LiveIntervalAnalysis.cpp revision 706515727c6d024015fffded2b3109a4f0ac5299
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "Support/CommandLine.h"
31#include "Support/Debug.h"
32#include "Support/Statistic.h"
33#include "Support/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36
37using namespace llvm;
38
39namespace {
40  RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Join compatible live intervals"),
60                cl::init(true));
61};
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
64{
65  AU.addPreserved<LiveVariables>();
66  AU.addRequired<LiveVariables>();
67  AU.addPreservedID(PHIEliminationID);
68  AU.addRequiredID(PHIEliminationID);
69  AU.addRequiredID(TwoAddressInstructionPassID);
70  AU.addRequired<LoopInfo>();
71  MachineFunctionPass::getAnalysisUsage(AU);
72}
73
74void LiveIntervals::releaseMemory()
75{
76  mi2iMap_.clear();
77  i2miMap_.clear();
78  r2iMap_.clear();
79  r2rMap_.clear();
80}
81
82
83/// runOnMachineFunction - Register allocate the whole function
84///
85bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
86  mf_ = &fn;
87  tm_ = &fn.getTarget();
88  mri_ = tm_->getRegisterInfo();
89  lv_ = &getAnalysis<LiveVariables>();
90
91  // number MachineInstrs
92  unsigned miIndex = 0;
93  for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
94       mbb != mbbEnd; ++mbb)
95    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
96         mi != miEnd; ++mi) {
97      bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
98      assert(inserted && "multiple MachineInstr -> index mappings");
99      i2miMap_.push_back(mi);
100      miIndex += InstrSlots::NUM;
101    }
102
103  computeIntervals();
104
105  numIntervals += getNumIntervals();
106
107#if 1
108  DEBUG(std::cerr << "********** INTERVALS **********\n");
109  DEBUG(for (iterator I = begin(), E = end(); I != E; ++I)
110        std::cerr << I->second << "\n");
111#endif
112
113  // join intervals if requested
114  if (EnableJoining) joinIntervals();
115
116  numIntervalsAfter += getNumIntervals();
117
118  // perform a final pass over the instructions and compute spill
119  // weights, coalesce virtual registers and remove identity moves
120  const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
121  const TargetInstrInfo& tii = *tm_->getInstrInfo();
122
123  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
124       mbbi != mbbe; ++mbbi) {
125    MachineBasicBlock* mbb = mbbi;
126    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
127
128    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
129         mii != mie; ) {
130      // if the move will be an identity move delete it
131      unsigned srcReg, dstReg, RegRep;
132      if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
133          (RegRep = rep(srcReg)) == rep(dstReg)) {
134        // remove from def list
135        LiveInterval &interval = getOrCreateInterval(RegRep);
136        // remove index -> MachineInstr and
137        // MachineInstr -> index mappings
138        Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
139        if (mi2i != mi2iMap_.end()) {
140          i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
141          mi2iMap_.erase(mi2i);
142        }
143        mii = mbbi->erase(mii);
144        ++numPeep;
145      }
146      else {
147        for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
148          const MachineOperand& mop = mii->getOperand(i);
149          if (mop.isRegister() && mop.getReg() &&
150              MRegisterInfo::isVirtualRegister(mop.getReg())) {
151            // replace register with representative register
152            unsigned reg = rep(mop.getReg());
153            mii->SetMachineOperandReg(i, reg);
154
155            LiveInterval &RegInt = getInterval(reg);
156            RegInt.weight +=
157              (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
158          }
159        }
160        ++mii;
161      }
162    }
163  }
164
165  DEBUG(std::cerr << "********** INTERVALS **********\n");
166  DEBUG (for (iterator I = begin(), E = end(); I != E; ++I)
167         std::cerr << I->second << "\n");
168  DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
169  DEBUG(
170    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
171         mbbi != mbbe; ++mbbi) {
172      std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
173      for (MachineBasicBlock::iterator mii = mbbi->begin(),
174             mie = mbbi->end(); mii != mie; ++mii) {
175        std::cerr << getInstructionIndex(mii) << '\t';
176        mii->print(std::cerr, tm_);
177      }
178    });
179
180  return true;
181}
182
183std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
184  const LiveInterval& li,
185  VirtRegMap& vrm,
186  int slot)
187{
188  std::vector<LiveInterval*> added;
189
190  assert(li.weight != HUGE_VAL &&
191         "attempt to spill already spilled interval!");
192
193  DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
194        << li << '\n');
195
196  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
197
198  for (LiveInterval::Ranges::const_iterator
199         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
200    unsigned index = getBaseIndex(i->start);
201    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
202    for (; index != end; index += InstrSlots::NUM) {
203      // skip deleted instructions
204      while (index != end && !getInstructionFromIndex(index))
205        index += InstrSlots::NUM;
206      if (index == end) break;
207
208      MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
209
210    for_operand:
211      for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
212        MachineOperand& mop = mi->getOperand(i);
213        if (mop.isRegister() && mop.getReg() == li.reg) {
214          if (MachineInstr* fmi =
215              mri_->foldMemoryOperand(mi, i, slot)) {
216            lv_->instructionChanged(mi, fmi);
217            vrm.virtFolded(li.reg, mi, fmi);
218            mi2iMap_.erase(mi);
219            i2miMap_[index/InstrSlots::NUM] = fmi;
220            mi2iMap_[fmi] = index;
221            MachineBasicBlock& mbb = *mi->getParent();
222            mi = mbb.insert(mbb.erase(mi), fmi);
223            ++numFolded;
224            goto for_operand;
225          }
226          else {
227            // This is tricky. We need to add information in
228            // the interval about the spill code so we have to
229            // use our extra load/store slots.
230            //
231            // If we have a use we are going to have a load so
232            // we start the interval from the load slot
233            // onwards. Otherwise we start from the def slot.
234            unsigned start = (mop.isUse() ?
235                              getLoadIndex(index) :
236                              getDefIndex(index));
237            // If we have a def we are going to have a store
238            // right after it so we end the interval after the
239            // use of the next instruction. Otherwise we end
240            // after the use of this instruction.
241            unsigned end = 1 + (mop.isDef() ?
242                                getStoreIndex(index) :
243                                getUseIndex(index));
244
245            // create a new register for this spill
246            unsigned nReg =
247              mf_->getSSARegMap()->createVirtualRegister(rc);
248            mi->SetMachineOperandReg(i, nReg);
249            vrm.grow();
250            vrm.assignVirt2StackSlot(nReg, slot);
251            LiveInterval& nI = getOrCreateInterval(nReg);
252            assert(nI.empty());
253            // the spill weight is now infinity as it
254            // cannot be spilled again
255            nI.weight = HUGE_VAL;
256            LiveRange LR(start, end, nI.getNextValue());
257            DEBUG(std::cerr << " +" << LR);
258            nI.addRange(LR);
259            added.push_back(&nI);
260            // update live variables
261            lv_->addVirtualRegisterKilled(nReg, mi);
262            DEBUG(std::cerr << "\t\t\t\tadded new interval: "
263                  << nI << '\n');
264          }
265        }
266      }
267    }
268  }
269
270  return added;
271}
272
273void LiveIntervals::printRegName(unsigned reg) const
274{
275  if (MRegisterInfo::isPhysicalRegister(reg))
276    std::cerr << mri_->getName(reg);
277  else
278    std::cerr << "%reg" << reg;
279}
280
281void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
282                                             MachineBasicBlock::iterator mi,
283                                             LiveInterval& interval)
284{
285  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
286  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
287
288  // Virtual registers may be defined multiple times (due to phi
289  // elimination and 2-addr elimination).  Much of what we do only has to be
290  // done once for the vreg.  We use an empty interval to detect the first
291  // time we see a vreg.
292  if (interval.empty()) {
293    // Get the Idx of the defining instructions.
294    unsigned defIndex = getDefIndex(getInstructionIndex(mi));
295
296    unsigned ValNum = interval.getNextValue();
297    assert(ValNum == 0 && "First value in interval is not 0?");
298    ValNum = 0;  // Clue in the optimizer.
299
300    // Loop over all of the blocks that the vreg is defined in.  There are
301    // two cases we have to handle here.  The most common case is a vreg
302    // whose lifetime is contained within a basic block.  In this case there
303    // will be a single kill, in MBB, which comes after the definition.
304    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
305      // FIXME: what about dead vars?
306      unsigned killIdx;
307      if (vi.Kills[0] != mi)
308        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
309      else
310        killIdx = defIndex+1;
311
312      // If the kill happens after the definition, we have an intra-block
313      // live range.
314      if (killIdx > defIndex) {
315        assert(vi.AliveBlocks.empty() &&
316               "Shouldn't be alive across any blocks!");
317        LiveRange LR(defIndex, killIdx, ValNum);
318        interval.addRange(LR);
319        DEBUG(std::cerr << " +" << LR << "\n");
320        return;
321      }
322    }
323
324    // The other case we handle is when a virtual register lives to the end
325    // of the defining block, potentially live across some blocks, then is
326    // live into some number of blocks, but gets killed.  Start by adding a
327    // range that goes from this definition to the end of the defining block.
328    LiveRange NewLR(defIndex, getInstructionIndex(&mbb->back()) +
329                    InstrSlots::NUM, ValNum);
330    DEBUG(std::cerr << " +" << NewLR);
331    interval.addRange(NewLR);
332
333    // Iterate over all of the blocks that the variable is completely
334    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
335    // live interval.
336    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
337      if (vi.AliveBlocks[i]) {
338        MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
339        if (!mbb->empty()) {
340          LiveRange LR(getInstructionIndex(&mbb->front()),
341                       getInstructionIndex(&mbb->back())+InstrSlots::NUM,
342                       ValNum);
343          interval.addRange(LR);
344          DEBUG(std::cerr << " +" << LR);
345        }
346      }
347    }
348
349    // Finally, this virtual register is live from the start of any killing
350    // block to the 'use' slot of the killing instruction.
351    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
352      MachineInstr *Kill = vi.Kills[i];
353      LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
354                   getUseIndex(getInstructionIndex(Kill))+1, ValNum);
355      interval.addRange(LR);
356      DEBUG(std::cerr << " +" << LR);
357    }
358
359  } else {
360    // If this is the second time we see a virtual register definition, it
361    // must be due to phi elimination or two addr elimination.  If this is
362    // the result of two address elimination, then the vreg is the first
363    // operand, and is a def-and-use.
364    if (mi->getOperand(0).isRegister() &&
365        mi->getOperand(0).getReg() == interval.reg &&
366        mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
367      // If this is a two-address definition, then we have already processed
368      // the live range.  The only problem is that we didn't realize there
369      // are actually two values in the live interval.  Because of this we
370      // need to take the LiveRegion that defines this register and split it
371      // into two values.
372      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
373      unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
374
375      // Delete the initial value, which should be short and continuous,
376      // becuase the 2-addr copy must be in the same MBB as the redef.
377      interval.removeRange(DefIndex, RedefIndex);
378
379      LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
380      DEBUG(std::cerr << " replace range with " << LR);
381      interval.addRange(LR);
382
383      // If this redefinition is dead, we need to add a dummy unit live
384      // range covering the def slot.
385      for (LiveVariables::killed_iterator KI = lv_->dead_begin(mi),
386             E = lv_->dead_end(mi); KI != E; ++KI)
387        if (KI->second == interval.reg) {
388          interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
389          break;
390        }
391
392      DEBUG(std::cerr << "RESULT: " << interval);
393
394    } else {
395      // Otherwise, this must be because of phi elimination.  If this is the
396      // first redefinition of the vreg that we have seen, go back and change
397      // the live range in the PHI block to be a different value number.
398      if (interval.containsOneValue()) {
399        assert(vi.Kills.size() == 1 &&
400               "PHI elimination vreg should have one kill, the PHI itself!");
401
402        // Remove the old range that we now know has an incorrect number.
403        MachineInstr *Killer = vi.Kills[0];
404        unsigned Start = getInstructionIndex(Killer->getParent()->begin());
405        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
406        DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
407              << interval << "\n");
408        interval.removeRange(Start, End);
409        DEBUG(std::cerr << "RESULT: " << interval);
410
411        // Replace the interval with one of a NEW value number.
412        LiveRange LR(Start, End, interval.getNextValue());
413        DEBUG(std::cerr << " replace range with " << LR);
414        interval.addRange(LR);
415        DEBUG(std::cerr << "RESULT: " << interval);
416      }
417
418      // In the case of PHI elimination, each variable definition is only
419      // live until the end of the block.  We've already taken care of the
420      // rest of the live range.
421      unsigned defIndex = getDefIndex(getInstructionIndex(mi));
422      LiveRange LR(defIndex,
423                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
424                   interval.getNextValue());
425      interval.addRange(LR);
426      DEBUG(std::cerr << " +" << LR);
427    }
428  }
429
430  DEBUG(std::cerr << '\n');
431}
432
433void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
434                                              MachineBasicBlock::iterator mi,
435                                              LiveInterval& interval)
436{
437  // A physical register cannot be live across basic block, so its
438  // lifetime must end somewhere in its defining basic block.
439  DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
440  typedef LiveVariables::killed_iterator KillIter;
441
442  unsigned baseIndex = getInstructionIndex(mi);
443  unsigned start = getDefIndex(baseIndex);
444  unsigned end = start;
445
446  // If it is not used after definition, it is considered dead at
447  // the instruction defining it. Hence its interval is:
448  // [defSlot(def), defSlot(def)+1)
449  for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
450       ki != ke; ++ki) {
451    if (interval.reg == ki->second) {
452      DEBUG(std::cerr << " dead");
453      end = getDefIndex(start) + 1;
454      goto exit;
455    }
456  }
457
458  // If it is not dead on definition, it must be killed by a
459  // subsequent instruction. Hence its interval is:
460  // [defSlot(def), useSlot(kill)+1)
461  while (true) {
462    ++mi;
463    assert(mi != MBB->end() && "physreg was not killed in defining block!");
464    baseIndex += InstrSlots::NUM;
465    for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
466         ki != ke; ++ki) {
467      if (interval.reg == ki->second) {
468        DEBUG(std::cerr << " killed");
469        end = getUseIndex(baseIndex) + 1;
470        goto exit;
471      }
472    }
473  }
474
475exit:
476  assert(start < end && "did not find end of interval?");
477  LiveRange LR(start, end, interval.getNextValue());
478  interval.addRange(LR);
479  DEBUG(std::cerr << " +" << LR << '\n');
480}
481
482void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
483                                      MachineBasicBlock::iterator MI,
484                                      unsigned reg) {
485  if (MRegisterInfo::isVirtualRegister(reg))
486    handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
487  else if (lv_->getAllocatablePhysicalRegisters()[reg]) {
488    handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg));
489    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
490      handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS));
491  }
492}
493
494/// computeIntervals - computes the live intervals for virtual
495/// registers. for some ordering of the machine instructions [1,N] a
496/// live interval is an interval [i, j) where 1 <= i <= j < N for
497/// which a variable is live
498void LiveIntervals::computeIntervals()
499{
500  DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
501  DEBUG(std::cerr << "********** Function: "
502        << ((Value*)mf_->getFunction())->getName() << '\n');
503
504  for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
505       I != E; ++I) {
506    MachineBasicBlock* mbb = I;
507    DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
508
509    for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
510         mi != miEnd; ++mi) {
511      const TargetInstrDescriptor& tid =
512        tm_->getInstrInfo()->get(mi->getOpcode());
513      DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
514            mi->print(std::cerr, tm_));
515
516      // handle implicit defs
517      for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
518        handleRegisterDef(mbb, mi, *id);
519
520      // handle explicit defs
521      for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
522        MachineOperand& mop = mi->getOperand(i);
523        // handle register defs - build intervals
524        if (mop.isRegister() && mop.getReg() && mop.isDef())
525          handleRegisterDef(mbb, mi, mop.getReg());
526      }
527    }
528  }
529}
530
531void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
532  DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
533  const TargetInstrInfo &TII = *tm_->getInstrInfo();
534
535  for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
536       mi != mie; ++mi) {
537    DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
538
539    // we only join virtual registers with allocatable
540    // physical registers since we do not have liveness information
541    // on not allocatable physical registers
542    unsigned regA, regB;
543    if (TII.isMoveInstr(*mi, regA, regB) &&
544        (MRegisterInfo::isVirtualRegister(regA) ||
545         lv_->getAllocatablePhysicalRegisters()[regA]) &&
546        (MRegisterInfo::isVirtualRegister(regB) ||
547         lv_->getAllocatablePhysicalRegisters()[regB])) {
548
549      // Get representative registers.
550      regA = rep(regA);
551      regB = rep(regB);
552
553      // If they are already joined we continue.
554      if (regA == regB)
555        continue;
556
557      // If they are both physical registers, we cannot join them.
558      if (MRegisterInfo::isPhysicalRegister(regA) &&
559          MRegisterInfo::isPhysicalRegister(regB))
560        continue;
561
562      // If they are not of the same register class, we cannot join them.
563      if (differingRegisterClasses(regA, regB))
564        continue;
565
566      LiveInterval &IntA = getInterval(regA);
567      LiveInterval &IntB = getInterval(regB);
568      assert(IntA.reg == regA && IntB.reg == regB &&
569             "Register mapping is horribly broken!");
570
571      DEBUG(std::cerr << "\t\tInspecting " << IntA << " and " << IntB << ": ");
572
573      // If two intervals contain a single value and are joined by a copy, it
574      // does not matter if the intervals overlap, they can always be joined.
575      bool TriviallyJoinable =
576        IntA.containsOneValue() && IntB.containsOneValue();
577
578      unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
579      if ((TriviallyJoinable || IntB.joinable(IntA, MIDefIdx)) &&
580          !overlapsAliases(&IntA, &IntB)) {
581        IntB.join(IntA, MIDefIdx);
582
583        if (!MRegisterInfo::isPhysicalRegister(regA)) {
584          r2iMap_.erase(regA);
585          r2rMap_[regA] = regB;
586        } else {
587          // Otherwise merge the data structures the other way so we don't lose
588          // the physreg information.
589          r2rMap_[regB] = regA;
590          IntB.reg = regA;
591          IntA.swap(IntB);
592          r2iMap_.erase(regB);
593        }
594        DEBUG(std::cerr << "Joined.  Result = " << IntB << "\n");
595        ++numJoins;
596      } else {
597        DEBUG(std::cerr << "Interference!\n");
598      }
599    }
600  }
601}
602
603namespace {
604  // DepthMBBCompare - Comparison predicate that sort first based on the loop
605  // depth of the basic block (the unsigned), and then on the MBB number.
606  struct DepthMBBCompare {
607    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
608    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
609      if (LHS.first > RHS.first) return true;   // Deeper loops first
610      return LHS.first == RHS.first &&
611        LHS.second->getNumber() < RHS.second->getNumber();
612    }
613  };
614}
615
616void LiveIntervals::joinIntervals() {
617  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
618
619  const LoopInfo &LI = getAnalysis<LoopInfo>();
620  if (LI.begin() == LI.end()) {
621    // If there are no loops in the function, join intervals in function order.
622    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
623         I != E; ++I)
624      joinIntervalsInMachineBB(I);
625  } else {
626    // Otherwise, join intervals in inner loops before other intervals.
627    // Unfortunately we can't just iterate over loop hierarchy here because
628    // there may be more MBB's than BB's.  Collect MBB's for sorting.
629    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
630    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
631         I != E; ++I)
632      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
633
634    // Sort by loop depth.
635    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
636
637    // Finally, join intervals in loop nest order.
638    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
639      joinIntervalsInMachineBB(MBBs[i].second);
640  }
641
642  DEBUG(std::cerr << "*** Register mapping ***\n");
643  DEBUG(for (std::map<unsigned, unsigned>::iterator I = r2rMap_.begin(),
644               E = r2rMap_.end(); I != E; ++I)
645        std::cerr << "  reg " << I->first << " -> reg " << I->second << "\n";);
646}
647
648/// Return true if the two specified registers belong to different register
649/// classes.  The registers may be either phys or virt regs.
650bool LiveIntervals::differingRegisterClasses(unsigned RegA,
651                                             unsigned RegB) const {
652  const TargetRegisterClass *RegClass;
653
654  // Get the register classes for the first reg.
655  if (MRegisterInfo::isVirtualRegister(RegA))
656    RegClass = mf_->getSSARegMap()->getRegClass(RegA);
657  else
658    RegClass = mri_->getRegClass(RegA);
659
660  // Compare against the regclass for the second reg.
661  if (MRegisterInfo::isVirtualRegister(RegB))
662    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
663  else
664    return RegClass != mri_->getRegClass(RegB);
665}
666
667bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
668                                    const LiveInterval *RHS) const {
669  if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
670    if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
671      return false;   // vreg-vreg merge has no aliases!
672    std::swap(LHS, RHS);
673  }
674
675  assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
676         MRegisterInfo::isVirtualRegister(RHS->reg) &&
677         "first interval must describe a physical register");
678
679  for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
680    if (RHS->overlaps(getInterval(*AS)))
681      return true;
682
683  return false;
684}
685
686LiveInterval LiveIntervals::createInterval(unsigned reg) {
687  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?  HUGE_VAL :0.0F;
688  return LiveInterval(reg, Weight);
689}
690