PHIEliminationID);
58  AU.addRequiredID(PHIEliminationID);
59  AU.addRequiredID(TwoAddressInstructionPassID);
60  AU.addRequired<LoopInfo>();
61  MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64void LiveIntervals::releaseMemory() {
65  Idx2MBBMap.clear();
66  mi2iMap_.clear();
67  i2miMap_.clear();
68  r2iMap_.clear();
69  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
70  VNInfoAllocator.Reset();
71  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
72    delete ClonedMIs[i];
73}
74
75namespace llvm {
76  inline bool operator<(unsigned V, const IdxMBBPair &IM) {
77    return V < IM.first;
78  }
79
80  inline bool operator<(const IdxMBBPair &IM, unsigned V) {
81    return IM.first < V;
82  }
83
84  struct Idx2MBBCompare {
85    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
86      return LHS.first < RHS.first;
87    }
88  };
89}
90
91/// runOnMachineFunction - Register allocate the whole function
92///
93bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
94  mf_ = &fn;
95  tm_ = &fn.getTarget();
96  mri_ = tm_->getRegisterInfo();
97  tii_ = tm_->getInstrInfo();
98  lv_ = &getAnalysis<LiveVariables>();
99  allocatableRegs_ = mri_->getAllocatableSet(fn);
100
101  // Number MachineInstrs and MachineBasicBlocks.
102  // Initialize MBB indexes to a sentinal.
103  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
104
105  unsigned MIIndex = 0;
106  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
107       MBB != E; ++MBB) {
108    unsigned StartIdx = MIIndex;
109
110    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
111         I != E; ++I) {
112      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
113      assert(inserted && "multiple MachineInstr -> index mappings");
114      i2miMap_.push_back(I);
115      MIIndex += InstrSlots::NUM;
116    }
117
118    // Set the MBB2IdxMap entry for this MBB.
119    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
120    Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
121  }
122  std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
123
124  computeIntervals();
125
126  numIntervals += getNumIntervals();
127
128  DOUT << "********** INTERVALS **********\n";
129  for (iterator I = begin(), E = end(); I != E; ++I) {
130    I->second.print(DOUT, mri_);
131    DOUT << "\n";
132  }
133
134  numIntervalsAfter += getNumIntervals();
135  DEBUG(dump());
136  return true;
137}
138
139/// print - Implement the dump method.
140void LiveIntervals::print(std::ostream &O, const Module* ) const {
141  O << "********** INTERVALS **********\n";
142  for (const_iterator I = begin(), E = end(); I != E; ++I) {
143    I->second.print(DOUT, mri_);
144    DOUT << "\n";
145  }
146
147  O << "********** MACHINEINSTRS **********\n";
148  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
149       mbbi != mbbe; ++mbbi) {
150    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
151    for (MachineBasicBlock::iterator mii = mbbi->begin(),
152           mie = mbbi->end(); mii != mie; ++mii) {
153      O << getInstructionIndex(mii) << '\t' << *mii;
154    }
155  }
156}
157
158/// isReMaterializable - Returns true if the definition MI of the specified
159/// val# of the specified interval is re-materializable.
160bool LiveIntervals::isReMaterializable(const LiveInterval &li,
161                                       const VNInfo *ValNo, MachineInstr *MI) {
162  if (DisableReMat)
163    return false;
164
165  if (tii_->isTriviallyReMaterializable(MI))
166    return true;
167
168  int FrameIdx = 0;
169  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
170      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
171    return false;
172
173  // This is a load from fixed stack slot. It can be rematerialized unless it's
174  // re-defined by a two-address instruction.
175  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
176       i != e; ++i) {
177    const VNInfo *VNI = *i;
178    if (VNI == ValNo)
179      continue;
180    unsigned DefIdx = VNI->def;
181    if (DefIdx == ~1U)
182      continue; // Dead val#.
183    MachineInstr *DefMI = (DefIdx == ~0u)
184      ? NULL : getInstructionFromIndex(DefIdx);
185    if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
186      return false;
187  }
188  return true;
189}
190
191/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
192/// slot / to reg or any rematerialized load into ith operand of specified
193/// MI. If it is successul, MI is updated with the newly created MI and
194/// returns true.
195bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
196                                         MachineInstr *DefMI,
197                                         unsigned index, unsigned i,
198                                         bool isSS, int slot, unsigned reg) {
199  MachineInstr *fmi = isSS
200    ? mri_->foldMemoryOperand(MI, i, slot)
201    : mri_->foldMemoryOperand(MI, i, DefMI);
202  if (fmi) {
203    // Attempt to fold the memory reference into the instruction. If
204    // we can do this, we don't need to insert spill code.
205    if (lv_)
206      lv_->instructionChanged(MI, fmi);
207    MachineBasicBlock &MBB = *MI->getParent();
208    vrm.virtFolded(reg, MI, i, fmi);
209    mi2iMap_.erase(MI);
210    i2miMap_[index/InstrSlots::NUM] = fmi;
211    mi2iMap_[fmi] = index;
212    MI = MBB.insert(MBB.erase(MI), fmi);
213    ++numFolded;
214    return true;
215  }
216  return false;
217}
218
219std::vector<LiveInterval*> LiveIntervals::
220addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
221  // since this is called after the analysis is done we don't know if
222  // LiveVariables is available
223  lv_ = getAnalysisToUpdate<LiveVariables>();
224
225  std::vector<LiveInterval*> added;
226
227  assert(li.weight != HUGE_VALF &&
228         "attempt to spill already spilled interval!");
229
230  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
231  li.print(DOUT, mri_);
232  DOUT << '\n';
233
234  SSARegMap *RegMap = mf_->getSSARegMap();
235  const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
236
237  unsigned NumValNums = li.getNumValNums();
238  SmallVector<MachineInstr*, 4> ReMatDefs;
239  ReMatDefs.resize(NumValNums, NULL);
240  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
241  ReMatOrigDefs.resize(NumValNums, NULL);
242  SmallVector<int, 4> ReMatIds;
243  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
244  BitVector ReMatDelete(NumValNums);
245  unsigned slot = VirtRegMap::MAX_STACK_SLOT;
246
247  bool NeedStackSlot = false;
248  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
249       i != e; ++i) {
250    const VNInfo *VNI = *i;
251    unsigned VN = VNI->id;
252    unsigned DefIdx = VNI->def;
253    if (DefIdx == ~1U)
254      continue; // Dead val#.
255    // Is the def for the val# rematerializable?
256    MachineInstr *DefMI = (DefIdx == ~0u)
257      ? NULL : getInstructionFromIndex(DefIdx);
258    if (DefMI && isReMaterializable(li, VNI, DefMI)) {
259      // Remember how to remat the def of this val#.
260      ReMatOrigDefs[VN] = DefMI;
261      // Original def may be modified so we have to make a copy here. vrm must
262      // delete these!
263      ReMatDefs[VN] = DefMI = DefMI->clone();
264      vrm.setVirtIsReMaterialized(reg, DefMI);
265
266      bool CanDelete = true;
267      for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
268        unsigned KillIdx = VNI->kills[j];
269        MachineInstr *KillMI = (KillIdx & 1)
270          ? NULL : getInstructionFromIndex(KillIdx);
271        // Kill is a phi node, not all of its uses can be rematerialized.
272        // It must not be deleted.
273        if (!KillMI) {
274          CanDelete = false;
275          // Need a stack slot if there is any live range where uses cannot be
276          // rematerialized.
277          NeedStackSlot = true;
278          break;
279        }
280      }
281
282      if (CanDelete)
283        ReMatDelete.set(VN);
284    } else {
285      // Need a stack slot if there is any live range where uses cannot be
286      // rematerialized.
287      NeedStackSlot = true;
288    }
289  }
290
291  // One stack slot per live interval.
292  if (NeedStackSlot)
293    slot = vrm.assignVirt2StackSlot(reg);
294
295  for (LiveInterval::Ranges::const_iterator
296         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
297    MachineInstr *DefMI = ReMatDefs[I->valno->id];
298    MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
299    bool DefIsReMat = DefMI != NULL;
300    bool CanDelete = ReMatDelete[I->valno->id];
301    int LdSlot = 0;
302    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
303    bool isLoad = isLoadSS ||
304      (DefIsReMat && (DefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
305    unsigned index = getBaseIndex(I->start);
306    unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
307    for (; index != end; index += InstrSlots::NUM) {
308      // skip deleted instructions
309      while (index != end && !getInstructionFromIndex(index))
310        index += InstrSlots::NUM;
311      if (index == end) break;
312
313      MachineInstr *MI = getInstructionFromIndex(index);
314
315    RestartInstruction:
316      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
317        MachineOperand& mop = MI->getOperand(i);
318        if (!mop.isRegister())
319          continue;
320        unsigned Reg = mop.getReg();
321        if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
322          continue;
323        bool isSubReg = RegMap->isSubRegister(Reg);
324        unsigned SubIdx = 0;
325        if (isSubReg) {
326          SubIdx = RegMap->getSubRegisterIndex(Reg);
327          Reg = RegMap->getSuperRegister(Reg);
328        }
329        if (Reg != li.reg)
330          continue;
331
332        bool TryFold = !DefIsReMat;
333        bool FoldSS = true;
334        int FoldSlot = slot;
335        if (DefIsReMat) {
336          // If this is the rematerializable definition MI itself and
337          // all of its uses are rematerialized, simply delete it.
338          if (MI == OrigDefMI && CanDelete) {
339            RemoveMachineInstrFromMaps(MI);
340            MI->eraseFromParent();
341            break;
342          }
343
344          // If def for this use can't be rematerialized, then try folding.
345          TryFold = !OrigDefMI || (OrigDefMI && (MI == OrigDefMI || isLoad));
346          if (isLoad) {
347            // Try fold loads (from stack slot, constant pool, etc.) into uses.
348            FoldSS = isLoadSS;
349            FoldSlot = LdSlot;
350          }
351        }
352
353        // FIXME: fold subreg use
354        if (!isSubReg && TryFold &&
355            tryFoldMemoryOperand(MI, vrm, DefMI, index, i, FoldSS, FoldSlot, Reg))
356          // Folding the load/store can completely change the instruction in
357          // unpredictable ways, rescan it from the beginning.
358          goto RestartInstruction;
359
360        // Create a new virtual register for the spill interval.
361        unsigned NewVReg = RegMap->createVirtualRegister(rc);
362        if (isSubReg)
363          RegMap->setIsSubRegister(NewVReg, NewVReg, SubIdx);
364
365        // Scan all of the operands of this instruction rewriting operands
366        // to use NewVReg instead of li.reg as appropriate.  We do this for
367        // two reasons:
368        //
369        //   1. If the instr reads the same spilled vreg multiple times, we
370        //      want to reuse the NewVReg.
371        //   2. If the instr is a two-addr instruction, we are required to
372        //      keep the src/dst regs pinned.
373        //
374        // Keep track of whether we replace a use and/or def so that we can
375        // create the spill interval with the appropriate range.
376        mop.setReg(NewVReg);
377
378        bool HasUse = mop.isUse();
379        bool HasDef = mop.isDef();
380        for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
381          if (MI->getOperand(j).isRegister() &&
382              MI->getOperand(j).getReg() == li.reg) {
383            MI->getOperand(j).setReg(NewVReg);
384            HasUse |= MI->getOperand(j).isUse();
385            HasDef |= MI->getOperand(j).isDef();
386          }
387        }
388
389        vrm.grow();
390        if (DefIsReMat) {
391          vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
392          if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
393            // Each valnum may have its own remat id.
394            ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
395          } else {
396            vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
397          }
398          if (!CanDelete || (HasUse && HasDef)) {
399            // If this is a two-addr instruction then its use operands are
400            // rematerializable but its def is not. It should be assigned a
401            // stack slot.
402            vrm.assignVirt2StackSlot(NewVReg, slot);
403          }
404        } else {
405          vrm.assignVirt2StackSlot(NewVReg, slot);
406        }
407
408        // create a new register interval for this spill / remat.
409        LiveInterval &nI = getOrCreateInterval(NewVReg);
410        assert(nI.empty());
411
412        // the spill weight is now infinity as it
413        // cannot be spilled again
414        nI.weight = HUGE_VALF;
415
416        if (HasUse) {
417          LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
418                       nI.getNextValue(~0U, 0, VNInfoAllocator));
419          DOUT << " +" << LR;
420          nI.addRange(LR);
421        }
422        if (HasDef) {
423          LiveRange LR(getDefIndex(index), getStoreIndex(index),
424                       nI.getNextValue(~0U, 0, VNInfoAllocator));
425          DOUT << " +" << LR;
426          nI.addRange(LR);
427        }
428
429        added.push_back(&nI);
430
431        // update live variables if it is available
432        if (lv_)
433          lv_->addVirtualRegisterKilled(NewVReg, MI);
434
435        DOUT << "\t\t\t\tadded new interval: ";
436        nI.print(DOUT, mri_);
437        DOUT << '\n';
438      }
439    }
440  }
441
442  return added;
443}
444
445/// conflictsWithPhysRegDef - Returns true if the specified register
446/// is defined during the duration of the specified interval.
447bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
448                                            VirtRegMap &vrm, unsigned reg) {
449  for (LiveInterval::Ranges::const_iterator
450         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
451    for (unsigned index = getBaseIndex(I->start),
452           end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
453         index += InstrSlots::NUM) {
454      // skip deleted instructions
455      while (index != end && !getInstructionFromIndex(index))
456        index += InstrSlots::NUM;
457      if (index == end) break;
458
459      MachineInstr *MI = getInstructionFromIndex(index);
460      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
461        MachineOperand& mop = MI->getOperand(i);
462        if (!mop.isRegister() || !mop.isDef())
463          continue;
464        unsigned PhysReg = mop.getReg();
465        if (PhysReg == 0)
466          continue;
467        if (MRegisterInfo::isVirtualRegister(PhysReg))
468          PhysReg = vrm.getPhys(PhysReg);
469        if (PhysReg && mri_->regsOverlap(PhysReg, reg))
470          return true;
471      }
472    }
473  }
474
475  return false;
476}
477
478void LiveIntervals::printRegName(unsigned reg) const {
479  if (MRegisterInfo::isPhysicalRegister(reg))
480    cerr << mri_->getName(reg);
481  else
482    cerr << "%reg" << reg;
483}
484
485void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
486                                             MachineBasicBlock::iterator mi,
487                                             unsigned MIIdx,
488                                             LiveInterval &interval) {
489  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
490  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
491
492  // Virtual registers may be defined multiple times (due to phi
493  // elimination and 2-addr elimination).  Much of what we do only has to be
494  // done once for the vreg.  We use an empty interval to detect the first
495  // time we see a vreg.
496  if (interval.empty()) {
497    // Get the Idx of the defining instructions.
498    unsigned defIndex = getDefIndex(MIIdx);
499    VNInfo *ValNo;
500    unsigned SrcReg, DstReg;
501    if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
502      ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
503    else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
504      ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
505                                    VNInfoAllocator);
506    else
507      ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
508
509    assert(ValNo->id == 0 && "First value in interval is not 0?");
510
511    // Loop over all of the blocks that the vreg is defined in.  There are
512    // two cases we have to handle here.  The most common case is a vreg
513    // whose lifetime is contained within a basic block.  In this case there
514    // will be a single kill, in MBB, which comes after the definition.
515    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
516      // FIXME: what about dead vars?
517      unsigned killIdx;
518      if (vi.Kills[0] != mi)
519        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
520      else
521        killIdx = defIndex+1;
522
523      // If the kill happens after the definition, we have an intra-block
524      // live range.
525      if (killIdx > defIndex) {
526        assert(vi.AliveBlocks.none() &&
527               "Shouldn't be alive across any blocks!");
528        LiveRange LR(defIndex, killIdx, ValNo);
529        interval.addRange(LR);
530        DOUT << " +" << LR << "\n";
531        interval.addKill(ValNo, killIdx);
532        return;
533      }
534    }
535
536    // The other case we handle is when a virtual register lives to the end
537    // of the defining block, potentially live across some blocks, then is
538    // live into some number of blocks, but gets killed.  Start by adding a
539    // range that goes from this definition to the end of the defining block.
540    LiveRange NewLR(defIndex,
541                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
542                    ValNo);
543    DOUT << " +" << NewLR;
544    interval.addRange(NewLR);
545
546    // Iterate over all of the blocks that the variable is completely
547    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
548    // live interval.
549    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
550      if (vi.AliveBlocks[i]) {
551        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
552        if (!MBB->empty()) {
553          LiveRange LR(getMBBStartIdx(i),
554                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
555                       ValNo);
556          interval.addRange(LR);
557          DOUT << " +" << LR;
558        }
559      }
560    }
561
562    // Finally, this virtual register is live from the start of any killing
563    // block to the 'use' slot of the killing instruction.
564    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
565      MachineInstr *Kill = vi.Kills[i];
566      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
567      LiveRange LR(getMBBStartIdx(Kill->getParent()),
568                   killIdx, ValNo);
569      interval.addRange(LR);
570      interval.addKill(ValNo, killIdx);
571      DOUT << " +" << LR;
572    }
573
574  } else {
575    // If this is the second time we see a virtual register definition, it
576    // must be due to phi elimination or two addr elimination.  If this is
577    // the result of two address elimination, then the vreg is one of the
578    // def-and-use register operand.
579    if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
580      // If this is a two-address definition, then we have already processed
581      // the live range.  The only problem is that we didn't realize there
582      // are actually two values in the live interval.  Because of this we
583      // need to take the LiveRegion that defines this register and split it
584      // into two values.
585      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
586      unsigned RedefIndex = getDefIndex(MIIdx);
587
588      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
589      VNInfo *OldValNo = OldLR->valno;
590      unsigned OldEnd = OldLR->end;
591
592      // Delete the initial value, which should be short and continuous,
593      // because the 2-addr copy must be in the same MBB as the redef.
594      interval.removeRange(DefIndex, RedefIndex);
595
596      // Two-address vregs should always only be redefined once.  This means
597      // that at this point, there should be exactly one value number in it.
598      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
599
600      // The new value number (#1) is defined by the instruction we claimed
601      // defined value #0.
602      VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
603      interval.copyValNumInfo(ValNo, OldValNo);
604
605      // Value#0 is now defined by the 2-addr instruction.
606      OldValNo->def = RedefIndex;
607      OldValNo->reg = 0;
608
609      // Add the new live interval which replaces the range for the input copy.
610      LiveRange LR(DefIndex, RedefIndex, ValNo);
611      DOUT << " replace range with " << LR;
612      interval.addRange(LR);
613      interval.addKill(ValNo, RedefIndex);
614      interval.removeKills(ValNo, RedefIndex, OldEnd);
615
616      // If this redefinition is dead, we need to add a dummy unit live
617      // range covering the def slot.
618      if (lv_->RegisterDefIsDead(mi, interval.reg))
619        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
620
621      DOUT << " RESULT: ";
622      interval.print(DOUT, mri_);
623
624    } else {
625      // Otherwise, this must be because of phi elimination.  If this is the
626      // first redefinition of the vreg that we have seen, go back and change
627      // the live range in the PHI block to be a different value number.
628      if (interval.containsOneValue()) {
629        assert(vi.Kills.size() == 1 &&
630               "PHI elimination vreg should have one kill, the PHI itself!");
631
632        // Remove the old range that we now know has an incorrect number.
633        VNInfo *VNI = interval.getValNumInfo(0);
634        MachineInstr *Killer = vi.Kills[0];
635        unsigned Start = getMBBStartIdx(Killer->getParent());
636        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
637        DOUT << " Removing [" << Start << "," << End << "] from: ";
638        interval.print(DOUT, mri_); DOUT << "\n";
639        interval.removeRange(Start, End);
640        interval.addKill(VNI, Start+1); // odd # means phi node
641        DOUT << " RESULT: "; interval.print(DOUT, mri_);
642
643        // Replace the interval with one of a NEW value number.  Note that this
644        // value number isn't actually defined by an instruction, weird huh? :)
645        LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
646        DOUT << " replace range with " << LR;
647        interval.addRange(LR);
648        interval.addKill(LR.valno, End);
649        DOUT << " RESULT: "; interval.print(DOUT, mri_);
650      }
651
652      // In the case of PHI elimination, each variable definition is only
653      // live until the end of the block.  We've already taken care of the
654      // rest of the live range.
655      unsigned defIndex = getDefIndex(MIIdx);
656
657      VNInfo *ValNo;
658      unsigned SrcReg, DstReg;
659      if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
660        ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
661      else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
662        ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
663                                      VNInfoAllocator);
664      else
665        ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
666
667      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
668      LiveRange LR(defIndex, killIndex, ValNo);
669      interval.addRange(LR);
670      interval.addKill(ValNo, killIndex-1); // odd # means phi node
671      DOUT << " +" << LR;
672    }
673  }
674
675  DOUT << '\n';
676}
677
678void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
679                                              MachineBasicBlock::iterator mi,
680                                              unsigned MIIdx,
681                                              LiveInterval &interval,
682                                              unsigned SrcReg) {
683  // A physical register cannot be live across basic block, so its
684  // lifetime must end somewhere in its defining basic block.
685  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
686
687  unsigned baseIndex = MIIdx;
688  unsigned start = getDefIndex(baseIndex);
689  unsigned end = start;
690
691  // If it is not used after definition, it is considered dead at
692  // the instruction defining it. Hence its interval is:
693  // [defSlot(def), defSlot(def)+1)
694  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
695    DOUT << " dead";
696    end = getDefIndex(start) + 1;
697    goto exit;
698  }
699
700  // If it is not dead on definition, it must be killed by a
701  // subsequent instruction. Hence its interval is:
702  // [defSlot(def), useSlot(kill)+1)
703  while (++mi != MBB->end()) {
704    baseIndex += InstrSlots::NUM;
705    if (lv_->KillsRegister(mi, interval.reg)) {
706      DOUT << " killed";
707      end = getUseIndex(baseIndex) + 1;
708      goto exit;
709    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
710      // Another instruction redefines the register before it is ever read.
711      // Then the register is essentially dead at the instruction that defines
712      // it. Hence its interval is:
713      // [defSlot(def), defSlot(def)+1)
714      DOUT << " dead";
715      end = getDefIndex(start) + 1;
716      goto exit;
717    }
718  }
719
720  // The only case we should have a dead physreg here without a killing or
721  // instruction where we know it's dead is if it is live-in to the function
722  // and never used.
723  assert(!SrcReg && "physreg was not killed in defining block!");
724  end = getDefIndex(start) + 1;  // It's dead.
725
726exit:
727  assert(start < end && "did not find end of interval?");
728
729  // Already exists? Extend old live interval.
730  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
731  VNInfo *ValNo = (OldLR != interval.end())
732    ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
733  LiveRange LR(start, end, ValNo);
734  interval.addRange(LR);
735  interval.addKill(LR.valno, end);
736  DOUT << " +" << LR << '\n';
737}
738
739void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
740                                      MachineBasicBlock::iterator MI,
741                                      unsigned MIIdx,
742                                      unsigned reg) {
743  if (MRegisterInfo::isVirtualRegister(reg))
744    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
745  else if (allocatableRegs_[reg]) {
746    unsigned SrcReg, DstReg;
747    if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
748      SrcReg = MI->getOperand(1).getReg();
749    else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
750      SrcReg = 0;
751    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
752    // Def of a register also defines its sub-registers.
753    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
754      // Avoid processing some defs more than once.
755      if (!MI->findRegisterDefOperand(*AS))
756        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
757  }
758}
759
760void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
761                                         unsigned MIIdx,
762                                         LiveInterval &interval, bool isAlias) {
763  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
764
765  // Look for kills, if it reaches a def before it's killed, then it shouldn't
766  // be considered a livein.
767  MachineBasicBlock::iterator mi = MBB->begin();
768  unsigned baseIndex = MIIdx;
769  unsigned start = baseIndex;
770  unsigned end = start;
771  while (mi != MBB->end()) {
772    if (lv_->KillsRegister(mi, interval.reg)) {
773      DOUT << " killed";
774      end = getUseIndex(baseIndex) + 1;
775      goto exit;
776    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
777      // Another instruction redefines the register before it is ever read.
778      // Then the register is essentially dead at the instruction that defines
779      // it. Hence its interval is:
780      // [defSlot(def), defSlot(def)+1)
781      DOUT << " dead";
782      end = getDefIndex(start) + 1;
783      goto exit;
784    }
785
786    baseIndex += InstrSlots::NUM;
787    ++mi;
788  }
789
790exit:
791  // Live-in register might not be used at all.
792  if (end == MIIdx) {
793    if (isAlias) {
794      DOUT << " dead";
795      end = getDefIndex(MIIdx) + 1;
796    } else {
797      DOUT << " live through";
798      end = baseIndex;
799    }
800  }
801
802  LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
803  interval.addRange(LR);
804  interval.addKill(LR.valno, end);
805  DOUT << " +" << LR << '\n';
806}
807
808/// computeIntervals - computes the live intervals for virtual
809/// registers. for some ordering of the machine instructions [1,N] a
810/// live interval is an interval [i, j) where 1 <= i <= j < N for
811/// which a variable is live
812void LiveIntervals::computeIntervals() {
813  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
814       << "********** Function: "
815       << ((Value*)mf_->getFunction())->getName() << '\n';
816  // Track the index of the current machine instr.
817  unsigned MIIndex = 0;
818  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
819       MBBI != E; ++MBBI) {
820    MachineBasicBlock *MBB = MBBI;
821    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
822
823    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
824
825    // Create intervals for live-ins to this BB first.
826    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
827           LE = MBB->livein_end(); LI != LE; ++LI) {
828      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
829      // Multiple live-ins can alias the same register.
830      for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
831        if (!hasInterval(*AS))
832          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
833                               true);
834    }
835
836    for (; MI != miEnd; ++MI) {
837      DOUT << MIIndex << "\t" << *MI;
838
839      // Handle defs.
840      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
841        MachineOperand &MO = MI->getOperand(i);
842        // handle register defs - build intervals
843        if (MO.isRegister() && MO.getReg() && MO.isDef())
844          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
845      }
846
847      MIIndex += InstrSlots::NUM;
848    }
849  }
850}
851
852bool LiveIntervals::findLiveInMBBs(const LiveRange &LR,
853                              SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
854  std::vector<IdxMBBPair>::const_iterator I =
855    std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), LR.start);
856
857  bool ResVal = false;
858  while (I != Idx2MBBMap.end()) {
859    if (LR.end <= I->first)
860      break;
861    MBBs.push_back(I->second);
862    ResVal = true;
863    ++I;
864  }
865  return ResVal;
866}
867
868
869LiveInterval LiveIntervals::createInterval(unsigned reg) {
870  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
871                       HUGE_VALF : 0.0F;
872  return LiveInterval(reg, Weight);
873}
874