LiveIntervalAnalysis.cpp revision 74de8b1b26b12fda3364382946e519a2e37b6709
1//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervals.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "Support/CommandLine.h"
31#include "Support/Debug.h"
32#include "Support/Statistic.h"
33#include "Support/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36#include <iostream>
37
38using namespace llvm;
39
40namespace {
41    RegisterAnalysis<LiveIntervals> X("liveintervals",
42                                      "Live Interval Analysis");
43
44    Statistic<> numIntervals
45    ("liveintervals", "Number of original intervals");
46
47    Statistic<> numIntervalsAfter
48    ("liveintervals", "Number of intervals after coalescing");
49
50    Statistic<> numJoins
51    ("liveintervals", "Number of interval joins performed");
52
53    Statistic<> numPeep
54    ("liveintervals", "Number of identity moves eliminated after coalescing");
55
56    Statistic<> numFolded
57    ("liveintervals", "Number of loads/stores folded into instructions");
58
59    cl::opt<bool>
60    EnableJoining("join-liveintervals",
61                  cl::desc("Join compatible live intervals"),
62                  cl::init(true));
63};
64
65void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
66{
67    AU.addPreserved<LiveVariables>();
68    AU.addRequired<LiveVariables>();
69    AU.addPreservedID(PHIEliminationID);
70    AU.addRequiredID(PHIEliminationID);
71    AU.addRequiredID(TwoAddressInstructionPassID);
72    AU.addRequired<LoopInfo>();
73    MachineFunctionPass::getAnalysisUsage(AU);
74}
75
76void LiveIntervals::releaseMemory()
77{
78    mi2iMap_.clear();
79    i2miMap_.clear();
80    r2iMap_.clear();
81    r2rMap_.clear();
82    intervals_.clear();
83}
84
85
86/// runOnMachineFunction - Register allocate the whole function
87///
88bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
89    mf_ = &fn;
90    tm_ = &fn.getTarget();
91    mri_ = tm_->getRegisterInfo();
92    lv_ = &getAnalysis<LiveVariables>();
93
94    // number MachineInstrs
95    unsigned miIndex = 0;
96    for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
97         mbb != mbbEnd; ++mbb)
98        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
99             mi != miEnd; ++mi) {
100            bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
101            assert(inserted && "multiple MachineInstr -> index mappings");
102            i2miMap_.push_back(mi);
103            miIndex += InstrSlots::NUM;
104        }
105
106    computeIntervals();
107
108    numIntervals += intervals_.size();
109
110    // join intervals if requested
111    if (EnableJoining) joinIntervals();
112    //DEBUG(mf_->viewCFG());
113
114    numIntervalsAfter += intervals_.size();
115
116    // perform a final pass over the instructions and compute spill
117    // weights, coalesce virtual registers and remove identity moves
118    const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
119    const TargetInstrInfo& tii = *tm_->getInstrInfo();
120
121    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
122         mbbi != mbbe; ++mbbi) {
123        MachineBasicBlock* mbb = mbbi;
124        unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
125
126        for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
127             mii != mie; ) {
128            // if the move will be an identity move delete it
129            unsigned srcReg, dstReg;
130            if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
131                rep(srcReg) == rep(dstReg)) {
132                // remove from def list
133                LiveInterval& interval = getOrCreateInterval(rep(dstReg));
134                // remove index -> MachineInstr and
135                // MachineInstr -> index mappings
136                Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
137                if (mi2i != mi2iMap_.end()) {
138                    i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
139                    mi2iMap_.erase(mi2i);
140                }
141                mii = mbbi->erase(mii);
142                ++numPeep;
143            }
144            else {
145                for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
146                    const MachineOperand& mop = mii->getOperand(i);
147                    if (mop.isRegister() && mop.getReg() &&
148                        MRegisterInfo::isVirtualRegister(mop.getReg())) {
149                        // replace register with representative register
150                        unsigned reg = rep(mop.getReg());
151                        mii->SetMachineOperandReg(i, reg);
152
153                        Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
154                        assert(r2iit != r2iMap_.end());
155                        r2iit->second->weight +=
156                            (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
157                    }
158                }
159                ++mii;
160            }
161        }
162    }
163
164    intervals_.sort();
165    DEBUG(std::cerr << "********** INTERVALS **********\n");
166    DEBUG(std::copy(intervals_.begin(), intervals_.end(),
167                    std::ostream_iterator<LiveInterval>(std::cerr, "\n")));
168    DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
169    DEBUG(
170        for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
171             mbbi != mbbe; ++mbbi) {
172            std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
173            for (MachineBasicBlock::iterator mii = mbbi->begin(),
174                     mie = mbbi->end(); mii != mie; ++mii) {
175                std::cerr << getInstructionIndex(mii) << '\t';
176                mii->print(std::cerr, tm_);
177            }
178        });
179
180    return true;
181}
182
183namespace {
184    /// CompareIntervalStar - This is a simple comparison function for interval
185    /// pointers.  It compares based on their starting point.
186    struct CompareIntervalStar {
187        bool operator()(LiveInterval *LHS, LiveInterval* RHS) const {
188            return LHS->start() < RHS->start();
189        }
190    };
191}
192
193std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
194    const LiveInterval& li,
195    VirtRegMap& vrm,
196    int slot)
197{
198    std::vector<LiveInterval*> added;
199
200    assert(li.weight != HUGE_VAL &&
201           "attempt to spill already spilled interval!");
202
203    DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
204          << li << '\n');
205
206    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
207
208    for (LiveInterval::Ranges::const_iterator
209             i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
210        unsigned index = getBaseIndex(i->first);
211        unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
212        for (; index < end; index += InstrSlots::NUM) {
213            // skip deleted instructions
214            while (!getInstructionFromIndex(index)) index += InstrSlots::NUM;
215            MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
216
217        for_operand:
218            for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
219                MachineOperand& mop = mi->getOperand(i);
220                if (mop.isRegister() && mop.getReg() == li.reg) {
221                    if (MachineInstr* fmi =
222                        mri_->foldMemoryOperand(mi, i, slot)) {
223                        lv_->instructionChanged(mi, fmi);
224                        vrm.virtFolded(li.reg, mi, fmi);
225                        mi2iMap_.erase(mi);
226                        i2miMap_[index/InstrSlots::NUM] = fmi;
227                        mi2iMap_[fmi] = index;
228                        MachineBasicBlock& mbb = *mi->getParent();
229                        mi = mbb.insert(mbb.erase(mi), fmi);
230                        ++numFolded;
231                        goto for_operand;
232                    }
233                    else {
234                        // This is tricky. We need to add information in
235                        // the interval about the spill code so we have to
236                        // use our extra load/store slots.
237                        //
238                        // If we have a use we are going to have a load so
239                        // we start the interval from the load slot
240                        // onwards. Otherwise we start from the def slot.
241                        unsigned start = (mop.isUse() ?
242                                          getLoadIndex(index) :
243                                          getDefIndex(index));
244                        // If we have a def we are going to have a store
245                        // right after it so we end the interval after the
246                        // use of the next instruction. Otherwise we end
247                        // after the use of this instruction.
248                        unsigned end = 1 + (mop.isDef() ?
249                                            getStoreIndex(index) :
250                                            getUseIndex(index));
251
252                        // create a new register for this spill
253                        unsigned nReg =
254                            mf_->getSSARegMap()->createVirtualRegister(rc);
255                        mi->SetMachineOperandReg(i, nReg);
256                        vrm.grow();
257                        vrm.assignVirt2StackSlot(nReg, slot);
258                        LiveInterval& nI = getOrCreateInterval(nReg);
259                        assert(nI.empty());
260                        // the spill weight is now infinity as it
261                        // cannot be spilled again
262                        nI.weight = HUGE_VAL;
263                        nI.addRange(start, end);
264                        added.push_back(&nI);
265                        // update live variables
266                        lv_->addVirtualRegisterKilled(nReg, mi);
267                        DEBUG(std::cerr << "\t\t\t\tadded new interval: "
268                              << nI << '\n');
269                    }
270                }
271            }
272        }
273    }
274
275    // FIXME: This method MUST return intervals in sorted order.  If a
276    // particular machine instruction both uses and defines the vreg being
277    // spilled (e.g.,  vr = vr + 1) and if the def is processed before the
278    // use, the list ends up not sorted.
279    //
280    // The proper way to fix this is to process all uses of the vreg before we
281    // process any defs.  However, this would require refactoring the above
282    // blob of code, which I'm not feeling up to right now.
283    std::sort(added.begin(), added.end(), CompareIntervalStar());
284    return added;
285}
286
287void LiveIntervals::printRegName(unsigned reg) const
288{
289    if (MRegisterInfo::isPhysicalRegister(reg))
290        std::cerr << mri_->getName(reg);
291    else
292        std::cerr << "%reg" << reg;
293}
294
295void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
296                                             MachineBasicBlock::iterator mi,
297                                             LiveInterval& interval)
298{
299    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
300    LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
301
302    // Virtual registers may be defined multiple times (due to phi
303    // elimination).  Much of what we do only has to be done once for the vreg.
304    // We use an empty interval to detect the first time we see a vreg.
305    if (interval.empty()) {
306
307       // Get the Idx of the defining instructions.
308       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
309
310       // Loop over all of the blocks that the vreg is defined in.  There are
311       // two cases we have to handle here.  The most common case is a vreg
312       // whose lifetime is contained within a basic block.  In this case there
313       // will be a single kill, in MBB, which comes after the definition.
314       if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
315           // FIXME: what about dead vars?
316           unsigned killIdx;
317           if (vi.Kills[0] != mi)
318               killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
319           else
320               killIdx = defIndex+1;
321
322           // If the kill happens after the definition, we have an intra-block
323           // live range.
324           if (killIdx > defIndex) {
325              assert(vi.AliveBlocks.empty() &&
326                     "Shouldn't be alive across any blocks!");
327              interval.addRange(defIndex, killIdx);
328              return;
329           }
330       }
331
332       // The other case we handle is when a virtual register lives to the end
333       // of the defining block, potentially live across some blocks, then is
334       // live into some number of blocks, but gets killed.  Start by adding a
335       // range that goes from this definition to the end of the defining block.
336       interval.addRange(defIndex,
337                         getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
338
339       // Iterate over all of the blocks that the variable is completely
340       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
341       // live interval.
342       for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
343           if (vi.AliveBlocks[i]) {
344               MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
345               if (!mbb->empty()) {
346                   interval.addRange(
347                       getInstructionIndex(&mbb->front()),
348                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
349               }
350           }
351       }
352
353       // Finally, this virtual register is live from the start of any killing
354       // block to the 'use' slot of the killing instruction.
355       for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
356           MachineInstr *Kill = vi.Kills[i];
357           interval.addRange(getInstructionIndex(Kill->getParent()->begin()),
358                             getUseIndex(getInstructionIndex(Kill))+1);
359       }
360
361    } else {
362       // If this is the second time we see a virtual register definition, it
363       // must be due to phi elimination.  In this case, the defined value will
364       // be live until the end of the basic block it is defined in.
365       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
366       interval.addRange(defIndex,
367                         getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
368    }
369
370    DEBUG(std::cerr << '\n');
371}
372
373void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
374                                              MachineBasicBlock::iterator mi,
375                                              LiveInterval& interval)
376{
377    // A physical register cannot be live across basic block, so its
378    // lifetime must end somewhere in its defining basic block.
379    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
380    typedef LiveVariables::killed_iterator KillIter;
381
382    MachineBasicBlock::iterator e = mbb->end();
383    unsigned baseIndex = getInstructionIndex(mi);
384    unsigned start = getDefIndex(baseIndex);
385    unsigned end = start;
386
387    // If it is not used after definition, it is considered dead at
388    // the instruction defining it. Hence its interval is:
389    // [defSlot(def), defSlot(def)+1)
390    for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
391         ki != ke; ++ki) {
392        if (interval.reg == ki->second) {
393            DEBUG(std::cerr << " dead");
394            end = getDefIndex(start) + 1;
395            goto exit;
396        }
397    }
398
399    // If it is not dead on definition, it must be killed by a
400    // subsequent instruction. Hence its interval is:
401    // [defSlot(def), useSlot(kill)+1)
402    do {
403        ++mi;
404        baseIndex += InstrSlots::NUM;
405        for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
406             ki != ke; ++ki) {
407            if (interval.reg == ki->second) {
408                DEBUG(std::cerr << " killed");
409                end = getUseIndex(baseIndex) + 1;
410                goto exit;
411            }
412        }
413    } while (mi != e);
414
415exit:
416    assert(start < end && "did not find end of interval?");
417    interval.addRange(start, end);
418    DEBUG(std::cerr << '\n');
419}
420
421void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
422                                      MachineBasicBlock::iterator mi,
423                                      unsigned reg)
424{
425    if (MRegisterInfo::isPhysicalRegister(reg)) {
426        if (lv_->getAllocatablePhysicalRegisters()[reg]) {
427            handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg));
428            for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
429                handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as));
430        }
431    }
432    else
433        handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg));
434}
435
436unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
437{
438    Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
439    return (it == mi2iMap_.end() ?
440            std::numeric_limits<unsigned>::max() :
441            it->second);
442}
443
444MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
445{
446    index /= InstrSlots::NUM; // convert index to vector index
447    assert(index < i2miMap_.size() &&
448           "index does not correspond to an instruction");
449    return i2miMap_[index];
450}
451
452/// computeIntervals - computes the live intervals for virtual
453/// registers. for some ordering of the machine instructions [1,N] a
454/// live interval is an interval [i, j) where 1 <= i <= j < N for
455/// which a variable is live
456void LiveIntervals::computeIntervals()
457{
458    DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
459    DEBUG(std::cerr << "********** Function: "
460          << ((Value*)mf_->getFunction())->getName() << '\n');
461
462    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
463         I != E; ++I) {
464        MachineBasicBlock* mbb = I;
465        DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
466
467        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
468             mi != miEnd; ++mi) {
469            const TargetInstrDescriptor& tid =
470                tm_->getInstrInfo()->get(mi->getOpcode());
471            DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
472                  mi->print(std::cerr, tm_));
473
474            // handle implicit defs
475            for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
476                handleRegisterDef(mbb, mi, *id);
477
478            // handle explicit defs
479            for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
480                MachineOperand& mop = mi->getOperand(i);
481                // handle register defs - build intervals
482                if (mop.isRegister() && mop.getReg() && mop.isDef())
483                    handleRegisterDef(mbb, mi, mop.getReg());
484            }
485        }
486    }
487}
488
489unsigned LiveIntervals::rep(unsigned reg)
490{
491    Reg2RegMap::iterator it = r2rMap_.find(reg);
492    if (it != r2rMap_.end())
493        return it->second = rep(it->second);
494    return reg;
495}
496
497void LiveIntervals::joinIntervals()
498{
499    DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
500
501    const TargetInstrInfo& tii = *tm_->getInstrInfo();
502
503    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
504         mbbi != mbbe; ++mbbi) {
505        MachineBasicBlock* mbb = mbbi;
506        DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
507
508        for (MachineBasicBlock::iterator mi = mbb->begin(), mie = mbb->end();
509             mi != mie; ++mi) {
510            const TargetInstrDescriptor& tid = tii.get(mi->getOpcode());
511            DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
512                  mi->print(std::cerr, tm_););
513
514            // we only join virtual registers with allocatable
515            // physical registers since we do not have liveness information
516            // on not allocatable physical registers
517            unsigned regA, regB;
518            if (tii.isMoveInstr(*mi, regA, regB) &&
519                (MRegisterInfo::isVirtualRegister(regA) ||
520                 lv_->getAllocatablePhysicalRegisters()[regA]) &&
521                (MRegisterInfo::isVirtualRegister(regB) ||
522                 lv_->getAllocatablePhysicalRegisters()[regB])) {
523
524                // get representative registers
525                regA = rep(regA);
526                regB = rep(regB);
527
528                // if they are already joined we continue
529                if (regA == regB)
530                    continue;
531
532                Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
533                assert(r2iA != r2iMap_.end() &&
534                       "Found unknown vreg in 'isMoveInstr' instruction");
535                Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
536                assert(r2iB != r2iMap_.end() &&
537                       "Found unknown vreg in 'isMoveInstr' instruction");
538
539                Intervals::iterator intA = r2iA->second;
540                Intervals::iterator intB = r2iB->second;
541
542                // both A and B are virtual registers
543                if (MRegisterInfo::isVirtualRegister(intA->reg) &&
544                    MRegisterInfo::isVirtualRegister(intB->reg)) {
545
546                    const TargetRegisterClass *rcA, *rcB;
547                    rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
548                    rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
549                    // if they are not of the same register class we continue
550                    if (rcA != rcB)
551                        continue;
552
553                    // if their intervals do not overlap we join them
554                    if (!intB->overlaps(*intA)) {
555                        intA->join(*intB);
556                        r2iB->second = r2iA->second;
557                        r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
558                        intervals_.erase(intB);
559                    }
560                } else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
561                           MRegisterInfo::isPhysicalRegister(intB->reg)) {
562                    if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
563                        std::swap(regA, regB);
564                        std::swap(intA, intB);
565                        std::swap(r2iA, r2iB);
566                    }
567
568                    assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
569                           MRegisterInfo::isVirtualRegister(intB->reg) &&
570                           "A must be physical and B must be virtual");
571
572                    const TargetRegisterClass *rcA, *rcB;
573                    rcA = mri_->getRegClass(intA->reg);
574                    rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
575                    // if they are not of the same register class we continue
576                    if (rcA != rcB)
577                        continue;
578
579                    if (!intA->overlaps(*intB) &&
580                        !overlapsAliases(*intA, *intB)) {
581                        intA->join(*intB);
582                        r2iB->second = r2iA->second;
583                        r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
584                        intervals_.erase(intB);
585                    }
586                }
587            }
588        }
589    }
590}
591
592bool LiveIntervals::overlapsAliases(const LiveInterval& lhs,
593                                    const LiveInterval& rhs) const
594{
595    assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
596           "first interval must describe a physical register");
597
598    for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
599        Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
600        assert(r2i != r2iMap_.end() && "alias does not have interval?");
601        if (rhs.overlaps(*r2i->second))
602            return true;
603    }
604
605    return false;
606}
607
608LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg)
609{
610    Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
611    if (r2iit == r2iMap_.end() || r2iit->first != reg) {
612        intervals_.push_back(LiveInterval(reg));
613        r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
614    }
615
616    return *r2iit->second;
617}
618
619LiveInterval::LiveInterval(unsigned r)
620    : reg(r),
621      weight((MRegisterInfo::isPhysicalRegister(r) ?  HUGE_VAL : 0.0F))
622{
623}
624
625bool LiveInterval::spilled() const
626{
627    return (weight == HUGE_VAL &&
628            MRegisterInfo::isVirtualRegister(reg));
629}
630
631// An example for liveAt():
632//
633// this = [1,4), liveAt(0) will return false. The instruction defining
634// this spans slots [0,3]. The interval belongs to an spilled
635// definition of the variable it represents. This is because slot 1 is
636// used (def slot) and spans up to slot 3 (store slot).
637//
638bool LiveInterval::liveAt(unsigned index) const
639{
640    Range dummy(index, index+1);
641    Ranges::const_iterator r = std::upper_bound(ranges.begin(),
642                                                ranges.end(),
643                                                dummy);
644    if (r == ranges.begin())
645        return false;
646
647    --r;
648    return index >= r->first && index < r->second;
649}
650
651// An example for overlaps():
652//
653// 0: A = ...
654// 4: B = ...
655// 8: C = A + B ;; last use of A
656//
657// The live intervals should look like:
658//
659// A = [3, 11)
660// B = [7, x)
661// C = [11, y)
662//
663// A->overlaps(C) should return false since we want to be able to join
664// A and C.
665bool LiveInterval::overlaps(const LiveInterval& other) const
666{
667    Ranges::const_iterator i = ranges.begin();
668    Ranges::const_iterator ie = ranges.end();
669    Ranges::const_iterator j = other.ranges.begin();
670    Ranges::const_iterator je = other.ranges.end();
671    if (i->first < j->first) {
672        i = std::upper_bound(i, ie, *j);
673        if (i != ranges.begin()) --i;
674    }
675    else if (j->first < i->first) {
676        j = std::upper_bound(j, je, *i);
677        if (j != other.ranges.begin()) --j;
678    }
679
680    while (i != ie && j != je) {
681        if (i->first == j->first) {
682            return true;
683        }
684        else {
685            if (i->first > j->first) {
686                swap(i, j);
687                swap(ie, je);
688            }
689            assert(i->first < j->first);
690
691            if (i->second > j->first) {
692                return true;
693            }
694            else {
695                ++i;
696            }
697        }
698    }
699
700    return false;
701}
702
703void LiveInterval::addRange(unsigned start, unsigned end)
704{
705    assert(start < end && "Invalid range to add!");
706    DEBUG(std::cerr << " +[" << start << ',' << end << ")");
707    //assert(start < end && "invalid range?");
708    Range range = std::make_pair(start, end);
709    Ranges::iterator it =
710        ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
711                      range);
712
713    it = mergeRangesForward(it);
714    it = mergeRangesBackward(it);
715}
716
717void LiveInterval::join(const LiveInterval& other)
718{
719    DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other);
720    Ranges::iterator cur = ranges.begin();
721
722    for (Ranges::const_iterator i = other.ranges.begin(),
723             e = other.ranges.end(); i != e; ++i) {
724        cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
725        cur = mergeRangesForward(cur);
726        cur = mergeRangesBackward(cur);
727    }
728    weight += other.weight;
729    ++numJoins;
730    DEBUG(std::cerr << ".  Result = " << *this << "\n");
731}
732
733LiveInterval::Ranges::iterator LiveInterval::
734mergeRangesForward(Ranges::iterator it)
735{
736    Ranges::iterator n;
737    while ((n = next(it)) != ranges.end()) {
738        if (n->first > it->second)
739            break;
740        it->second = std::max(it->second, n->second);
741        n = ranges.erase(n);
742    }
743    return it;
744}
745
746LiveInterval::Ranges::iterator LiveInterval::
747mergeRangesBackward(Ranges::iterator it)
748{
749    while (it != ranges.begin()) {
750        Ranges::iterator p = prior(it);
751        if (it->first > p->second)
752            break;
753
754        it->first = std::min(it->first, p->first);
755        it->second = std::max(it->second, p->second);
756        it = ranges.erase(p);
757    }
758
759    return it;
760}
761
762std::ostream& llvm::operator<<(std::ostream& os, const LiveInterval& li)
763{
764    os << "%reg" << li.reg << ',' << li.weight;
765    if (li.empty())
766        return os << "EMPTY";
767
768    os << " = ";
769    for (LiveInterval::Ranges::const_iterator
770             i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
771        os << "[" << i->first << "," << i->second << ")";
772    }
773    return os;
774}
775