LiveIntervalAnalysis.cpp revision 6710b5b82129c86b43108b4dc4394f7a3d9d6c94
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  // Hidden options for help debugging.
41  cl::opt<bool> DisableReMat("disable-rematerialization",
42                              cl::init(false), cl::Hidden);
43
44  cl::opt<bool> SplitAtBB("split-intervals-at-bb",
45                          cl::init(false), cl::Hidden);
46  cl::opt<int> SplitLimit("split-limit",
47                          cl::init(-1), cl::Hidden);
48}
49
50STATISTIC(numIntervals, "Number of original intervals");
51STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
52STATISTIC(numFolds    , "Number of loads/stores folded into instructions");
53STATISTIC(numSplits   , "Number of intervals split");
54
55char LiveIntervals::ID = 0;
56namespace {
57  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
58}
59
60void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
61  AU.addPreserved<LiveVariables>();
62  AU.addRequired<LiveVariables>();
63  AU.addPreservedID(PHIEliminationID);
64  AU.addRequiredID(PHIEliminationID);
65  AU.addRequiredID(TwoAddressInstructionPassID);
66  MachineFunctionPass::getAnalysisUsage(AU);
67}
68
69void LiveIntervals::releaseMemory() {
70  Idx2MBBMap.clear();
71  mi2iMap_.clear();
72  i2miMap_.clear();
73  r2iMap_.clear();
74  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
75  VNInfoAllocator.Reset();
76  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
77    delete ClonedMIs[i];
78}
79
80namespace llvm {
81  inline bool operator<(unsigned V, const IdxMBBPair &IM) {
82    return V < IM.first;
83  }
84
85  inline bool operator<(const IdxMBBPair &IM, unsigned V) {
86    return IM.first < V;
87  }
88
89  struct Idx2MBBCompare {
90    bool operator()(const IdxMBBPair &LHS, const IdxMBBPair &RHS) const {
91      return LHS.first < RHS.first;
92    }
93  };
94}
95
96/// runOnMachineFunction - Register allocate the whole function
97///
98bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
99  mf_ = &fn;
100  tm_ = &fn.getTarget();
101  mri_ = tm_->getRegisterInfo();
102  tii_ = tm_->getInstrInfo();
103  lv_ = &getAnalysis<LiveVariables>();
104  allocatableRegs_ = mri_->getAllocatableSet(fn);
105
106  // Number MachineInstrs and MachineBasicBlocks.
107  // Initialize MBB indexes to a sentinal.
108  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
109
110  unsigned MIIndex = 0;
111  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
112       MBB != E; ++MBB) {
113    unsigned StartIdx = MIIndex;
114
115    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
116         I != E; ++I) {
117      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
118      assert(inserted && "multiple MachineInstr -> index mappings");
119      i2miMap_.push_back(I);
120      MIIndex += InstrSlots::NUM;
121    }
122
123    // Set the MBB2IdxMap entry for this MBB.
124    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
125    Idx2MBBMap.push_back(std::make_pair(StartIdx, MBB));
126  }
127  std::sort(Idx2MBBMap.begin(), Idx2MBBMap.end(), Idx2MBBCompare());
128
129  computeIntervals();
130
131  numIntervals += getNumIntervals();
132
133  DOUT << "********** INTERVALS **********\n";
134  for (iterator I = begin(), E = end(); I != E; ++I) {
135    I->second.print(DOUT, mri_);
136    DOUT << "\n";
137  }
138
139  numIntervalsAfter += getNumIntervals();
140  DEBUG(dump());
141  return true;
142}
143
144/// print - Implement the dump method.
145void LiveIntervals::print(std::ostream &O, const Module* ) const {
146  O << "********** INTERVALS **********\n";
147  for (const_iterator I = begin(), E = end(); I != E; ++I) {
148    I->second.print(DOUT, mri_);
149    DOUT << "\n";
150  }
151
152  O << "********** MACHINEINSTRS **********\n";
153  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
154       mbbi != mbbe; ++mbbi) {
155    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
156    for (MachineBasicBlock::iterator mii = mbbi->begin(),
157           mie = mbbi->end(); mii != mie; ++mii) {
158      O << getInstructionIndex(mii) << '\t' << *mii;
159    }
160  }
161}
162
163/// conflictsWithPhysRegDef - Returns true if the specified register
164/// is defined during the duration of the specified interval.
165bool LiveIntervals::conflictsWithPhysRegDef(const LiveInterval &li,
166                                            VirtRegMap &vrm, unsigned reg) {
167  for (LiveInterval::Ranges::const_iterator
168         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
169    for (unsigned index = getBaseIndex(I->start),
170           end = getBaseIndex(I->end-1) + InstrSlots::NUM; index != end;
171         index += InstrSlots::NUM) {
172      // skip deleted instructions
173      while (index != end && !getInstructionFromIndex(index))
174        index += InstrSlots::NUM;
175      if (index == end) break;
176
177      MachineInstr *MI = getInstructionFromIndex(index);
178      unsigned SrcReg, DstReg;
179      if (tii_->isMoveInstr(*MI, SrcReg, DstReg))
180        if (SrcReg == li.reg || DstReg == li.reg)
181          continue;
182      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
183        MachineOperand& mop = MI->getOperand(i);
184        if (!mop.isRegister())
185          continue;
186        unsigned PhysReg = mop.getReg();
187        if (PhysReg == 0 || PhysReg == li.reg)
188          continue;
189        if (MRegisterInfo::isVirtualRegister(PhysReg)) {
190          if (!vrm.hasPhys(PhysReg))
191            continue;
192          PhysReg = vrm.getPhys(PhysReg);
193        }
194        if (PhysReg && mri_->regsOverlap(PhysReg, reg))
195          return true;
196      }
197    }
198  }
199
200  return false;
201}
202
203void LiveIntervals::printRegName(unsigned reg) const {
204  if (MRegisterInfo::isPhysicalRegister(reg))
205    cerr << mri_->getName(reg);
206  else
207    cerr << "%reg" << reg;
208}
209
210void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
211                                             MachineBasicBlock::iterator mi,
212                                             unsigned MIIdx,
213                                             LiveInterval &interval) {
214  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
215  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
216
217  // Virtual registers may be defined multiple times (due to phi
218  // elimination and 2-addr elimination).  Much of what we do only has to be
219  // done once for the vreg.  We use an empty interval to detect the first
220  // time we see a vreg.
221  if (interval.empty()) {
222    // Get the Idx of the defining instructions.
223    unsigned defIndex = getDefIndex(MIIdx);
224    VNInfo *ValNo;
225    unsigned SrcReg, DstReg;
226    if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
227      ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
228    else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
229      ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
230                                    VNInfoAllocator);
231    else
232      ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
233
234    assert(ValNo->id == 0 && "First value in interval is not 0?");
235
236    // Loop over all of the blocks that the vreg is defined in.  There are
237    // two cases we have to handle here.  The most common case is a vreg
238    // whose lifetime is contained within a basic block.  In this case there
239    // will be a single kill, in MBB, which comes after the definition.
240    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
241      // FIXME: what about dead vars?
242      unsigned killIdx;
243      if (vi.Kills[0] != mi)
244        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
245      else
246        killIdx = defIndex+1;
247
248      // If the kill happens after the definition, we have an intra-block
249      // live range.
250      if (killIdx > defIndex) {
251        assert(vi.AliveBlocks.none() &&
252               "Shouldn't be alive across any blocks!");
253        LiveRange LR(defIndex, killIdx, ValNo);
254        interval.addRange(LR);
255        DOUT << " +" << LR << "\n";
256        interval.addKill(ValNo, killIdx);
257        return;
258      }
259    }
260
261    // The other case we handle is when a virtual register lives to the end
262    // of the defining block, potentially live across some blocks, then is
263    // live into some number of blocks, but gets killed.  Start by adding a
264    // range that goes from this definition to the end of the defining block.
265    LiveRange NewLR(defIndex,
266                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
267                    ValNo);
268    DOUT << " +" << NewLR;
269    interval.addRange(NewLR);
270
271    // Iterate over all of the blocks that the variable is completely
272    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
273    // live interval.
274    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
275      if (vi.AliveBlocks[i]) {
276        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
277        if (!MBB->empty()) {
278          LiveRange LR(getMBBStartIdx(i),
279                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
280                       ValNo);
281          interval.addRange(LR);
282          DOUT << " +" << LR;
283        }
284      }
285    }
286
287    // Finally, this virtual register is live from the start of any killing
288    // block to the 'use' slot of the killing instruction.
289    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
290      MachineInstr *Kill = vi.Kills[i];
291      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
292      LiveRange LR(getMBBStartIdx(Kill->getParent()),
293                   killIdx, ValNo);
294      interval.addRange(LR);
295      interval.addKill(ValNo, killIdx);
296      DOUT << " +" << LR;
297    }
298
299  } else {
300    // If this is the second time we see a virtual register definition, it
301    // must be due to phi elimination or two addr elimination.  If this is
302    // the result of two address elimination, then the vreg is one of the
303    // def-and-use register operand.
304    if (mi->isRegReDefinedByTwoAddr(interval.reg)) {
305      // If this is a two-address definition, then we have already processed
306      // the live range.  The only problem is that we didn't realize there
307      // are actually two values in the live interval.  Because of this we
308      // need to take the LiveRegion that defines this register and split it
309      // into two values.
310      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
311      unsigned RedefIndex = getDefIndex(MIIdx);
312
313      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
314      VNInfo *OldValNo = OldLR->valno;
315      unsigned OldEnd = OldLR->end;
316
317      // Delete the initial value, which should be short and continuous,
318      // because the 2-addr copy must be in the same MBB as the redef.
319      interval.removeRange(DefIndex, RedefIndex);
320
321      // Two-address vregs should always only be redefined once.  This means
322      // that at this point, there should be exactly one value number in it.
323      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
324
325      // The new value number (#1) is defined by the instruction we claimed
326      // defined value #0.
327      VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
328      interval.copyValNumInfo(ValNo, OldValNo);
329
330      // Value#0 is now defined by the 2-addr instruction.
331      OldValNo->def = RedefIndex;
332      OldValNo->reg = 0;
333
334      // Add the new live interval which replaces the range for the input copy.
335      LiveRange LR(DefIndex, RedefIndex, ValNo);
336      DOUT << " replace range with " << LR;
337      interval.addRange(LR);
338      interval.addKill(ValNo, RedefIndex);
339      interval.removeKills(ValNo, RedefIndex, OldEnd);
340
341      // If this redefinition is dead, we need to add a dummy unit live
342      // range covering the def slot.
343      if (lv_->RegisterDefIsDead(mi, interval.reg))
344        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
345
346      DOUT << " RESULT: ";
347      interval.print(DOUT, mri_);
348
349    } else {
350      // Otherwise, this must be because of phi elimination.  If this is the
351      // first redefinition of the vreg that we have seen, go back and change
352      // the live range in the PHI block to be a different value number.
353      if (interval.containsOneValue()) {
354        assert(vi.Kills.size() == 1 &&
355               "PHI elimination vreg should have one kill, the PHI itself!");
356
357        // Remove the old range that we now know has an incorrect number.
358        VNInfo *VNI = interval.getValNumInfo(0);
359        MachineInstr *Killer = vi.Kills[0];
360        unsigned Start = getMBBStartIdx(Killer->getParent());
361        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
362        DOUT << " Removing [" << Start << "," << End << "] from: ";
363        interval.print(DOUT, mri_); DOUT << "\n";
364        interval.removeRange(Start, End);
365        interval.addKill(VNI, Start);
366        VNI->hasPHIKill = true;
367        DOUT << " RESULT: "; interval.print(DOUT, mri_);
368
369        // Replace the interval with one of a NEW value number.  Note that this
370        // value number isn't actually defined by an instruction, weird huh? :)
371        LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
372        DOUT << " replace range with " << LR;
373        interval.addRange(LR);
374        interval.addKill(LR.valno, End);
375        DOUT << " RESULT: "; interval.print(DOUT, mri_);
376      }
377
378      // In the case of PHI elimination, each variable definition is only
379      // live until the end of the block.  We've already taken care of the
380      // rest of the live range.
381      unsigned defIndex = getDefIndex(MIIdx);
382
383      VNInfo *ValNo;
384      unsigned SrcReg, DstReg;
385      if (tii_->isMoveInstr(*mi, SrcReg, DstReg))
386        ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
387      else if (mi->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
388        ValNo = interval.getNextValue(defIndex, mi->getOperand(1).getReg(),
389                                      VNInfoAllocator);
390      else
391        ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
392
393      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
394      LiveRange LR(defIndex, killIndex, ValNo);
395      interval.addRange(LR);
396      interval.addKill(ValNo, killIndex);
397      ValNo->hasPHIKill = true;
398      DOUT << " +" << LR;
399    }
400  }
401
402  DOUT << '\n';
403}
404
405void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
406                                              MachineBasicBlock::iterator mi,
407                                              unsigned MIIdx,
408                                              LiveInterval &interval,
409                                              unsigned SrcReg) {
410  // A physical register cannot be live across basic block, so its
411  // lifetime must end somewhere in its defining basic block.
412  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
413
414  unsigned baseIndex = MIIdx;
415  unsigned start = getDefIndex(baseIndex);
416  unsigned end = start;
417
418  // If it is not used after definition, it is considered dead at
419  // the instruction defining it. Hence its interval is:
420  // [defSlot(def), defSlot(def)+1)
421  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
422    DOUT << " dead";
423    end = getDefIndex(start) + 1;
424    goto exit;
425  }
426
427  // If it is not dead on definition, it must be killed by a
428  // subsequent instruction. Hence its interval is:
429  // [defSlot(def), useSlot(kill)+1)
430  while (++mi != MBB->end()) {
431    baseIndex += InstrSlots::NUM;
432    if (lv_->KillsRegister(mi, interval.reg)) {
433      DOUT << " killed";
434      end = getUseIndex(baseIndex) + 1;
435      goto exit;
436    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
437      // Another instruction redefines the register before it is ever read.
438      // Then the register is essentially dead at the instruction that defines
439      // it. Hence its interval is:
440      // [defSlot(def), defSlot(def)+1)
441      DOUT << " dead";
442      end = getDefIndex(start) + 1;
443      goto exit;
444    }
445  }
446
447  // The only case we should have a dead physreg here without a killing or
448  // instruction where we know it's dead is if it is live-in to the function
449  // and never used.
450  assert(!SrcReg && "physreg was not killed in defining block!");
451  end = getDefIndex(start) + 1;  // It's dead.
452
453exit:
454  assert(start < end && "did not find end of interval?");
455
456  // Already exists? Extend old live interval.
457  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
458  VNInfo *ValNo = (OldLR != interval.end())
459    ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
460  LiveRange LR(start, end, ValNo);
461  interval.addRange(LR);
462  interval.addKill(LR.valno, end);
463  DOUT << " +" << LR << '\n';
464}
465
466void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
467                                      MachineBasicBlock::iterator MI,
468                                      unsigned MIIdx,
469                                      unsigned reg) {
470  if (MRegisterInfo::isVirtualRegister(reg))
471    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
472  else if (allocatableRegs_[reg]) {
473    unsigned SrcReg, DstReg;
474    if (MI->getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)
475      SrcReg = MI->getOperand(1).getReg();
476    else if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
477      SrcReg = 0;
478    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
479    // Def of a register also defines its sub-registers.
480    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
481      // Avoid processing some defs more than once.
482      if (!MI->findRegisterDefOperand(*AS))
483        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
484  }
485}
486
487void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
488                                         unsigned MIIdx,
489                                         LiveInterval &interval, bool isAlias) {
490  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
491
492  // Look for kills, if it reaches a def before it's killed, then it shouldn't
493  // be considered a livein.
494  MachineBasicBlock::iterator mi = MBB->begin();
495  unsigned baseIndex = MIIdx;
496  unsigned start = baseIndex;
497  unsigned end = start;
498  while (mi != MBB->end()) {
499    if (lv_->KillsRegister(mi, interval.reg)) {
500      DOUT << " killed";
501      end = getUseIndex(baseIndex) + 1;
502      goto exit;
503    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
504      // Another instruction redefines the register before it is ever read.
505      // Then the register is essentially dead at the instruction that defines
506      // it. Hence its interval is:
507      // [defSlot(def), defSlot(def)+1)
508      DOUT << " dead";
509      end = getDefIndex(start) + 1;
510      goto exit;
511    }
512
513    baseIndex += InstrSlots::NUM;
514    ++mi;
515  }
516
517exit:
518  // Live-in register might not be used at all.
519  if (end == MIIdx) {
520    if (isAlias) {
521      DOUT << " dead";
522      end = getDefIndex(MIIdx) + 1;
523    } else {
524      DOUT << " live through";
525      end = baseIndex;
526    }
527  }
528
529  LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
530  interval.addRange(LR);
531  interval.addKill(LR.valno, end);
532  DOUT << " +" << LR << '\n';
533}
534
535/// computeIntervals - computes the live intervals for virtual
536/// registers. for some ordering of the machine instructions [1,N] a
537/// live interval is an interval [i, j) where 1 <= i <= j < N for
538/// which a variable is live
539void LiveIntervals::computeIntervals() {
540  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
541       << "********** Function: "
542       << ((Value*)mf_->getFunction())->getName() << '\n';
543  // Track the index of the current machine instr.
544  unsigned MIIndex = 0;
545  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
546       MBBI != E; ++MBBI) {
547    MachineBasicBlock *MBB = MBBI;
548    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
549
550    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
551
552    // Create intervals for live-ins to this BB first.
553    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
554           LE = MBB->livein_end(); LI != LE; ++LI) {
555      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
556      // Multiple live-ins can alias the same register.
557      for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
558        if (!hasInterval(*AS))
559          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
560                               true);
561    }
562
563    for (; MI != miEnd; ++MI) {
564      DOUT << MIIndex << "\t" << *MI;
565
566      // Handle defs.
567      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
568        MachineOperand &MO = MI->getOperand(i);
569        // handle register defs - build intervals
570        if (MO.isRegister() && MO.getReg() && MO.isDef())
571          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
572      }
573
574      MIIndex += InstrSlots::NUM;
575    }
576  }
577}
578
579bool LiveIntervals::findLiveInMBBs(const LiveRange &LR,
580                              SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
581  std::vector<IdxMBBPair>::const_iterator I =
582    std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), LR.start);
583
584  bool ResVal = false;
585  while (I != Idx2MBBMap.end()) {
586    if (LR.end <= I->first)
587      break;
588    MBBs.push_back(I->second);
589    ResVal = true;
590    ++I;
591  }
592  return ResVal;
593}
594
595
596LiveInterval LiveIntervals::createInterval(unsigned reg) {
597  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
598                       HUGE_VALF : 0.0F;
599  return LiveInterval(reg, Weight);
600}
601
602
603//===----------------------------------------------------------------------===//
604// Register allocator hooks.
605//
606
607/// isReMaterializable - Returns true if the definition MI of the specified
608/// val# of the specified interval is re-materializable.
609bool LiveIntervals::isReMaterializable(const LiveInterval &li,
610                                       const VNInfo *ValNo, MachineInstr *MI) {
611  if (DisableReMat)
612    return false;
613
614  if (tii_->isTriviallyReMaterializable(MI))
615    return true;
616
617  int FrameIdx = 0;
618  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
619      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
620    return false;
621
622  // This is a load from fixed stack slot. It can be rematerialized unless it's
623  // re-defined by a two-address instruction.
624  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
625       i != e; ++i) {
626    const VNInfo *VNI = *i;
627    if (VNI == ValNo)
628      continue;
629    unsigned DefIdx = VNI->def;
630    if (DefIdx == ~1U)
631      continue; // Dead val#.
632    MachineInstr *DefMI = (DefIdx == ~0u)
633      ? NULL : getInstructionFromIndex(DefIdx);
634    if (DefMI && DefMI->isRegReDefinedByTwoAddr(li.reg))
635      return false;
636  }
637  return true;
638}
639
640/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
641/// slot / to reg or any rematerialized load into ith operand of specified
642/// MI. If it is successul, MI is updated with the newly created MI and
643/// returns true.
644bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI,
645                                         VirtRegMap &vrm, MachineInstr *DefMI,
646                                         unsigned InstrIdx,
647                                         SmallVector<unsigned, 2> &Ops,
648                                         bool isSS, int Slot, unsigned Reg) {
649  unsigned MRInfo = 0;
650  const TargetInstrDescriptor *TID = MI->getInstrDescriptor();
651  SmallVector<unsigned, 2> FoldOps;
652  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
653    unsigned OpIdx = Ops[i];
654    // FIXME: fold subreg use.
655    if (MI->getOperand(OpIdx).getSubReg())
656      return false;
657    if (MI->getOperand(OpIdx).isDef())
658      MRInfo |= (unsigned)VirtRegMap::isMod;
659    else {
660      // Filter out two-address use operand(s).
661      if (TID->getOperandConstraint(OpIdx, TOI::TIED_TO) != -1) {
662        MRInfo = VirtRegMap::isModRef;
663        continue;
664      }
665      MRInfo |= (unsigned)VirtRegMap::isRef;
666    }
667    FoldOps.push_back(OpIdx);
668  }
669
670  MachineInstr *fmi = isSS ? mri_->foldMemoryOperand(MI, FoldOps, Slot)
671                           : mri_->foldMemoryOperand(MI, FoldOps, DefMI);
672  if (fmi) {
673    // Attempt to fold the memory reference into the instruction. If
674    // we can do this, we don't need to insert spill code.
675    if (lv_)
676      lv_->instructionChanged(MI, fmi);
677    else
678      LiveVariables::transferKillDeadInfo(MI, fmi, mri_);
679    MachineBasicBlock &MBB = *MI->getParent();
680    if (isSS && !mf_->getFrameInfo()->isFixedObjectIndex(Slot))
681      vrm.virtFolded(Reg, MI, fmi, (VirtRegMap::ModRef)MRInfo);
682    vrm.transferSpillPts(MI, fmi);
683    vrm.transferRestorePts(MI, fmi);
684    mi2iMap_.erase(MI);
685    i2miMap_[InstrIdx /InstrSlots::NUM] = fmi;
686    mi2iMap_[fmi] = InstrIdx;
687    MI = MBB.insert(MBB.erase(MI), fmi);
688    ++numFolds;
689    return true;
690  }
691  return false;
692}
693
694bool LiveIntervals::intervalIsInOneMBB(const LiveInterval &li) const {
695  SmallPtrSet<MachineBasicBlock*, 4> MBBs;
696  for (LiveInterval::Ranges::const_iterator
697         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
698    std::vector<IdxMBBPair>::const_iterator II =
699      std::lower_bound(Idx2MBBMap.begin(), Idx2MBBMap.end(), I->start);
700    if (II == Idx2MBBMap.end())
701      continue;
702    if (I->end > II->first)  // crossing a MBB.
703      return false;
704    MBBs.insert(II->second);
705    if (MBBs.size() > 1)
706      return false;
707  }
708  return true;
709}
710
711/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper functions
712/// for addIntervalsForSpills to rewrite uses / defs for the given live range.
713void LiveIntervals::
714rewriteInstructionForSpills(const LiveInterval &li, bool TrySplit,
715                 unsigned id, unsigned index, unsigned end,  MachineInstr *MI,
716                 MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
717                 unsigned Slot, int LdSlot,
718                 bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
719                 VirtRegMap &vrm, SSARegMap *RegMap,
720                 const TargetRegisterClass* rc,
721                 SmallVector<int, 4> &ReMatIds,
722                 unsigned &NewVReg, bool &HasDef, bool &HasUse,
723                 const LoopInfo *loopInfo,
724                 std::map<unsigned,unsigned> &MBBVRegsMap,
725                 std::vector<LiveInterval*> &NewLIs) {
726 RestartInstruction:
727  for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
728    MachineOperand& mop = MI->getOperand(i);
729    if (!mop.isRegister())
730      continue;
731    unsigned Reg = mop.getReg();
732    unsigned RegI = Reg;
733    if (Reg == 0 || MRegisterInfo::isPhysicalRegister(Reg))
734      continue;
735    if (Reg != li.reg)
736      continue;
737
738    bool TryFold = !DefIsReMat;
739    bool FoldSS = true; // Default behavior unless it's a remat.
740    int FoldSlot = Slot;
741    if (DefIsReMat) {
742      // If this is the rematerializable definition MI itself and
743      // all of its uses are rematerialized, simply delete it.
744      if (MI == ReMatOrigDefMI && CanDelete) {
745        DOUT << "\t\t\t\tErasing re-materlizable def: ";
746        DOUT << MI << '\n';
747        RemoveMachineInstrFromMaps(MI);
748        vrm.RemoveMachineInstrFromMaps(MI);
749        MI->eraseFromParent();
750        break;
751      }
752
753      // If def for this use can't be rematerialized, then try folding.
754      // If def is rematerializable and it's a load, also try folding.
755      TryFold = !ReMatDefMI || (ReMatDefMI && (MI == ReMatOrigDefMI || isLoad));
756      if (isLoad) {
757        // Try fold loads (from stack slot, constant pool, etc.) into uses.
758        FoldSS = isLoadSS;
759        FoldSlot = LdSlot;
760      }
761    }
762
763    // Do not fold load / store here if we are splitting. We'll find an
764    // optimal point to insert a load / store later.
765    if (TryFold)
766      TryFold = !TrySplit && NewVReg == 0;
767
768    // Scan all of the operands of this instruction rewriting operands
769    // to use NewVReg instead of li.reg as appropriate.  We do this for
770    // two reasons:
771    //
772    //   1. If the instr reads the same spilled vreg multiple times, we
773    //      want to reuse the NewVReg.
774    //   2. If the instr is a two-addr instruction, we are required to
775    //      keep the src/dst regs pinned.
776    //
777    // Keep track of whether we replace a use and/or def so that we can
778    // create the spill interval with the appropriate range.
779
780    HasUse = mop.isUse();
781    HasDef = mop.isDef();
782    SmallVector<unsigned, 2> Ops;
783    Ops.push_back(i);
784    for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
785      const MachineOperand &MOj = MI->getOperand(j);
786      if (!MOj.isRegister())
787        continue;
788      unsigned RegJ = MOj.getReg();
789      if (RegJ == 0 || MRegisterInfo::isPhysicalRegister(RegJ))
790        continue;
791      if (RegJ == RegI) {
792        Ops.push_back(j);
793        HasUse |= MOj.isUse();
794        HasDef |= MOj.isDef();
795      }
796    }
797
798    if (TryFold &&
799        tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
800                             Ops, FoldSS, FoldSlot, Reg)) {
801      // Folding the load/store can completely change the instruction in
802      // unpredictable ways, rescan it from the beginning.
803      HasUse = false;
804      HasDef = false;
805      goto RestartInstruction;
806    }
807
808    // Create a new virtual register for the spill interval.
809    bool CreatedNewVReg = false;
810    if (NewVReg == 0) {
811      NewVReg = RegMap->createVirtualRegister(rc);
812      vrm.grow();
813      CreatedNewVReg = true;
814    }
815    mop.setReg(NewVReg);
816
817    // Reuse NewVReg for other reads.
818    for (unsigned j = 0, e = Ops.size(); j != e; ++j)
819      MI->getOperand(Ops[j]).setReg(NewVReg);
820
821    if (CreatedNewVReg) {
822      if (DefIsReMat) {
823        vrm.setVirtIsReMaterialized(NewVReg, ReMatDefMI/*, CanDelete*/);
824        if (ReMatIds[id] == VirtRegMap::MAX_STACK_SLOT) {
825          // Each valnum may have its own remat id.
826          ReMatIds[id] = vrm.assignVirtReMatId(NewVReg);
827        } else {
828          vrm.assignVirtReMatId(NewVReg, ReMatIds[id]);
829        }
830        if (!CanDelete || (HasUse && HasDef)) {
831          // If this is a two-addr instruction then its use operands are
832          // rematerializable but its def is not. It should be assigned a
833          // stack slot.
834          vrm.assignVirt2StackSlot(NewVReg, Slot);
835        }
836      } else {
837        vrm.assignVirt2StackSlot(NewVReg, Slot);
838      }
839    } else if (HasUse && HasDef &&
840               vrm.getStackSlot(NewVReg) == VirtRegMap::NO_STACK_SLOT) {
841      // If this interval hasn't been assigned a stack slot (because earlier
842      // def is a deleted remat def), do it now.
843      assert(Slot != VirtRegMap::NO_STACK_SLOT);
844      vrm.assignVirt2StackSlot(NewVReg, Slot);
845    }
846
847    // create a new register interval for this spill / remat.
848    LiveInterval &nI = getOrCreateInterval(NewVReg);
849    if (CreatedNewVReg) {
850      NewLIs.push_back(&nI);
851      MBBVRegsMap.insert(std::make_pair(MI->getParent()->getNumber(), NewVReg));
852      if (TrySplit)
853        vrm.setIsSplitFromReg(NewVReg, li.reg);
854    }
855
856    if (HasUse) {
857      if (CreatedNewVReg) {
858        LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
859                     nI.getNextValue(~0U, 0, VNInfoAllocator));
860        DOUT << " +" << LR;
861        nI.addRange(LR);
862      } else {
863        // Extend the split live interval to this def / use.
864        unsigned End = getUseIndex(index)+1;
865        LiveRange LR(nI.ranges[nI.ranges.size()-1].end, End,
866                     nI.getValNumInfo(nI.getNumValNums()-1));
867        DOUT << " +" << LR;
868        nI.addRange(LR);
869      }
870    }
871    if (HasDef) {
872      LiveRange LR(getDefIndex(index), getStoreIndex(index),
873                   nI.getNextValue(~0U, 0, VNInfoAllocator));
874      DOUT << " +" << LR;
875      nI.addRange(LR);
876    }
877
878    DOUT << "\t\t\t\tAdded new interval: ";
879    nI.print(DOUT, mri_);
880    DOUT << '\n';
881  }
882}
883
884bool LiveIntervals::anyKillInMBBAfterIdx(const LiveInterval &li,
885                                   const VNInfo *VNI,
886                                   MachineBasicBlock *MBB, unsigned Idx) const {
887  unsigned End = getMBBEndIdx(MBB);
888  for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
889    unsigned KillIdx = VNI->kills[j];
890    if (KillIdx > Idx && KillIdx < End)
891      return true;
892  }
893  return false;
894}
895
896static const VNInfo *findDefinedVNInfo(const LiveInterval &li, unsigned DefIdx) {
897  const VNInfo *VNI = NULL;
898  for (LiveInterval::const_vni_iterator i = li.vni_begin(),
899         e = li.vni_end(); i != e; ++i)
900    if ((*i)->def == DefIdx) {
901      VNI = *i;
902      break;
903    }
904  return VNI;
905}
906
907void LiveIntervals::
908rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
909                    LiveInterval::Ranges::const_iterator &I,
910                    MachineInstr *ReMatOrigDefMI, MachineInstr *ReMatDefMI,
911                    unsigned Slot, int LdSlot,
912                    bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
913                    VirtRegMap &vrm, SSARegMap *RegMap,
914                    const TargetRegisterClass* rc,
915                    SmallVector<int, 4> &ReMatIds,
916                    const LoopInfo *loopInfo,
917                    BitVector &SpillMBBs,
918                    std::map<unsigned, std::vector<SRInfo> > &SpillIdxes,
919                    BitVector &RestoreMBBs,
920                    std::map<unsigned, std::vector<SRInfo> > &RestoreIdxes,
921                    std::map<unsigned,unsigned> &MBBVRegsMap,
922                    std::vector<LiveInterval*> &NewLIs) {
923  unsigned NewVReg = 0;
924  unsigned index = getBaseIndex(I->start);
925  unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
926  for (; index != end; index += InstrSlots::NUM) {
927    // skip deleted instructions
928    while (index != end && !getInstructionFromIndex(index))
929      index += InstrSlots::NUM;
930    if (index == end) break;
931
932    MachineInstr *MI = getInstructionFromIndex(index);
933    MachineBasicBlock *MBB = MI->getParent();
934    NewVReg = 0;
935    if (TrySplit) {
936      std::map<unsigned,unsigned>::const_iterator NVI =
937        MBBVRegsMap.find(MBB->getNumber());
938      if (NVI != MBBVRegsMap.end()) {
939        NewVReg = NVI->second;
940        // One common case:
941        // x = use
942        // ...
943        // ...
944        // def = ...
945        //     = use
946        // It's better to start a new interval to avoid artifically
947        // extend the new interval.
948        // FIXME: Too slow? Can we fix it after rewriteInstructionsForSpills?
949        bool MIHasUse = false;
950        bool MIHasDef = false;
951        for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
952          MachineOperand& mop = MI->getOperand(i);
953          if (!mop.isRegister() || mop.getReg() != li.reg)
954            continue;
955          if (mop.isUse())
956            MIHasUse = true;
957          else
958            MIHasDef = true;
959        }
960        if (MIHasDef && !MIHasUse) {
961          MBBVRegsMap.erase(MBB->getNumber());
962          NewVReg = 0;
963        }
964      }
965    }
966    bool IsNew = NewVReg == 0;
967    bool HasDef = false;
968    bool HasUse = false;
969    rewriteInstructionForSpills(li, TrySplit, I->valno->id, index, end,
970                                MI, ReMatOrigDefMI, ReMatDefMI, Slot, LdSlot,
971                                isLoad, isLoadSS, DefIsReMat, CanDelete, vrm,
972                                RegMap, rc, ReMatIds, NewVReg, HasDef, HasUse,
973                                loopInfo, MBBVRegsMap, NewLIs);
974    if (!HasDef && !HasUse)
975      continue;
976
977    // Update weight of spill interval.
978    LiveInterval &nI = getOrCreateInterval(NewVReg);
979    if (!TrySplit) {
980      // The spill weight is now infinity as it cannot be spilled again.
981      nI.weight = HUGE_VALF;
982      continue;
983    }
984
985    // Keep track of the last def and first use in each MBB.
986    unsigned MBBId = MBB->getNumber();
987    if (HasDef) {
988      if (MI != ReMatOrigDefMI || !CanDelete) {
989        bool HasKill = false;
990        if (!HasUse)
991          HasKill = anyKillInMBBAfterIdx(li, I->valno, MBB, getDefIndex(index));
992        else {
993          // If this is a two-address code, then this index starts a new VNInfo.
994          const VNInfo *VNI = findDefinedVNInfo(li, getDefIndex(index));
995          if (VNI)
996            HasKill = anyKillInMBBAfterIdx(li, VNI, MBB, getDefIndex(index));
997        }
998        std::map<unsigned, std::vector<SRInfo> >::iterator SII =
999          SpillIdxes.find(MBBId);
1000        if (!HasKill) {
1001          if (SII == SpillIdxes.end()) {
1002            std::vector<SRInfo> S;
1003            S.push_back(SRInfo(index, NewVReg, true));
1004            SpillIdxes.insert(std::make_pair(MBBId, S));
1005          } else if (SII->second.back().vreg != NewVReg) {
1006            SII->second.push_back(SRInfo(index, NewVReg, true));
1007          } else if ((int)index > SII->second.back().index) {
1008            // If there is an earlier def and this is a two-address
1009            // instruction, then it's not possible to fold the store (which
1010            // would also fold the load).
1011            SRInfo &Info = SII->second.back();
1012            Info.index = index;
1013            Info.canFold = !HasUse;
1014          }
1015          SpillMBBs.set(MBBId);
1016        } else if (SII != SpillIdxes.end() &&
1017                   SII->second.back().vreg == NewVReg &&
1018                   (int)index > SII->second.back().index) {
1019          // There is an earlier def that's not killed (must be two-address).
1020          // The spill is no longer needed.
1021          SII->second.pop_back();
1022          if (SII->second.empty()) {
1023            SpillIdxes.erase(MBBId);
1024            SpillMBBs.reset(MBBId);
1025          }
1026        }
1027      }
1028    }
1029
1030    if (HasUse) {
1031      std::map<unsigned, std::vector<SRInfo> >::iterator SII =
1032        SpillIdxes.find(MBBId);
1033      if (SII != SpillIdxes.end() &&
1034          SII->second.back().vreg == NewVReg &&
1035          (int)index > SII->second.back().index)
1036        // Use(s) following the last def, it's not safe to fold the spill.
1037        SII->second.back().canFold = false;
1038      std::map<unsigned, std::vector<SRInfo> >::iterator RII =
1039        RestoreIdxes.find(MBBId);
1040      if (RII != RestoreIdxes.end() && RII->second.back().vreg == NewVReg)
1041        // If we are splitting live intervals, only fold if it's the first
1042        // use and there isn't another use later in the MBB.
1043        RII->second.back().canFold = false;
1044      else if (IsNew) {
1045        // Only need a reload if there isn't an earlier def / use.
1046        if (RII == RestoreIdxes.end()) {
1047          std::vector<SRInfo> Infos;
1048          Infos.push_back(SRInfo(index, NewVReg, true));
1049          RestoreIdxes.insert(std::make_pair(MBBId, Infos));
1050        } else {
1051          RII->second.push_back(SRInfo(index, NewVReg, true));
1052        }
1053        RestoreMBBs.set(MBBId);
1054      }
1055    }
1056
1057    // Update spill weight.
1058    unsigned loopDepth = loopInfo->getLoopDepth(MBB->getBasicBlock());
1059    nI.weight += getSpillWeight(HasDef, HasUse, loopDepth);
1060  }
1061}
1062
1063bool LiveIntervals::alsoFoldARestore(int Id, int index, unsigned vr,
1064                        BitVector &RestoreMBBs,
1065                        std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
1066  if (!RestoreMBBs[Id])
1067    return false;
1068  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
1069  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
1070    if (Restores[i].index == index &&
1071        Restores[i].vreg == vr &&
1072        Restores[i].canFold)
1073      return true;
1074  return false;
1075}
1076
1077void LiveIntervals::eraseRestoreInfo(int Id, int index, unsigned vr,
1078                        BitVector &RestoreMBBs,
1079                        std::map<unsigned,std::vector<SRInfo> > &RestoreIdxes) {
1080  if (!RestoreMBBs[Id])
1081    return;
1082  std::vector<SRInfo> &Restores = RestoreIdxes[Id];
1083  for (unsigned i = 0, e = Restores.size(); i != e; ++i)
1084    if (Restores[i].index == index && Restores[i].vreg)
1085      Restores[i].index = -1;
1086}
1087
1088
1089std::vector<LiveInterval*> LiveIntervals::
1090addIntervalsForSpills(const LiveInterval &li,
1091                      const LoopInfo *loopInfo, VirtRegMap &vrm) {
1092  // Since this is called after the analysis is done we don't know if
1093  // LiveVariables is available
1094  lv_ = getAnalysisToUpdate<LiveVariables>();
1095
1096  assert(li.weight != HUGE_VALF &&
1097         "attempt to spill already spilled interval!");
1098
1099  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
1100  li.print(DOUT, mri_);
1101  DOUT << '\n';
1102
1103  // Each bit specify whether it a spill is required in the MBB.
1104  BitVector SpillMBBs(mf_->getNumBlockIDs());
1105  std::map<unsigned, std::vector<SRInfo> > SpillIdxes;
1106  BitVector RestoreMBBs(mf_->getNumBlockIDs());
1107  std::map<unsigned, std::vector<SRInfo> > RestoreIdxes;
1108  std::map<unsigned,unsigned> MBBVRegsMap;
1109  std::vector<LiveInterval*> NewLIs;
1110  SSARegMap *RegMap = mf_->getSSARegMap();
1111  const TargetRegisterClass* rc = RegMap->getRegClass(li.reg);
1112
1113  unsigned NumValNums = li.getNumValNums();
1114  SmallVector<MachineInstr*, 4> ReMatDefs;
1115  ReMatDefs.resize(NumValNums, NULL);
1116  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
1117  ReMatOrigDefs.resize(NumValNums, NULL);
1118  SmallVector<int, 4> ReMatIds;
1119  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
1120  BitVector ReMatDelete(NumValNums);
1121  unsigned Slot = VirtRegMap::MAX_STACK_SLOT;
1122
1123  // Spilling a split live interval. It cannot be split any further. Also,
1124  // it's also guaranteed to be a single val# / range interval.
1125  if (vrm.getPreSplitReg(li.reg)) {
1126    vrm.setIsSplitFromReg(li.reg, 0);
1127    bool DefIsReMat = vrm.isReMaterialized(li.reg);
1128    Slot = vrm.getStackSlot(li.reg);
1129    assert(Slot != VirtRegMap::MAX_STACK_SLOT);
1130    MachineInstr *ReMatDefMI = DefIsReMat ?
1131      vrm.getReMaterializedMI(li.reg) : NULL;
1132    int LdSlot = 0;
1133    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1134    bool isLoad = isLoadSS ||
1135      (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
1136    bool IsFirstRange = true;
1137    for (LiveInterval::Ranges::const_iterator
1138           I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
1139      // If this is a split live interval with multiple ranges, it means there
1140      // are two-address instructions that re-defined the value. Only the
1141      // first def can be rematerialized!
1142      if (IsFirstRange) {
1143        // Note ReMatOrigDefMI has already been deleted.
1144        rewriteInstructionsForSpills(li, false, I, NULL, ReMatDefMI,
1145                             Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
1146                             false, vrm, RegMap, rc, ReMatIds, loopInfo,
1147                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1148                             MBBVRegsMap, NewLIs);
1149      } else {
1150        rewriteInstructionsForSpills(li, false, I, NULL, 0,
1151                             Slot, 0, false, false, false,
1152                             false, vrm, RegMap, rc, ReMatIds, loopInfo,
1153                             SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1154                             MBBVRegsMap, NewLIs);
1155      }
1156      IsFirstRange = false;
1157    }
1158    return NewLIs;
1159  }
1160
1161  bool TrySplit = SplitAtBB && !intervalIsInOneMBB(li);
1162  if (SplitLimit != -1 && (int)numSplits >= SplitLimit)
1163    TrySplit = false;
1164  if (TrySplit)
1165    ++numSplits;
1166  bool NeedStackSlot = false;
1167  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
1168       i != e; ++i) {
1169    const VNInfo *VNI = *i;
1170    unsigned VN = VNI->id;
1171    unsigned DefIdx = VNI->def;
1172    if (DefIdx == ~1U)
1173      continue; // Dead val#.
1174    // Is the def for the val# rematerializable?
1175    MachineInstr *ReMatDefMI = (DefIdx == ~0u)
1176      ? 0 : getInstructionFromIndex(DefIdx);
1177    if (ReMatDefMI && isReMaterializable(li, VNI, ReMatDefMI)) {
1178      // Remember how to remat the def of this val#.
1179      ReMatOrigDefs[VN] = ReMatDefMI;
1180      // Original def may be modified so we have to make a copy here. vrm must
1181      // delete these!
1182      ReMatDefs[VN] = ReMatDefMI = ReMatDefMI->clone();
1183      vrm.setVirtIsReMaterialized(li.reg, ReMatDefMI);
1184
1185      bool CanDelete = true;
1186      if (VNI->hasPHIKill) {
1187        // A kill is a phi node, not all of its uses can be rematerialized.
1188        // It must not be deleted.
1189        CanDelete = false;
1190        // Need a stack slot if there is any live range where uses cannot be
1191        // rematerialized.
1192        NeedStackSlot = true;
1193      }
1194      if (CanDelete)
1195        ReMatDelete.set(VN);
1196    } else {
1197      // Need a stack slot if there is any live range where uses cannot be
1198      // rematerialized.
1199      NeedStackSlot = true;
1200    }
1201  }
1202
1203  // One stack slot per live interval.
1204  if (NeedStackSlot && vrm.getPreSplitReg(li.reg) == 0)
1205    Slot = vrm.assignVirt2StackSlot(li.reg);
1206
1207  // Create new intervals and rewrite defs and uses.
1208  for (LiveInterval::Ranges::const_iterator
1209         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
1210    MachineInstr *ReMatDefMI = ReMatDefs[I->valno->id];
1211    MachineInstr *ReMatOrigDefMI = ReMatOrigDefs[I->valno->id];
1212    bool DefIsReMat = ReMatDefMI != NULL;
1213    bool CanDelete = ReMatDelete[I->valno->id];
1214    int LdSlot = 0;
1215    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1216    bool isLoad = isLoadSS ||
1217      (DefIsReMat && (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
1218    rewriteInstructionsForSpills(li, TrySplit, I, ReMatOrigDefMI, ReMatDefMI,
1219                               Slot, LdSlot, isLoad, isLoadSS, DefIsReMat,
1220                               CanDelete, vrm, RegMap, rc, ReMatIds, loopInfo,
1221                               SpillMBBs, SpillIdxes, RestoreMBBs, RestoreIdxes,
1222                               MBBVRegsMap, NewLIs);
1223  }
1224
1225  // Insert spills / restores if we are splitting.
1226  if (!TrySplit)
1227    return NewLIs;
1228
1229  SmallVector<unsigned, 2> Ops;
1230  if (NeedStackSlot) {
1231    int Id = SpillMBBs.find_first();
1232    while (Id != -1) {
1233      std::vector<SRInfo> &spills = SpillIdxes[Id];
1234      for (unsigned i = 0, e = spills.size(); i != e; ++i) {
1235        int index = spills[i].index;
1236        unsigned VReg = spills[i].vreg;
1237        bool isReMat = vrm.isReMaterialized(VReg);
1238        MachineInstr *MI = getInstructionFromIndex(index);
1239        bool CanFold = false;
1240        bool FoundUse = false;
1241        Ops.clear();
1242        if (spills[i].canFold) {
1243          CanFold = true;
1244          for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
1245            MachineOperand &MO = MI->getOperand(j);
1246            if (!MO.isRegister() || MO.getReg() != VReg)
1247              continue;
1248
1249            Ops.push_back(j);
1250            if (MO.isDef())
1251              continue;
1252            if (isReMat ||
1253                (!FoundUse && !alsoFoldARestore(Id, index, VReg,
1254                                                RestoreMBBs, RestoreIdxes))) {
1255              // MI has two-address uses of the same register. If the use
1256              // isn't the first and only use in the BB, then we can't fold
1257              // it. FIXME: Move this to rewriteInstructionsForSpills.
1258              CanFold = false;
1259              break;
1260            }
1261            FoundUse = true;
1262          }
1263        }
1264        // Fold the store into the def if possible.
1265        bool Folded = false;
1266        if (CanFold && !Ops.empty()) {
1267          if (tryFoldMemoryOperand(MI, vrm, NULL, index, Ops, true, Slot,VReg)){
1268            Folded = true;
1269            if (FoundUse > 0)
1270              // Also folded uses, do not issue a load.
1271              eraseRestoreInfo(Id, index, VReg, RestoreMBBs, RestoreIdxes);
1272          }
1273        }
1274
1275        // Else tell the spiller to issue a spill.
1276        if (!Folded)
1277          vrm.addSpillPoint(VReg, MI);
1278      }
1279      Id = SpillMBBs.find_next(Id);
1280    }
1281  }
1282
1283  int Id = RestoreMBBs.find_first();
1284  while (Id != -1) {
1285    std::vector<SRInfo> &restores = RestoreIdxes[Id];
1286    for (unsigned i = 0, e = restores.size(); i != e; ++i) {
1287      int index = restores[i].index;
1288      if (index == -1)
1289        continue;
1290      unsigned VReg = restores[i].vreg;
1291      MachineInstr *MI = getInstructionFromIndex(index);
1292      bool CanFold = false;
1293      Ops.clear();
1294      if (restores[i].canFold) {
1295        CanFold = true;
1296        for (unsigned j = 0, ee = MI->getNumOperands(); j != ee; ++j) {
1297          MachineOperand &MO = MI->getOperand(j);
1298          if (!MO.isRegister() || MO.getReg() != VReg)
1299            continue;
1300
1301          if (MO.isDef()) {
1302            // If this restore were to be folded, it would have been folded
1303            // already.
1304            CanFold = false;
1305            break;
1306          }
1307          Ops.push_back(j);
1308        }
1309      }
1310
1311      // Fold the load into the use if possible.
1312      bool Folded = false;
1313      if (CanFold && !Ops.empty()) {
1314        if (!vrm.isReMaterialized(VReg))
1315          Folded = tryFoldMemoryOperand(MI, vrm, NULL,index,Ops,true,Slot,VReg);
1316        else {
1317          MachineInstr *ReMatDefMI = vrm.getReMaterializedMI(VReg);
1318          int LdSlot = 0;
1319          bool isLoadSS = tii_->isLoadFromStackSlot(ReMatDefMI, LdSlot);
1320          // If the rematerializable def is a load, also try to fold it.
1321          if (isLoadSS ||
1322              (ReMatDefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG))
1323            Folded = tryFoldMemoryOperand(MI, vrm, ReMatDefMI, index,
1324                                          Ops, isLoadSS, LdSlot, VReg);
1325        }
1326      }
1327      // If folding is not possible / failed, then tell the spiller to issue a
1328      // load / rematerialization for us.
1329      if (!Folded)
1330        vrm.addRestorePoint(VReg, MI);
1331    }
1332    Id = RestoreMBBs.find_next(Id);
1333  }
1334
1335  // Finalize spill weights.
1336  for (unsigned i = 0, e = NewLIs.size(); i != e; ++i)
1337    NewLIs[i]->weight /= NewLIs[i]->getSize();
1338
1339  return NewLIs;
1340}
1341