LiveIntervalAnalysis.cpp revision 710216275b93b332bc69f41a1d4553197b64edf8
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39STATISTIC(numIntervals, "Number of original intervals");
40STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
41STATISTIC(numJoins    , "Number of interval joins performed");
42STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
43STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
44STATISTIC(numAborts   , "Number of times interval joining aborted");
45
46namespace {
47  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
48
49  static cl::opt<bool>
50  EnableJoining("join-liveintervals",
51                cl::desc("Coallesce copies (default=true)"),
52                cl::init(true));
53}
54
55void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
56  AU.addRequired<LiveVariables>();
57  AU.addPreservedID(PHIEliminationID);
58  AU.addRequiredID(PHIEliminationID);
59  AU.addRequiredID(TwoAddressInstructionPassID);
60  AU.addRequired<LoopInfo>();
61  MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64void LiveIntervals::releaseMemory() {
65  mi2iMap_.clear();
66  i2miMap_.clear();
67  r2iMap_.clear();
68  r2rMap_.clear();
69  JoinedLIs.clear();
70}
71
72
73static bool isZeroLengthInterval(LiveInterval *li) {
74  for (LiveInterval::Ranges::const_iterator
75         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
76    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
77      return false;
78  return true;
79}
80
81
82/// runOnMachineFunction - Register allocate the whole function
83///
84bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
85  mf_ = &fn;
86  tm_ = &fn.getTarget();
87  mri_ = tm_->getRegisterInfo();
88  tii_ = tm_->getInstrInfo();
89  lv_ = &getAnalysis<LiveVariables>();
90  allocatableRegs_ = mri_->getAllocatableSet(fn);
91  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
92
93  // Number MachineInstrs and MachineBasicBlocks.
94  // Initialize MBB indexes to a sentinal.
95  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
96
97  unsigned MIIndex = 0;
98  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
99       MBB != E; ++MBB) {
100    // Set the MBB2IdxMap entry for this MBB.
101    MBB2IdxMap[MBB->getNumber()] = MIIndex;
102
103    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
104         I != E; ++I) {
105      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
106      assert(inserted && "multiple MachineInstr -> index mappings");
107      i2miMap_.push_back(I);
108      MIIndex += InstrSlots::NUM;
109    }
110  }
111
112  computeIntervals();
113
114  numIntervals += getNumIntervals();
115
116  DOUT << "********** INTERVALS **********\n";
117  for (iterator I = begin(), E = end(); I != E; ++I) {
118    I->second.print(DOUT, mri_);
119    DOUT << "\n";
120  }
121
122  // Join (coallesce) intervals if requested.
123  if (EnableJoining) joinIntervals();
124
125  numIntervalsAfter += getNumIntervals();
126
127
128  // perform a final pass over the instructions and compute spill
129  // weights, coalesce virtual registers and remove identity moves.
130  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
131
132  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
133       mbbi != mbbe; ++mbbi) {
134    MachineBasicBlock* mbb = mbbi;
135    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
136
137    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
138         mii != mie; ) {
139      // if the move will be an identity move delete it
140      unsigned srcReg, dstReg, RegRep;
141      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
142          (RegRep = rep(srcReg)) == rep(dstReg)) {
143        // remove from def list
144        LiveInterval &RegInt = getOrCreateInterval(RegRep);
145        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
146        // If def of this move instruction is dead, remove its live range from
147        // the dstination register's live interval.
148        if (MO->isDead()) {
149          unsigned MoveIdx = getDefIndex(getInstructionIndex(mii));
150          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
151          RegInt.removeRange(MLR->start, MoveIdx+1);
152          if (RegInt.empty())
153            removeInterval(RegRep);
154        }
155        RemoveMachineInstrFromMaps(mii);
156        mii = mbbi->erase(mii);
157        ++numPeep;
158      } else {
159        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
160          const MachineOperand &mop = mii->getOperand(i);
161          if (mop.isRegister() && mop.getReg() &&
162              MRegisterInfo::isVirtualRegister(mop.getReg())) {
163            // replace register with representative register
164            unsigned reg = rep(mop.getReg());
165            mii->getOperand(i).setReg(reg);
166
167            LiveInterval &RegInt = getInterval(reg);
168            float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
169            // If the definition instruction is re-materializable, its spill
170            // weight is half of what it would have been normally.
171            if (RegInt.remat)
172              w /= 2;
173            RegInt.weight += w;
174          }
175        }
176        ++mii;
177      }
178    }
179  }
180
181  for (iterator I = begin(), E = end(); I != E; ++I) {
182    LiveInterval &LI = I->second;
183    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
184      // If the live interval length is essentially zero, i.e. in every live
185      // range the use follows def immediately, it doesn't make sense to spill
186      // it and hope it will be easier to allocate for this li.
187      if (isZeroLengthInterval(&LI))
188        LI.weight = HUGE_VALF;
189
190      // Divide the weight of the interval by its size.  This encourages
191      // spilling of intervals that are large and have few uses, and
192      // discourages spilling of small intervals with many uses.
193      unsigned Size = 0;
194      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
195        Size += II->end - II->start;
196
197      LI.weight /= Size;
198    }
199  }
200
201  DEBUG(dump());
202  return true;
203}
204
205/// print - Implement the dump method.
206void LiveIntervals::print(std::ostream &O, const Module* ) const {
207  O << "********** INTERVALS **********\n";
208  for (const_iterator I = begin(), E = end(); I != E; ++I) {
209    I->second.print(DOUT, mri_);
210    DOUT << "\n";
211  }
212
213  O << "********** MACHINEINSTRS **********\n";
214  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
215       mbbi != mbbe; ++mbbi) {
216    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
217    for (MachineBasicBlock::iterator mii = mbbi->begin(),
218           mie = mbbi->end(); mii != mie; ++mii) {
219      O << getInstructionIndex(mii) << '\t' << *mii;
220    }
221  }
222}
223
224/// CreateNewLiveInterval - Create a new live interval with the given live
225/// ranges. The new live interval will have an infinite spill weight.
226LiveInterval&
227LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
228                                     const std::vector<LiveRange> &LRs) {
229  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
230
231  // Create a new virtual register for the spill interval.
232  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
233
234  // Replace the old virtual registers in the machine operands with the shiny
235  // new one.
236  for (std::vector<LiveRange>::const_iterator
237         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
238    unsigned Index = getBaseIndex(I->start);
239    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
240
241    for (; Index != End; Index += InstrSlots::NUM) {
242      // Skip deleted instructions
243      while (Index != End && !getInstructionFromIndex(Index))
244        Index += InstrSlots::NUM;
245
246      if (Index == End) break;
247
248      MachineInstr *MI = getInstructionFromIndex(Index);
249
250      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
251        MachineOperand &MOp = MI->getOperand(J);
252        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
253          MOp.setReg(NewVReg);
254      }
255    }
256  }
257
258  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
259
260  // The spill weight is now infinity as it cannot be spilled again
261  NewLI.weight = float(HUGE_VAL);
262
263  for (std::vector<LiveRange>::const_iterator
264         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
265    DOUT << "  Adding live range " << *I << " to new interval\n";
266    NewLI.addRange(*I);
267  }
268
269  DOUT << "Created new live interval " << NewLI << "\n";
270  return NewLI;
271}
272
273std::vector<LiveInterval*> LiveIntervals::
274addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
275  // since this is called after the analysis is done we don't know if
276  // LiveVariables is available
277  lv_ = getAnalysisToUpdate<LiveVariables>();
278
279  std::vector<LiveInterval*> added;
280
281  assert(li.weight != HUGE_VALF &&
282         "attempt to spill already spilled interval!");
283
284  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
285  li.print(DOUT, mri_);
286  DOUT << '\n';
287
288  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
289
290  for (LiveInterval::Ranges::const_iterator
291         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
292    unsigned index = getBaseIndex(i->start);
293    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
294    for (; index != end; index += InstrSlots::NUM) {
295      // skip deleted instructions
296      while (index != end && !getInstructionFromIndex(index))
297        index += InstrSlots::NUM;
298      if (index == end) break;
299
300      MachineInstr *MI = getInstructionFromIndex(index);
301
302    RestartInstruction:
303      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
304        MachineOperand& mop = MI->getOperand(i);
305        if (mop.isRegister() && mop.getReg() == li.reg) {
306          MachineInstr *fmi = li.remat ? NULL
307            : mri_->foldMemoryOperand(MI, i, slot);
308          if (fmi) {
309            // Attempt to fold the memory reference into the instruction.  If we
310            // can do this, we don't need to insert spill code.
311            if (lv_)
312              lv_->instructionChanged(MI, fmi);
313            MachineBasicBlock &MBB = *MI->getParent();
314            vrm.virtFolded(li.reg, MI, i, fmi);
315            mi2iMap_.erase(MI);
316            i2miMap_[index/InstrSlots::NUM] = fmi;
317            mi2iMap_[fmi] = index;
318            MI = MBB.insert(MBB.erase(MI), fmi);
319            ++numFolded;
320            // Folding the load/store can completely change the instruction in
321            // unpredictable ways, rescan it from the beginning.
322            goto RestartInstruction;
323          } else {
324            // Create a new virtual register for the spill interval.
325            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
326
327            // Scan all of the operands of this instruction rewriting operands
328            // to use NewVReg instead of li.reg as appropriate.  We do this for
329            // two reasons:
330            //
331            //   1. If the instr reads the same spilled vreg multiple times, we
332            //      want to reuse the NewVReg.
333            //   2. If the instr is a two-addr instruction, we are required to
334            //      keep the src/dst regs pinned.
335            //
336            // Keep track of whether we replace a use and/or def so that we can
337            // create the spill interval with the appropriate range.
338            mop.setReg(NewVReg);
339
340            bool HasUse = mop.isUse();
341            bool HasDef = mop.isDef();
342            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
343              if (MI->getOperand(j).isReg() &&
344                  MI->getOperand(j).getReg() == li.reg) {
345                MI->getOperand(j).setReg(NewVReg);
346                HasUse |= MI->getOperand(j).isUse();
347                HasDef |= MI->getOperand(j).isDef();
348              }
349            }
350
351            // create a new register for this spill
352            vrm.grow();
353            if (li.remat)
354              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
355            vrm.assignVirt2StackSlot(NewVReg, slot);
356            LiveInterval &nI = getOrCreateInterval(NewVReg);
357            nI.remat = li.remat;
358            assert(nI.empty());
359
360            // the spill weight is now infinity as it
361            // cannot be spilled again
362            nI.weight = HUGE_VALF;
363
364            if (HasUse) {
365              LiveRange LR(getLoadIndex(index), getUseIndex(index),
366                           nI.getNextValue(~0U, 0));
367              DOUT << " +" << LR;
368              nI.addRange(LR);
369            }
370            if (HasDef) {
371              LiveRange LR(getDefIndex(index), getStoreIndex(index),
372                           nI.getNextValue(~0U, 0));
373              DOUT << " +" << LR;
374              nI.addRange(LR);
375            }
376
377            added.push_back(&nI);
378
379            // update live variables if it is available
380            if (lv_)
381              lv_->addVirtualRegisterKilled(NewVReg, MI);
382
383            DOUT << "\t\t\t\tadded new interval: ";
384            nI.print(DOUT, mri_);
385            DOUT << '\n';
386          }
387        }
388      }
389    }
390  }
391
392  return added;
393}
394
395void LiveIntervals::printRegName(unsigned reg) const {
396  if (MRegisterInfo::isPhysicalRegister(reg))
397    cerr << mri_->getName(reg);
398  else
399    cerr << "%reg" << reg;
400}
401
402/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
403/// two addr elimination.
404static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
405                                const TargetInstrInfo *TII) {
406  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
407    MachineOperand &MO1 = MI->getOperand(i);
408    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
409      for (unsigned j = i+1; j < e; ++j) {
410        MachineOperand &MO2 = MI->getOperand(j);
411        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
412            MI->getInstrDescriptor()->
413            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
414          return true;
415      }
416    }
417  }
418  return false;
419}
420
421void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
422                                             MachineBasicBlock::iterator mi,
423                                             unsigned MIIdx,
424                                             LiveInterval &interval) {
425  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
426  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
427
428  // Virtual registers may be defined multiple times (due to phi
429  // elimination and 2-addr elimination).  Much of what we do only has to be
430  // done once for the vreg.  We use an empty interval to detect the first
431  // time we see a vreg.
432  if (interval.empty()) {
433    // Remember if the definition can be rematerialized.
434    if (vi.DefInst && tii_->isReMaterializable(vi.DefInst->getOpcode()))
435      interval.remat = vi.DefInst;
436
437    // Get the Idx of the defining instructions.
438    unsigned defIndex = getDefIndex(MIIdx);
439
440    unsigned ValNum;
441    unsigned SrcReg, DstReg;
442    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
443      ValNum = interval.getNextValue(~0U, 0);
444    else
445      ValNum = interval.getNextValue(defIndex, SrcReg);
446
447    assert(ValNum == 0 && "First value in interval is not 0?");
448    ValNum = 0;  // Clue in the optimizer.
449
450    // Loop over all of the blocks that the vreg is defined in.  There are
451    // two cases we have to handle here.  The most common case is a vreg
452    // whose lifetime is contained within a basic block.  In this case there
453    // will be a single kill, in MBB, which comes after the definition.
454    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
455      // FIXME: what about dead vars?
456      unsigned killIdx;
457      if (vi.Kills[0] != mi)
458        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
459      else
460        killIdx = defIndex+1;
461
462      // If the kill happens after the definition, we have an intra-block
463      // live range.
464      if (killIdx > defIndex) {
465        assert(vi.AliveBlocks.none() &&
466               "Shouldn't be alive across any blocks!");
467        LiveRange LR(defIndex, killIdx, ValNum);
468        interval.addRange(LR);
469        DOUT << " +" << LR << "\n";
470        return;
471      }
472    }
473
474    // The other case we handle is when a virtual register lives to the end
475    // of the defining block, potentially live across some blocks, then is
476    // live into some number of blocks, but gets killed.  Start by adding a
477    // range that goes from this definition to the end of the defining block.
478    LiveRange NewLR(defIndex,
479                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
480                    ValNum);
481    DOUT << " +" << NewLR;
482    interval.addRange(NewLR);
483
484    // Iterate over all of the blocks that the variable is completely
485    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
486    // live interval.
487    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
488      if (vi.AliveBlocks[i]) {
489        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
490        if (!MBB->empty()) {
491          LiveRange LR(getMBBStartIdx(i),
492                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
493                       ValNum);
494          interval.addRange(LR);
495          DOUT << " +" << LR;
496        }
497      }
498    }
499
500    // Finally, this virtual register is live from the start of any killing
501    // block to the 'use' slot of the killing instruction.
502    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
503      MachineInstr *Kill = vi.Kills[i];
504      LiveRange LR(getMBBStartIdx(Kill->getParent()),
505                   getUseIndex(getInstructionIndex(Kill))+1,
506                   ValNum);
507      interval.addRange(LR);
508      DOUT << " +" << LR;
509    }
510
511  } else {
512    // Can't safely assume definition is rematierializable anymore.
513    interval.remat = NULL;
514
515    // If this is the second time we see a virtual register definition, it
516    // must be due to phi elimination or two addr elimination.  If this is
517    // the result of two address elimination, then the vreg is one of the
518    // def-and-use register operand.
519    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
520      // If this is a two-address definition, then we have already processed
521      // the live range.  The only problem is that we didn't realize there
522      // are actually two values in the live interval.  Because of this we
523      // need to take the LiveRegion that defines this register and split it
524      // into two values.
525      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
526      unsigned RedefIndex = getDefIndex(MIIdx);
527
528      // Delete the initial value, which should be short and continuous,
529      // because the 2-addr copy must be in the same MBB as the redef.
530      interval.removeRange(DefIndex, RedefIndex);
531
532      // Two-address vregs should always only be redefined once.  This means
533      // that at this point, there should be exactly one value number in it.
534      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
535
536      // The new value number (#1) is defined by the instruction we claimed
537      // defined value #0.
538      unsigned ValNo = interval.getNextValue(0, 0);
539      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
540
541      // Value#0 is now defined by the 2-addr instruction.
542      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
543
544      // Add the new live interval which replaces the range for the input copy.
545      LiveRange LR(DefIndex, RedefIndex, ValNo);
546      DOUT << " replace range with " << LR;
547      interval.addRange(LR);
548
549      // If this redefinition is dead, we need to add a dummy unit live
550      // range covering the def slot.
551      if (lv_->RegisterDefIsDead(mi, interval.reg))
552        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
553
554      DOUT << " RESULT: ";
555      interval.print(DOUT, mri_);
556
557    } else {
558      // Otherwise, this must be because of phi elimination.  If this is the
559      // first redefinition of the vreg that we have seen, go back and change
560      // the live range in the PHI block to be a different value number.
561      if (interval.containsOneValue()) {
562        assert(vi.Kills.size() == 1 &&
563               "PHI elimination vreg should have one kill, the PHI itself!");
564
565        // Remove the old range that we now know has an incorrect number.
566        MachineInstr *Killer = vi.Kills[0];
567        unsigned Start = getMBBStartIdx(Killer->getParent());
568        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
569        DOUT << " Removing [" << Start << "," << End << "] from: ";
570        interval.print(DOUT, mri_); DOUT << "\n";
571        interval.removeRange(Start, End);
572        DOUT << " RESULT: "; interval.print(DOUT, mri_);
573
574        // Replace the interval with one of a NEW value number.  Note that this
575        // value number isn't actually defined by an instruction, weird huh? :)
576        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
577        DOUT << " replace range with " << LR;
578        interval.addRange(LR);
579        DOUT << " RESULT: "; interval.print(DOUT, mri_);
580      }
581
582      // In the case of PHI elimination, each variable definition is only
583      // live until the end of the block.  We've already taken care of the
584      // rest of the live range.
585      unsigned defIndex = getDefIndex(MIIdx);
586
587      unsigned ValNum;
588      unsigned SrcReg, DstReg;
589      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
590        ValNum = interval.getNextValue(~0U, 0);
591      else
592        ValNum = interval.getNextValue(defIndex, SrcReg);
593
594      LiveRange LR(defIndex,
595                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
596      interval.addRange(LR);
597      DOUT << " +" << LR;
598    }
599  }
600
601  DOUT << '\n';
602}
603
604void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
605                                              MachineBasicBlock::iterator mi,
606                                              unsigned MIIdx,
607                                              LiveInterval &interval,
608                                              unsigned SrcReg) {
609  // A physical register cannot be live across basic block, so its
610  // lifetime must end somewhere in its defining basic block.
611  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
612
613  unsigned baseIndex = MIIdx;
614  unsigned start = getDefIndex(baseIndex);
615  unsigned end = start;
616
617  // If it is not used after definition, it is considered dead at
618  // the instruction defining it. Hence its interval is:
619  // [defSlot(def), defSlot(def)+1)
620  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
621    DOUT << " dead";
622    end = getDefIndex(start) + 1;
623    goto exit;
624  }
625
626  // If it is not dead on definition, it must be killed by a
627  // subsequent instruction. Hence its interval is:
628  // [defSlot(def), useSlot(kill)+1)
629  while (++mi != MBB->end()) {
630    baseIndex += InstrSlots::NUM;
631    if (lv_->KillsRegister(mi, interval.reg)) {
632      DOUT << " killed";
633      end = getUseIndex(baseIndex) + 1;
634      goto exit;
635    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
636      // Another instruction redefines the register before it is ever read.
637      // Then the register is essentially dead at the instruction that defines
638      // it. Hence its interval is:
639      // [defSlot(def), defSlot(def)+1)
640      DOUT << " dead";
641      end = getDefIndex(start) + 1;
642      goto exit;
643    }
644  }
645
646  // The only case we should have a dead physreg here without a killing or
647  // instruction where we know it's dead is if it is live-in to the function
648  // and never used.
649  assert(!SrcReg && "physreg was not killed in defining block!");
650  end = getDefIndex(start) + 1;  // It's dead.
651
652exit:
653  assert(start < end && "did not find end of interval?");
654
655  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
656                                                 SrcReg));
657  interval.addRange(LR);
658  DOUT << " +" << LR << '\n';
659}
660
661void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
662                                      MachineBasicBlock::iterator MI,
663                                      unsigned MIIdx,
664                                      unsigned reg) {
665  if (MRegisterInfo::isVirtualRegister(reg))
666    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
667  else if (allocatableRegs_[reg]) {
668    unsigned SrcReg, DstReg;
669    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
670      SrcReg = 0;
671    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
672    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
673      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
674  }
675}
676
677void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
678                                         unsigned MIIdx,
679                                         LiveInterval &interval) {
680  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
681
682  // Look for kills, if it reaches a def before it's killed, then it shouldn't
683  // be considered a livein.
684  MachineBasicBlock::iterator mi = MBB->begin();
685  unsigned baseIndex = MIIdx;
686  unsigned start = baseIndex;
687  unsigned end = start;
688  while (mi != MBB->end()) {
689    if (lv_->KillsRegister(mi, interval.reg)) {
690      DOUT << " killed";
691      end = getUseIndex(baseIndex) + 1;
692      goto exit;
693    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
694      // Another instruction redefines the register before it is ever read.
695      // Then the register is essentially dead at the instruction that defines
696      // it. Hence its interval is:
697      // [defSlot(def), defSlot(def)+1)
698      DOUT << " dead";
699      end = getDefIndex(start) + 1;
700      goto exit;
701    }
702
703    baseIndex += InstrSlots::NUM;
704    ++mi;
705  }
706
707exit:
708  assert(start < end && "did not find end of interval?");
709
710  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
711  DOUT << " +" << LR << '\n';
712  interval.addRange(LR);
713}
714
715/// computeIntervals - computes the live intervals for virtual
716/// registers. for some ordering of the machine instructions [1,N] a
717/// live interval is an interval [i, j) where 1 <= i <= j < N for
718/// which a variable is live
719void LiveIntervals::computeIntervals() {
720  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
721       << "********** Function: "
722       << ((Value*)mf_->getFunction())->getName() << '\n';
723  // Track the index of the current machine instr.
724  unsigned MIIndex = 0;
725  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
726       MBBI != E; ++MBBI) {
727    MachineBasicBlock *MBB = MBBI;
728    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
729
730    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
731
732    if (MBB->livein_begin() != MBB->livein_end()) {
733      // Create intervals for live-ins to this BB first.
734      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
735             LE = MBB->livein_end(); LI != LE; ++LI) {
736        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
737        for (const unsigned* AS = mri_->getAliasSet(*LI); *AS; ++AS)
738          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS));
739      }
740    }
741
742    for (; MI != miEnd; ++MI) {
743      DOUT << MIIndex << "\t" << *MI;
744
745      // Handle defs.
746      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
747        MachineOperand &MO = MI->getOperand(i);
748        // handle register defs - build intervals
749        if (MO.isRegister() && MO.getReg() && MO.isDef())
750          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
751      }
752
753      MIIndex += InstrSlots::NUM;
754    }
755  }
756}
757
758/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
759/// being the source and IntB being the dest, thus this defines a value number
760/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
761/// see if we can merge these two pieces of B into a single value number,
762/// eliminating a copy.  For example:
763///
764///  A3 = B0
765///    ...
766///  B1 = A3      <- this copy
767///
768/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
769/// value number to be replaced with B0 (which simplifies the B liveinterval).
770///
771/// This returns true if an interval was modified.
772///
773bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
774                                         MachineInstr *CopyMI) {
775  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
776
777  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
778  // the example above.
779  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
780  unsigned BValNo = BLR->ValId;
781
782  // Get the location that B is defined at.  Two options: either this value has
783  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
784  // can't process it.
785  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
786  if (BValNoDefIdx == ~0U) return false;
787  assert(BValNoDefIdx == CopyIdx &&
788         "Copy doesn't define the value?");
789
790  // AValNo is the value number in A that defines the copy, A0 in the example.
791  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
792  unsigned AValNo = AValLR->ValId;
793
794  // If AValNo is defined as a copy from IntB, we can potentially process this.
795
796  // Get the instruction that defines this value number.
797  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
798  if (!SrcReg) return false;  // Not defined by a copy.
799
800  // If the value number is not defined by a copy instruction, ignore it.
801
802  // If the source register comes from an interval other than IntB, we can't
803  // handle this.
804  if (rep(SrcReg) != IntB.reg) return false;
805
806  // Get the LiveRange in IntB that this value number starts with.
807  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
808  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
809
810  // Make sure that the end of the live range is inside the same block as
811  // CopyMI.
812  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
813  if (!ValLREndInst ||
814      ValLREndInst->getParent() != CopyMI->getParent()) return false;
815
816  // Okay, we now know that ValLR ends in the same block that the CopyMI
817  // live-range starts.  If there are no intervening live ranges between them in
818  // IntB, we can merge them.
819  if (ValLR+1 != BLR) return false;
820
821  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
822
823  // We are about to delete CopyMI, so need to remove it as the 'instruction
824  // that defines this value #'.
825  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
826
827  // Okay, we can merge them.  We need to insert a new liverange:
828  // [ValLR.end, BLR.begin) of either value number, then we merge the
829  // two value numbers.
830  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
831  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
832
833  // If the IntB live range is assigned to a physical register, and if that
834  // physreg has aliases,
835  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
836    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
837      LiveInterval &AliasLI = getInterval(*AS);
838      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
839                                 AliasLI.getNextValue(~0U, 0)));
840    }
841  }
842
843  // Okay, merge "B1" into the same value number as "B0".
844  if (BValNo != ValLR->ValId)
845    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
846  DOUT << "   result = "; IntB.print(DOUT, mri_);
847  DOUT << "\n";
848
849  // If the source instruction was killing the source register before the
850  // merge, unset the isKill marker given the live range has been extended.
851  int UIdx = ValLREndInst->findRegisterUseOperand(IntB.reg, true);
852  if (UIdx != -1)
853    ValLREndInst->getOperand(UIdx).unsetIsKill();
854
855  // Finally, delete the copy instruction.
856  RemoveMachineInstrFromMaps(CopyMI);
857  CopyMI->eraseFromParent();
858  ++numPeep;
859  return true;
860}
861
862/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
863/// which are the src/dst of the copy instruction CopyMI.  This returns true
864/// if the copy was successfully coallesced away, or if it is never possible
865/// to coallesce these this copy, due to register constraints.  It returns
866/// false if it is not currently possible to coallesce this interval, but
867/// it may be possible if other things get coallesced.
868bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
869                             unsigned SrcReg, unsigned DstReg) {
870  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
871
872  // Get representative registers.
873  unsigned repSrcReg = rep(SrcReg);
874  unsigned repDstReg = rep(DstReg);
875
876  // If they are already joined we continue.
877  if (repSrcReg == repDstReg) {
878    DOUT << "\tCopy already coallesced.\n";
879    return true;  // Not coallescable.
880  }
881
882  // If they are both physical registers, we cannot join them.
883  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
884      MRegisterInfo::isPhysicalRegister(repDstReg)) {
885    DOUT << "\tCan not coallesce physregs.\n";
886    return true;  // Not coallescable.
887  }
888
889  // We only join virtual registers with allocatable physical registers.
890  if (MRegisterInfo::isPhysicalRegister(repSrcReg) &&
891      !allocatableRegs_[repSrcReg]) {
892    DOUT << "\tSrc reg is unallocatable physreg.\n";
893    return true;  // Not coallescable.
894  }
895  if (MRegisterInfo::isPhysicalRegister(repDstReg) &&
896      !allocatableRegs_[repDstReg]) {
897    DOUT << "\tDst reg is unallocatable physreg.\n";
898    return true;  // Not coallescable.
899  }
900
901  // If they are not of the same register class, we cannot join them.
902  if (differingRegisterClasses(repSrcReg, repDstReg)) {
903    DOUT << "\tSrc/Dest are different register classes.\n";
904    return true;  // Not coallescable.
905  }
906
907  LiveInterval &SrcInt = getInterval(repSrcReg);
908  LiveInterval &DestInt = getInterval(repDstReg);
909  assert(SrcInt.reg == repSrcReg && DestInt.reg == repDstReg &&
910         "Register mapping is horribly broken!");
911
912  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
913  DOUT << " and "; DestInt.print(DOUT, mri_);
914  DOUT << ": ";
915
916  // Check if it is necessary to propagate "isDead" property before intervals
917  // are joined.
918  MachineBasicBlock *CopyBB = CopyMI->getParent();
919  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
920  bool isDead = mopd->isDead();
921  bool isShorten = false;
922  unsigned SrcStart = 0, RemoveStart = 0;
923  unsigned SrcEnd = 0, RemoveEnd = 0;
924  if (isDead) {
925    unsigned CopyIdx = getInstructionIndex(CopyMI);
926    LiveInterval::iterator SrcLR =
927      SrcInt.FindLiveRangeContaining(getUseIndex(CopyIdx));
928    RemoveStart = SrcStart = SrcLR->start;
929    RemoveEnd   = SrcEnd   = SrcLR->end;
930    // The instruction which defines the src is only truly dead if there are
931    // no intermediate uses and there isn't a use beyond the copy.
932    // FIXME: find the last use, mark is kill and shorten the live range.
933    if (SrcEnd > getDefIndex(CopyIdx)) {
934      isDead = false;
935    } else {
936      MachineOperand *MOU;
937      MachineInstr *LastUse= lastRegisterUse(repSrcReg, SrcStart, CopyIdx, MOU);
938      if (LastUse) {
939        // Shorten the liveinterval to the end of last use.
940        MOU->setIsKill();
941        isDead = false;
942        isShorten = true;
943        RemoveStart = getDefIndex(getInstructionIndex(LastUse));
944        RemoveEnd   = SrcEnd;
945      } else {
946        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
947        if (SrcMI) {
948          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
949          if (mops)
950            // A dead def should have a single cycle interval.
951            ++RemoveStart;
952        }
953      }
954    }
955  }
956
957  // We need to be careful about coalescing a source physical register with a
958  // virtual register. Once the coalescing is done, it cannot be broken and
959  // these are not spillable! If the destination interval uses are far away,
960  // think twice about coalescing them!
961  if (!mopd->isDead() && MRegisterInfo::isPhysicalRegister(repSrcReg)) {
962    // Small function. No need to worry!
963    unsigned Threshold = allocatableRegs_.count() * 2;
964    if (r2iMap_.size() <= Threshold)
965      goto TryJoin;
966
967    LiveVariables::VarInfo& dvi = lv_->getVarInfo(repDstReg);
968    // Is the value used in the current BB or any immediate successroe BB?
969    if (dvi.UsedBlocks[CopyBB->getNumber()])
970      goto TryJoin;
971    for (MachineBasicBlock::succ_iterator SI = CopyBB->succ_begin(),
972           SE = CopyBB->succ_end(); SI != SE; ++SI) {
973      MachineBasicBlock *SuccMBB = *SI;
974      if (dvi.UsedBlocks[SuccMBB->getNumber()])
975          goto TryJoin;
976    }
977
978    // Ok, no use in this BB and no use in immediate successor BB's. Be really
979    // careful now!
980    // It's only used in one BB, forget about it!
981    if (dvi.UsedBlocks.count() < 2) {
982      ++numAborts;
983      return false;
984    }
985
986    // Determine whether to allow coalescing based on how far the closest
987    // use is.
988    unsigned CopyIdx = getInstructionIndex(CopyMI);
989    unsigned MinDist = i2miMap_.size() * InstrSlots::NUM;
990    int UseBBNum = dvi.UsedBlocks.find_first();
991    while (UseBBNum != -1) {
992      MachineBasicBlock *UseBB = mf_->getBlockNumbered(UseBBNum);
993      unsigned UseIdx = getMBBStartIdx(UseBB);
994      if (UseIdx > CopyIdx) {
995        MinDist = std::min(MinDist, UseIdx - CopyIdx);
996        if (MinDist <= Threshold)
997          break;
998      }
999      UseBBNum = dvi.UsedBlocks.find_next(UseBBNum);
1000    }
1001    if (MinDist > Threshold) {
1002      // Don't do it!
1003      ++numAborts;
1004      return false;
1005    }
1006  }
1007
1008TryJoin:
1009  // Okay, attempt to join these two intervals.  On failure, this returns false.
1010  // Otherwise, if one of the intervals being joined is a physreg, this method
1011  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
1012  // been modified, so we can use this information below to update aliases.
1013  if (JoinIntervals(DestInt, SrcInt)) {
1014    if (isDead) {
1015      // Result of the copy is dead. Propagate this property.
1016      if (SrcStart == 0) {
1017        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
1018               "Live-in must be a physical register!");
1019        // Live-in to the function but dead. Remove it from entry live-in set.
1020        // JoinIntervals may end up swapping the two intervals.
1021        mf_->begin()->removeLiveIn(repSrcReg);
1022      } else {
1023        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
1024        if (SrcMI) {
1025          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
1026          if (mops)
1027            mops->setIsDead();
1028        }
1029      }
1030    }
1031
1032    if (isShorten || isDead) {
1033      // Shorten the live interval.
1034      LiveInterval &LiveInInt = (repSrcReg == DestInt.reg) ? DestInt : SrcInt;
1035      LiveInInt.removeRange(RemoveStart, RemoveEnd);
1036    }
1037  } else {
1038    // Coallescing failed.
1039
1040    // If we can eliminate the copy without merging the live ranges, do so now.
1041    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
1042      return true;
1043
1044    // Otherwise, we are unable to join the intervals.
1045    DOUT << "Interference!\n";
1046    return false;
1047  }
1048
1049  bool Swapped = repSrcReg == DestInt.reg;
1050  if (Swapped)
1051    std::swap(repSrcReg, repDstReg);
1052  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
1053         "LiveInterval::join didn't work right!");
1054
1055  // If we're about to merge live ranges into a physical register live range,
1056  // we have to update any aliased register's live ranges to indicate that they
1057  // have clobbered values for this range.
1058  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
1059    for (const unsigned *AS = mri_->getAliasSet(repDstReg); *AS; ++AS)
1060      getInterval(*AS).MergeInClobberRanges(SrcInt);
1061  } else {
1062    // Merge UsedBlocks info if the destination is a virtual register.
1063    LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
1064    LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
1065    dVI.UsedBlocks |= sVI.UsedBlocks;
1066  }
1067
1068  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
1069  DOUT << "\n";
1070
1071  // Remember these liveintervals have been joined.
1072  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
1073  if (MRegisterInfo::isVirtualRegister(repDstReg))
1074    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
1075
1076  // If the intervals were swapped by Join, swap them back so that the register
1077  // mapping (in the r2i map) is correct.
1078  if (Swapped) SrcInt.swap(DestInt);
1079  removeInterval(repSrcReg);
1080  r2rMap_[repSrcReg] = repDstReg;
1081
1082  // Finally, delete the copy instruction.
1083  RemoveMachineInstrFromMaps(CopyMI);
1084  CopyMI->eraseFromParent();
1085  ++numPeep;
1086  ++numJoins;
1087  return true;
1088}
1089
1090/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1091/// compute what the resultant value numbers for each value in the input two
1092/// ranges will be.  This is complicated by copies between the two which can
1093/// and will commonly cause multiple value numbers to be merged into one.
1094///
1095/// VN is the value number that we're trying to resolve.  InstDefiningValue
1096/// keeps track of the new InstDefiningValue assignment for the result
1097/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1098/// whether a value in this or other is a copy from the opposite set.
1099/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1100/// already been assigned.
1101///
1102/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1103/// contains the value number the copy is from.
1104///
1105static unsigned ComputeUltimateVN(unsigned VN,
1106                                  SmallVector<std::pair<unsigned,
1107                                                unsigned>, 16> &ValueNumberInfo,
1108                                  SmallVector<int, 16> &ThisFromOther,
1109                                  SmallVector<int, 16> &OtherFromThis,
1110                                  SmallVector<int, 16> &ThisValNoAssignments,
1111                                  SmallVector<int, 16> &OtherValNoAssignments,
1112                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
1113  // If the VN has already been computed, just return it.
1114  if (ThisValNoAssignments[VN] >= 0)
1115    return ThisValNoAssignments[VN];
1116//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1117
1118  // If this val is not a copy from the other val, then it must be a new value
1119  // number in the destination.
1120  int OtherValNo = ThisFromOther[VN];
1121  if (OtherValNo == -1) {
1122    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
1123    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
1124  }
1125
1126  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1127  // been computed, return it.
1128  if (OtherValNoAssignments[OtherValNo] >= 0)
1129    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
1130
1131  // Mark this value number as currently being computed, then ask what the
1132  // ultimate value # of the other value is.
1133  ThisValNoAssignments[VN] = -2;
1134  unsigned UltimateVN =
1135    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
1136                      OtherFromThis, ThisFromOther,
1137                      OtherValNoAssignments, ThisValNoAssignments,
1138                      OtherLI, ThisLI);
1139  return ThisValNoAssignments[VN] = UltimateVN;
1140}
1141
1142static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
1143  return std::find(V.begin(), V.end(), Val) != V.end();
1144}
1145
1146/// SimpleJoin - Attempt to joint the specified interval into this one. The
1147/// caller of this method must guarantee that the RHS only contains a single
1148/// value number and that the RHS is not defined by a copy from this
1149/// interval.  This returns false if the intervals are not joinable, or it
1150/// joins them and returns true.
1151bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
1152  assert(RHS.containsOneValue());
1153
1154  // Some number (potentially more than one) value numbers in the current
1155  // interval may be defined as copies from the RHS.  Scan the overlapping
1156  // portions of the LHS and RHS, keeping track of this and looking for
1157  // overlapping live ranges that are NOT defined as copies.  If these exist, we
1158  // cannot coallesce.
1159
1160  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1161  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1162
1163  if (LHSIt->start < RHSIt->start) {
1164    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1165    if (LHSIt != LHS.begin()) --LHSIt;
1166  } else if (RHSIt->start < LHSIt->start) {
1167    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1168    if (RHSIt != RHS.begin()) --RHSIt;
1169  }
1170
1171  SmallVector<unsigned, 8> EliminatedLHSVals;
1172
1173  while (1) {
1174    // Determine if these live intervals overlap.
1175    bool Overlaps = false;
1176    if (LHSIt->start <= RHSIt->start)
1177      Overlaps = LHSIt->end > RHSIt->start;
1178    else
1179      Overlaps = RHSIt->end > LHSIt->start;
1180
1181    // If the live intervals overlap, there are two interesting cases: if the
1182    // LHS interval is defined by a copy from the RHS, it's ok and we record
1183    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1184    // coallesce these live ranges and we bail out.
1185    if (Overlaps) {
1186      // If we haven't already recorded that this value # is safe, check it.
1187      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1188        // Copy from the RHS?
1189        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1190        if (rep(SrcReg) != RHS.reg)
1191          return false;    // Nope, bail out.
1192
1193        EliminatedLHSVals.push_back(LHSIt->ValId);
1194      }
1195
1196      // We know this entire LHS live range is okay, so skip it now.
1197      if (++LHSIt == LHSEnd) break;
1198      continue;
1199    }
1200
1201    if (LHSIt->end < RHSIt->end) {
1202      if (++LHSIt == LHSEnd) break;
1203    } else {
1204      // One interesting case to check here.  It's possible that we have
1205      // something like "X3 = Y" which defines a new value number in the LHS,
1206      // and is the last use of this liverange of the RHS.  In this case, we
1207      // want to notice this copy (so that it gets coallesced away) even though
1208      // the live ranges don't actually overlap.
1209      if (LHSIt->start == RHSIt->end) {
1210        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1211          // We already know that this value number is going to be merged in
1212          // if coallescing succeeds.  Just skip the liverange.
1213          if (++LHSIt == LHSEnd) break;
1214        } else {
1215          // Otherwise, if this is a copy from the RHS, mark it as being merged
1216          // in.
1217          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1218            EliminatedLHSVals.push_back(LHSIt->ValId);
1219
1220            // We know this entire LHS live range is okay, so skip it now.
1221            if (++LHSIt == LHSEnd) break;
1222          }
1223        }
1224      }
1225
1226      if (++RHSIt == RHSEnd) break;
1227    }
1228  }
1229
1230  // If we got here, we know that the coallescing will be successful and that
1231  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1232  // the most common case is that EliminatedLHSVals has a single number, we
1233  // optimize for it: if there is more than one value, we merge them all into
1234  // the lowest numbered one, then handle the interval as if we were merging
1235  // with one value number.
1236  unsigned LHSValNo;
1237  if (EliminatedLHSVals.size() > 1) {
1238    // Loop through all the equal value numbers merging them into the smallest
1239    // one.
1240    unsigned Smallest = EliminatedLHSVals[0];
1241    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1242      if (EliminatedLHSVals[i] < Smallest) {
1243        // Merge the current notion of the smallest into the smaller one.
1244        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1245        Smallest = EliminatedLHSVals[i];
1246      } else {
1247        // Merge into the smallest.
1248        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1249      }
1250    }
1251    LHSValNo = Smallest;
1252  } else {
1253    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1254    LHSValNo = EliminatedLHSVals[0];
1255  }
1256
1257  // Okay, now that there is a single LHS value number that we're merging the
1258  // RHS into, update the value number info for the LHS to indicate that the
1259  // value number is defined where the RHS value number was.
1260  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1261
1262  // Okay, the final step is to loop over the RHS live intervals, adding them to
1263  // the LHS.
1264  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1265  LHS.weight += RHS.weight;
1266
1267  return true;
1268}
1269
1270/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1271/// returns false.  Otherwise, if one of the intervals being joined is a
1272/// physreg, this method always canonicalizes LHS to be it.  The output
1273/// "RHS" will not have been modified, so we can use this information
1274/// below to update aliases.
1275bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1276  // Compute the final value assignment, assuming that the live ranges can be
1277  // coallesced.
1278  SmallVector<int, 16> LHSValNoAssignments;
1279  SmallVector<int, 16> RHSValNoAssignments;
1280  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1281
1282  // Compute ultimate value numbers for the LHS and RHS values.
1283  if (RHS.containsOneValue()) {
1284    // Copies from a liveinterval with a single value are simple to handle and
1285    // very common, handle the special case here.  This is important, because
1286    // often RHS is small and LHS is large (e.g. a physreg).
1287
1288    // Find out if the RHS is defined as a copy from some value in the LHS.
1289    int RHSValID = -1;
1290    std::pair<unsigned,unsigned> RHSValNoInfo;
1291    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1292    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1293      // If RHS is not defined as a copy from the LHS, we can use simpler and
1294      // faster checks to see if the live ranges are coallescable.  This joiner
1295      // can't swap the LHS/RHS intervals though.
1296      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1297        return SimpleJoin(LHS, RHS);
1298      } else {
1299        RHSValNoInfo = RHS.getValNumInfo(0);
1300      }
1301    } else {
1302      // It was defined as a copy from the LHS, find out what value # it is.
1303      unsigned ValInst = RHS.getInstForValNum(0);
1304      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1305      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1306    }
1307
1308    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1309    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1310    ValueNumberInfo.resize(LHS.getNumValNums());
1311
1312    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1313    // should now get updated.
1314    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1315      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1316        if (rep(LHSSrcReg) != RHS.reg) {
1317          // If this is not a copy from the RHS, its value number will be
1318          // unmodified by the coallescing.
1319          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1320          LHSValNoAssignments[VN] = VN;
1321        } else if (RHSValID == -1) {
1322          // Otherwise, it is a copy from the RHS, and we don't already have a
1323          // value# for it.  Keep the current value number, but remember it.
1324          LHSValNoAssignments[VN] = RHSValID = VN;
1325          ValueNumberInfo[VN] = RHSValNoInfo;
1326        } else {
1327          // Otherwise, use the specified value #.
1328          LHSValNoAssignments[VN] = RHSValID;
1329          if (VN != (unsigned)RHSValID)
1330            ValueNumberInfo[VN].first = ~1U;
1331          else
1332            ValueNumberInfo[VN] = RHSValNoInfo;
1333        }
1334      } else {
1335        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1336        LHSValNoAssignments[VN] = VN;
1337      }
1338    }
1339
1340    assert(RHSValID != -1 && "Didn't find value #?");
1341    RHSValNoAssignments[0] = RHSValID;
1342
1343  } else {
1344    // Loop over the value numbers of the LHS, seeing if any are defined from
1345    // the RHS.
1346    SmallVector<int, 16> LHSValsDefinedFromRHS;
1347    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1348    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1349      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1350      if (ValSrcReg == 0)  // Src not defined by a copy?
1351        continue;
1352
1353      // DstReg is known to be a register in the LHS interval.  If the src is
1354      // from the RHS interval, we can use its value #.
1355      if (rep(ValSrcReg) != RHS.reg)
1356        continue;
1357
1358      // Figure out the value # from the RHS.
1359      unsigned ValInst = LHS.getInstForValNum(VN);
1360      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1361    }
1362
1363    // Loop over the value numbers of the RHS, seeing if any are defined from
1364    // the LHS.
1365    SmallVector<int, 16> RHSValsDefinedFromLHS;
1366    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1367    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1368      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1369      if (ValSrcReg == 0)  // Src not defined by a copy?
1370        continue;
1371
1372      // DstReg is known to be a register in the RHS interval.  If the src is
1373      // from the LHS interval, we can use its value #.
1374      if (rep(ValSrcReg) != LHS.reg)
1375        continue;
1376
1377      // Figure out the value # from the LHS.
1378      unsigned ValInst = RHS.getInstForValNum(VN);
1379      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1380    }
1381
1382    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1383    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1384    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1385
1386    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1387      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1388        continue;
1389      ComputeUltimateVN(VN, ValueNumberInfo,
1390                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1391                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1392    }
1393    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1394      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1395        continue;
1396      // If this value number isn't a copy from the LHS, it's a new number.
1397      if (RHSValsDefinedFromLHS[VN] == -1) {
1398        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1399        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1400        continue;
1401      }
1402
1403      ComputeUltimateVN(VN, ValueNumberInfo,
1404                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1405                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1406    }
1407  }
1408
1409  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1410  // interval lists to see if these intervals are coallescable.
1411  LiveInterval::const_iterator I = LHS.begin();
1412  LiveInterval::const_iterator IE = LHS.end();
1413  LiveInterval::const_iterator J = RHS.begin();
1414  LiveInterval::const_iterator JE = RHS.end();
1415
1416  // Skip ahead until the first place of potential sharing.
1417  if (I->start < J->start) {
1418    I = std::upper_bound(I, IE, J->start);
1419    if (I != LHS.begin()) --I;
1420  } else if (J->start < I->start) {
1421    J = std::upper_bound(J, JE, I->start);
1422    if (J != RHS.begin()) --J;
1423  }
1424
1425  while (1) {
1426    // Determine if these two live ranges overlap.
1427    bool Overlaps;
1428    if (I->start < J->start) {
1429      Overlaps = I->end > J->start;
1430    } else {
1431      Overlaps = J->end > I->start;
1432    }
1433
1434    // If so, check value # info to determine if they are really different.
1435    if (Overlaps) {
1436      // If the live range overlap will map to the same value number in the
1437      // result liverange, we can still coallesce them.  If not, we can't.
1438      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1439        return false;
1440    }
1441
1442    if (I->end < J->end) {
1443      ++I;
1444      if (I == IE) break;
1445    } else {
1446      ++J;
1447      if (J == JE) break;
1448    }
1449  }
1450
1451  // If we get here, we know that we can coallesce the live ranges.  Ask the
1452  // intervals to coallesce themselves now.
1453  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1454           ValueNumberInfo);
1455  return true;
1456}
1457
1458
1459namespace {
1460  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1461  // depth of the basic block (the unsigned), and then on the MBB number.
1462  struct DepthMBBCompare {
1463    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1464    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1465      if (LHS.first > RHS.first) return true;   // Deeper loops first
1466      return LHS.first == RHS.first &&
1467        LHS.second->getNumber() < RHS.second->getNumber();
1468    }
1469  };
1470}
1471
1472
1473void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1474                                       std::vector<CopyRec> &TryAgain) {
1475  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1476
1477  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1478       MII != E;) {
1479    MachineInstr *Inst = MII++;
1480
1481    // If this isn't a copy, we can't join intervals.
1482    unsigned SrcReg, DstReg;
1483    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1484
1485    if (!JoinCopy(Inst, SrcReg, DstReg))
1486      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1487  }
1488}
1489
1490
1491void LiveIntervals::joinIntervals() {
1492  DOUT << "********** JOINING INTERVALS ***********\n";
1493
1494  JoinedLIs.resize(getNumIntervals());
1495  JoinedLIs.reset();
1496
1497  std::vector<CopyRec> TryAgainList;
1498  const LoopInfo &LI = getAnalysis<LoopInfo>();
1499  if (LI.begin() == LI.end()) {
1500    // If there are no loops in the function, join intervals in function order.
1501    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1502         I != E; ++I)
1503      CopyCoallesceInMBB(I, TryAgainList);
1504  } else {
1505    // Otherwise, join intervals in inner loops before other intervals.
1506    // Unfortunately we can't just iterate over loop hierarchy here because
1507    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1508    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1509    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1510         I != E; ++I)
1511      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1512
1513    // Sort by loop depth.
1514    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1515
1516    // Finally, join intervals in loop nest order.
1517    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1518      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1519  }
1520
1521  // Joining intervals can allow other intervals to be joined.  Iteratively join
1522  // until we make no progress.
1523  bool ProgressMade = true;
1524  while (ProgressMade) {
1525    ProgressMade = false;
1526
1527    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1528      CopyRec &TheCopy = TryAgainList[i];
1529      if (TheCopy.MI &&
1530          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1531        TheCopy.MI = 0;   // Mark this one as done.
1532        ProgressMade = true;
1533      }
1534    }
1535  }
1536
1537  // Some live range has been lengthened due to colaescing, eliminate the
1538  // unnecessary kills.
1539  int RegNum = JoinedLIs.find_first();
1540  while (RegNum != -1) {
1541    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
1542    unsigned repReg = rep(Reg);
1543    LiveInterval &LI = getInterval(repReg);
1544    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
1545    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
1546      MachineInstr *Kill = svi.Kills[i];
1547      // Suppose vr1 = op vr2, x
1548      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
1549      // unless it is a two-address operand.
1550      if (isRemoved(Kill) || hasRegisterDef(Kill, repReg))
1551        continue;
1552      if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
1553        unsetRegisterKill(Kill, repReg);
1554    }
1555    RegNum = JoinedLIs.find_next(RegNum);
1556  }
1557
1558  DOUT << "*** Register mapping ***\n";
1559  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1560    if (r2rMap_[i]) {
1561      DOUT << "  reg " << i << " -> ";
1562      DEBUG(printRegName(r2rMap_[i]));
1563      DOUT << "\n";
1564    }
1565}
1566
1567/// Return true if the two specified registers belong to different register
1568/// classes.  The registers may be either phys or virt regs.
1569bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1570                                             unsigned RegB) const {
1571
1572  // Get the register classes for the first reg.
1573  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1574    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1575           "Shouldn't consider two physregs!");
1576    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1577  }
1578
1579  // Compare against the regclass for the second reg.
1580  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1581  if (MRegisterInfo::isVirtualRegister(RegB))
1582    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1583  else
1584    return !RegClass->contains(RegB);
1585}
1586
1587/// lastRegisterUse - Returns the last use of the specific register between
1588/// cycles Start and End. It also returns the use operand by reference. It
1589/// returns NULL if there are no uses.
1590MachineInstr *
1591LiveIntervals::lastRegisterUse(unsigned Reg, unsigned Start, unsigned End,
1592                               MachineOperand *&MOU) {
1593  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
1594  int s = Start;
1595  while (e >= s) {
1596    // Skip deleted instructions
1597    MachineInstr *MI = getInstructionFromIndex(e);
1598    while ((e - InstrSlots::NUM) >= s && !MI) {
1599      e -= InstrSlots::NUM;
1600      MI = getInstructionFromIndex(e);
1601    }
1602    if (e < s || MI == NULL)
1603      return NULL;
1604
1605    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
1606      MachineOperand &MO = MI->getOperand(i);
1607      if (MO.isReg() && MO.isUse() && MO.getReg() &&
1608          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
1609        MOU = &MO;
1610        return MI;
1611      }
1612    }
1613
1614    e -= InstrSlots::NUM;
1615  }
1616
1617  return NULL;
1618}
1619
1620
1621/// findDefOperand - Returns the MachineOperand that is a def of the specific
1622/// register. It returns NULL if the def is not found.
1623MachineOperand *LiveIntervals::findDefOperand(MachineInstr *MI, unsigned Reg) {
1624  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1625    MachineOperand &MO = MI->getOperand(i);
1626    if (MO.isReg() && MO.isDef() &&
1627        mri_->regsOverlap(rep(MO.getReg()), Reg))
1628      return &MO;
1629  }
1630  return NULL;
1631}
1632
1633/// unsetRegisterKill - Unset IsKill property of all uses of specific register
1634/// of the specific instruction.
1635void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
1636  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1637    MachineOperand &MO = MI->getOperand(i);
1638    if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
1639        mri_->regsOverlap(rep(MO.getReg()), Reg))
1640      MO.unsetIsKill();
1641  }
1642}
1643
1644/// hasRegisterDef - True if the instruction defines the specific register.
1645///
1646bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
1647  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1648    MachineOperand &MO = MI->getOperand(i);
1649    if (MO.isReg() && MO.isDef() &&
1650        mri_->regsOverlap(rep(MO.getReg()), Reg))
1651      return true;
1652  }
1653  return false;
1654}
1655
1656LiveInterval LiveIntervals::createInterval(unsigned reg) {
1657  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1658                       HUGE_VALF : 0.0F;
1659  return LiveInterval(reg, Weight);
1660}
1661