LiveIntervalAnalysis.cpp revision 7ecb38be0a533e7b9c7d3b8e9b5c8a6fa5f6b349
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  // Hidden options for help debugging.
41  cl::opt<bool> DisableReMat("disable-rematerialization",
42                              cl::init(false), cl::Hidden);
43}
44
45STATISTIC(numIntervals, "Number of original intervals");
46STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
47STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
48
49char LiveIntervals::ID = 0;
50namespace {
51  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.addPreserved<LiveVariables>();
56  AU.addRequired<LiveVariables>();
57  AU.addPreservedID(PHIEliminationID);
58  AU.addRequiredID(PHIEliminationID);
59  AU.addRequiredID(TwoAddressInstructionPassID);
60  AU.addRequired<LoopInfo>();
61  MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64void LiveIntervals::releaseMemory() {
65  mi2iMap_.clear();
66  i2miMap_.clear();
67  r2iMap_.clear();
68  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
69    delete ClonedMIs[i];
70}
71
72/// runOnMachineFunction - Register allocate the whole function
73///
74bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
75  mf_ = &fn;
76  tm_ = &fn.getTarget();
77  mri_ = tm_->getRegisterInfo();
78  tii_ = tm_->getInstrInfo();
79  lv_ = &getAnalysis<LiveVariables>();
80  allocatableRegs_ = mri_->getAllocatableSet(fn);
81
82  // Number MachineInstrs and MachineBasicBlocks.
83  // Initialize MBB indexes to a sentinal.
84  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
85
86  unsigned MIIndex = 0;
87  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
88       MBB != E; ++MBB) {
89    unsigned StartIdx = MIIndex;
90
91    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
92         I != E; ++I) {
93      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
94      assert(inserted && "multiple MachineInstr -> index mappings");
95      i2miMap_.push_back(I);
96      MIIndex += InstrSlots::NUM;
97    }
98
99    // Set the MBB2IdxMap entry for this MBB.
100    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
101  }
102
103  computeIntervals();
104
105  numIntervals += getNumIntervals();
106
107  DOUT << "********** INTERVALS **********\n";
108  for (iterator I = begin(), E = end(); I != E; ++I) {
109    I->second.print(DOUT, mri_);
110    DOUT << "\n";
111  }
112
113  numIntervalsAfter += getNumIntervals();
114  DEBUG(dump());
115  return true;
116}
117
118/// print - Implement the dump method.
119void LiveIntervals::print(std::ostream &O, const Module* ) const {
120  O << "********** INTERVALS **********\n";
121  for (const_iterator I = begin(), E = end(); I != E; ++I) {
122    I->second.print(DOUT, mri_);
123    DOUT << "\n";
124  }
125
126  O << "********** MACHINEINSTRS **********\n";
127  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
128       mbbi != mbbe; ++mbbi) {
129    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
130    for (MachineBasicBlock::iterator mii = mbbi->begin(),
131           mie = mbbi->end(); mii != mie; ++mii) {
132      O << getInstructionIndex(mii) << '\t' << *mii;
133    }
134  }
135}
136
137// Not called?
138/// CreateNewLiveInterval - Create a new live interval with the given live
139/// ranges. The new live interval will have an infinite spill weight.
140LiveInterval&
141LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
142                                     const std::vector<LiveRange> &LRs) {
143  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
144
145  // Create a new virtual register for the spill interval.
146  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
147
148  // Replace the old virtual registers in the machine operands with the shiny
149  // new one.
150  for (std::vector<LiveRange>::const_iterator
151         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
152    unsigned Index = getBaseIndex(I->start);
153    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
154
155    for (; Index != End; Index += InstrSlots::NUM) {
156      // Skip deleted instructions
157      while (Index != End && !getInstructionFromIndex(Index))
158        Index += InstrSlots::NUM;
159
160      if (Index == End) break;
161
162      MachineInstr *MI = getInstructionFromIndex(Index);
163
164      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
165        MachineOperand &MOp = MI->getOperand(J);
166        if (MOp.isRegister() && MOp.getReg() == LI->reg)
167          MOp.setReg(NewVReg);
168      }
169    }
170  }
171
172  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
173
174  // The spill weight is now infinity as it cannot be spilled again
175  NewLI.weight = float(HUGE_VAL);
176
177  for (std::vector<LiveRange>::const_iterator
178         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
179    DOUT << "  Adding live range " << *I << " to new interval\n";
180    NewLI.addRange(*I);
181  }
182
183  DOUT << "Created new live interval " << NewLI << "\n";
184  return NewLI;
185}
186
187/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
188/// two addr elimination.
189static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
190                                const TargetInstrInfo *TII) {
191  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
192    MachineOperand &MO1 = MI->getOperand(i);
193    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
194      for (unsigned j = i+1; j < e; ++j) {
195        MachineOperand &MO2 = MI->getOperand(j);
196        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
197            MI->getInstrDescriptor()->
198            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
199          return true;
200      }
201    }
202  }
203  return false;
204}
205
206/// isReMaterializable - Returns true if the definition MI of the specified
207/// val# of the specified interval is re-materializable.
208bool LiveIntervals::isReMaterializable(const LiveInterval &li,
209                                       const VNInfo *ValNo, MachineInstr *MI) {
210  if (DisableReMat)
211    return false;
212
213  if (tii_->isTriviallyReMaterializable(MI))
214    return true;
215
216  int FrameIdx = 0;
217  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
218      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
219    return false;
220
221  // This is a load from fixed stack slot. It can be rematerialized unless it's
222  // re-defined by a two-address instruction.
223  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
224       i != e; ++i) {
225    const VNInfo *VNI = *i;
226    if (VNI == ValNo)
227      continue;
228    unsigned DefIdx = VNI->def;
229    if (DefIdx == ~1U)
230      continue; // Dead val#.
231    MachineInstr *DefMI = (DefIdx == ~0u)
232      ? NULL : getInstructionFromIndex(DefIdx);
233    if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
234      return false;
235  }
236  return true;
237}
238
239bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
240                                         unsigned index, unsigned i,
241                                         int slot, unsigned reg) {
242  MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot);
243  if (fmi) {
244    // Attempt to fold the memory reference into the instruction. If
245    // we can do this, we don't need to insert spill code.
246    if (lv_)
247      lv_->instructionChanged(MI, fmi);
248    MachineBasicBlock &MBB = *MI->getParent();
249    vrm.virtFolded(reg, MI, i, fmi);
250    mi2iMap_.erase(MI);
251    i2miMap_[index/InstrSlots::NUM] = fmi;
252    mi2iMap_[fmi] = index;
253    MI = MBB.insert(MBB.erase(MI), fmi);
254    ++numFolded;
255    return true;
256  }
257  return false;
258}
259
260std::vector<LiveInterval*> LiveIntervals::
261addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
262  // since this is called after the analysis is done we don't know if
263  // LiveVariables is available
264  lv_ = getAnalysisToUpdate<LiveVariables>();
265
266  std::vector<LiveInterval*> added;
267
268  assert(li.weight != HUGE_VALF &&
269         "attempt to spill already spilled interval!");
270
271  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
272  li.print(DOUT, mri_);
273  DOUT << '\n';
274
275  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
276
277  unsigned NumValNums = li.getNumValNums();
278  SmallVector<MachineInstr*, 4> ReMatDefs;
279  ReMatDefs.resize(NumValNums, NULL);
280  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
281  ReMatOrigDefs.resize(NumValNums, NULL);
282  SmallVector<int, 4> ReMatIds;
283  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
284  BitVector ReMatDelete(NumValNums);
285  unsigned slot = VirtRegMap::MAX_STACK_SLOT;
286
287  bool NeedStackSlot = false;
288  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
289       i != e; ++i) {
290    const VNInfo *VNI = *i;
291    unsigned VN = VNI->id;
292    unsigned DefIdx = VNI->def;
293    if (DefIdx == ~1U)
294      continue; // Dead val#.
295    // Is the def for the val# rematerializable?
296    MachineInstr *DefMI = (DefIdx == ~0u)
297      ? NULL : getInstructionFromIndex(DefIdx);
298    if (DefMI && isReMaterializable(li, VNI, DefMI)) {
299      // Remember how to remat the def of this val#.
300      ReMatOrigDefs[VN] = DefMI;
301      // Original def may be modified so we have to make a copy here. vrm must
302      // delete these!
303      ReMatDefs[VN] = DefMI = DefMI->clone();
304      vrm.setVirtIsReMaterialized(reg, DefMI);
305
306      bool CanDelete = true;
307      for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
308        unsigned KillIdx = VNI->kills[j];
309        MachineInstr *KillMI = (KillIdx & 1)
310          ? NULL : getInstructionFromIndex(KillIdx);
311        // Kill is a phi node, not all of its uses can be rematerialized.
312        // It must not be deleted.
313        if (!KillMI) {
314          CanDelete = false;
315          // Need a stack slot if there is any live range where uses cannot be
316          // rematerialized.
317          NeedStackSlot = true;
318          break;
319        }
320      }
321
322      if (CanDelete)
323        ReMatDelete.set(VN);
324    } else {
325      // Need a stack slot if there is any live range where uses cannot be
326      // rematerialized.
327      NeedStackSlot = true;
328    }
329  }
330
331  // One stack slot per live interval.
332  if (NeedStackSlot)
333    slot = vrm.assignVirt2StackSlot(reg);
334
335  for (LiveInterval::Ranges::const_iterator
336         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
337    MachineInstr *DefMI = ReMatDefs[I->valno->id];
338    MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
339    bool DefIsReMat = DefMI != NULL;
340    bool CanDelete = ReMatDelete[I->valno->id];
341    int LdSlot = 0;
342    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
343    unsigned index = getBaseIndex(I->start);
344    unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
345    for (; index != end; index += InstrSlots::NUM) {
346      // skip deleted instructions
347      while (index != end && !getInstructionFromIndex(index))
348        index += InstrSlots::NUM;
349      if (index == end) break;
350
351      MachineInstr *MI = getInstructionFromIndex(index);
352
353    RestartInstruction:
354      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
355        MachineOperand& mop = MI->getOperand(i);
356        if (mop.isRegister() && mop.getReg() == li.reg) {
357          if (DefIsReMat) {
358            // If this is the rematerializable definition MI itself and
359            // all of its uses are rematerialized, simply delete it.
360            if (MI == OrigDefMI) {
361              if (CanDelete) {
362                RemoveMachineInstrFromMaps(MI);
363                MI->eraseFromParent();
364                break;
365              } else if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
366                // Folding the load/store can completely change the instruction
367                // in unpredictable ways, rescan it from the beginning.
368                goto RestartInstruction;
369            } else if (isLoadSS &&
370                       tryFoldMemoryOperand(MI, vrm, index, i, LdSlot, li.reg)){
371              // FIXME: Other rematerializable loads can be folded as well.
372              // Folding the load/store can completely change the
373              // instruction in unpredictable ways, rescan it from
374              // the beginning.
375              goto RestartInstruction;
376            }
377          } else {
378            if (tryFoldMemoryOperand(MI, vrm, index, i, slot, li.reg))
379              // Folding the load/store can completely change the instruction in
380              // unpredictable ways, rescan it from the beginning.
381              goto RestartInstruction;
382          }
383
384          // Create a new virtual register for the spill interval.
385          unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
386
387          // Scan all of the operands of this instruction rewriting operands
388          // to use NewVReg instead of li.reg as appropriate.  We do this for
389          // two reasons:
390          //
391          //   1. If the instr reads the same spilled vreg multiple times, we
392          //      want to reuse the NewVReg.
393          //   2. If the instr is a two-addr instruction, we are required to
394          //      keep the src/dst regs pinned.
395          //
396          // Keep track of whether we replace a use and/or def so that we can
397          // create the spill interval with the appropriate range.
398          mop.setReg(NewVReg);
399
400          bool HasUse = mop.isUse();
401          bool HasDef = mop.isDef();
402          for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
403            if (MI->getOperand(j).isReg() &&
404                MI->getOperand(j).getReg() == li.reg) {
405              MI->getOperand(j).setReg(NewVReg);
406              HasUse |= MI->getOperand(j).isUse();
407              HasDef |= MI->getOperand(j).isDef();
408            }
409          }
410
411          vrm.grow();
412          if (DefIsReMat) {
413            vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
414            if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
415              // Each valnum may have its own remat id.
416              ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
417            } else {
418              vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
419            }
420            if (!CanDelete || (HasUse && HasDef)) {
421              // If this is a two-addr instruction then its use operands are
422              // rematerializable but its def is not. It should be assigned a
423              // stack slot.
424              vrm.assignVirt2StackSlot(NewVReg, slot);
425            }
426          } else {
427            vrm.assignVirt2StackSlot(NewVReg, slot);
428          }
429
430          // create a new register interval for this spill / remat.
431          LiveInterval &nI = getOrCreateInterval(NewVReg);
432          assert(nI.empty());
433
434          // the spill weight is now infinity as it
435          // cannot be spilled again
436          nI.weight = HUGE_VALF;
437
438          if (HasUse) {
439            LiveRange LR(getLoadIndex(index), getUseIndex(index),
440                         nI.getNextValue(~0U, 0));
441            DOUT << " +" << LR;
442            nI.addRange(LR);
443          }
444          if (HasDef) {
445            LiveRange LR(getDefIndex(index), getStoreIndex(index),
446                         nI.getNextValue(~0U, 0));
447            DOUT << " +" << LR;
448            nI.addRange(LR);
449          }
450
451          added.push_back(&nI);
452
453          // update live variables if it is available
454          if (lv_)
455            lv_->addVirtualRegisterKilled(NewVReg, MI);
456
457          DOUT << "\t\t\t\tadded new interval: ";
458          nI.print(DOUT, mri_);
459          DOUT << '\n';
460        }
461      }
462    }
463  }
464
465  return added;
466}
467
468void LiveIntervals::printRegName(unsigned reg) const {
469  if (MRegisterInfo::isPhysicalRegister(reg))
470    cerr << mri_->getName(reg);
471  else
472    cerr << "%reg" << reg;
473}
474
475void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
476                                             MachineBasicBlock::iterator mi,
477                                             unsigned MIIdx,
478                                             LiveInterval &interval) {
479  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
480  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
481
482  // Virtual registers may be defined multiple times (due to phi
483  // elimination and 2-addr elimination).  Much of what we do only has to be
484  // done once for the vreg.  We use an empty interval to detect the first
485  // time we see a vreg.
486  if (interval.empty()) {
487    // Get the Idx of the defining instructions.
488    unsigned defIndex = getDefIndex(MIIdx);
489    VNInfo *ValNo;
490    unsigned SrcReg, DstReg;
491    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
492      ValNo = interval.getNextValue(defIndex, 0);
493    else
494      ValNo = interval.getNextValue(defIndex, SrcReg);
495
496    assert(ValNo->id == 0 && "First value in interval is not 0?");
497
498    // Loop over all of the blocks that the vreg is defined in.  There are
499    // two cases we have to handle here.  The most common case is a vreg
500    // whose lifetime is contained within a basic block.  In this case there
501    // will be a single kill, in MBB, which comes after the definition.
502    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
503      // FIXME: what about dead vars?
504      unsigned killIdx;
505      if (vi.Kills[0] != mi)
506        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
507      else
508        killIdx = defIndex+1;
509
510      // If the kill happens after the definition, we have an intra-block
511      // live range.
512      if (killIdx > defIndex) {
513        assert(vi.AliveBlocks.none() &&
514               "Shouldn't be alive across any blocks!");
515        LiveRange LR(defIndex, killIdx, ValNo);
516        interval.addRange(LR);
517        DOUT << " +" << LR << "\n";
518        interval.addKill(*ValNo, killIdx);
519        return;
520      }
521    }
522
523    // The other case we handle is when a virtual register lives to the end
524    // of the defining block, potentially live across some blocks, then is
525    // live into some number of blocks, but gets killed.  Start by adding a
526    // range that goes from this definition to the end of the defining block.
527    LiveRange NewLR(defIndex,
528                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
529                    ValNo);
530    DOUT << " +" << NewLR;
531    interval.addRange(NewLR);
532
533    // Iterate over all of the blocks that the variable is completely
534    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
535    // live interval.
536    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
537      if (vi.AliveBlocks[i]) {
538        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
539        if (!MBB->empty()) {
540          LiveRange LR(getMBBStartIdx(i),
541                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
542                       ValNo);
543          interval.addRange(LR);
544          DOUT << " +" << LR;
545        }
546      }
547    }
548
549    // Finally, this virtual register is live from the start of any killing
550    // block to the 'use' slot of the killing instruction.
551    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
552      MachineInstr *Kill = vi.Kills[i];
553      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
554      LiveRange LR(getMBBStartIdx(Kill->getParent()),
555                   killIdx, ValNo);
556      interval.addRange(LR);
557      interval.addKill(*ValNo, killIdx);
558      DOUT << " +" << LR;
559    }
560
561  } else {
562    // If this is the second time we see a virtual register definition, it
563    // must be due to phi elimination or two addr elimination.  If this is
564    // the result of two address elimination, then the vreg is one of the
565    // def-and-use register operand.
566    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
567      // If this is a two-address definition, then we have already processed
568      // the live range.  The only problem is that we didn't realize there
569      // are actually two values in the live interval.  Because of this we
570      // need to take the LiveRegion that defines this register and split it
571      // into two values.
572      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
573      unsigned RedefIndex = getDefIndex(MIIdx);
574
575      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
576      VNInfo *OldValNo = OldLR->valno;
577      unsigned OldEnd = OldLR->end;
578
579      // Delete the initial value, which should be short and continuous,
580      // because the 2-addr copy must be in the same MBB as the redef.
581      interval.removeRange(DefIndex, RedefIndex);
582
583      // Two-address vregs should always only be redefined once.  This means
584      // that at this point, there should be exactly one value number in it.
585      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
586
587      // The new value number (#1) is defined by the instruction we claimed
588      // defined value #0.
589      VNInfo *ValNo = interval.getNextValue(0, 0);
590      interval.copyValNumInfo(*ValNo, *OldValNo);
591
592      // Value#0 is now defined by the 2-addr instruction.
593      OldValNo->def = RedefIndex;
594      OldValNo->reg = 0;
595
596      // Add the new live interval which replaces the range for the input copy.
597      LiveRange LR(DefIndex, RedefIndex, ValNo);
598      DOUT << " replace range with " << LR;
599      interval.addRange(LR);
600      interval.addKill(*ValNo, RedefIndex);
601      interval.removeKills(*ValNo, RedefIndex, OldEnd);
602
603      // If this redefinition is dead, we need to add a dummy unit live
604      // range covering the def slot.
605      if (lv_->RegisterDefIsDead(mi, interval.reg))
606        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
607
608      DOUT << " RESULT: ";
609      interval.print(DOUT, mri_);
610
611    } else {
612      // Otherwise, this must be because of phi elimination.  If this is the
613      // first redefinition of the vreg that we have seen, go back and change
614      // the live range in the PHI block to be a different value number.
615      if (interval.containsOneValue()) {
616        assert(vi.Kills.size() == 1 &&
617               "PHI elimination vreg should have one kill, the PHI itself!");
618
619        // Remove the old range that we now know has an incorrect number.
620        VNInfo *VNI = interval.getFirstValNumInfo();
621        MachineInstr *Killer = vi.Kills[0];
622        unsigned Start = getMBBStartIdx(Killer->getParent());
623        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
624        DOUT << " Removing [" << Start << "," << End << "] from: ";
625        interval.print(DOUT, mri_); DOUT << "\n";
626        interval.removeRange(Start, End);
627        interval.addKill(*VNI, Start+1); // odd # means phi node
628        DOUT << " RESULT: "; interval.print(DOUT, mri_);
629
630        // Replace the interval with one of a NEW value number.  Note that this
631        // value number isn't actually defined by an instruction, weird huh? :)
632        LiveRange LR(Start, End, interval.getNextValue(~0, 0));
633        DOUT << " replace range with " << LR;
634        interval.addRange(LR);
635        interval.addKill(*LR.valno, End);
636        DOUT << " RESULT: "; interval.print(DOUT, mri_);
637      }
638
639      // In the case of PHI elimination, each variable definition is only
640      // live until the end of the block.  We've already taken care of the
641      // rest of the live range.
642      unsigned defIndex = getDefIndex(MIIdx);
643
644      VNInfo *ValNo;
645      unsigned SrcReg, DstReg;
646      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
647        ValNo = interval.getNextValue(defIndex, 0);
648      else
649        ValNo = interval.getNextValue(defIndex, SrcReg);
650
651      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
652      LiveRange LR(defIndex, killIndex, ValNo);
653      interval.addRange(LR);
654      interval.addKill(*ValNo, killIndex-1); // odd # means phi node
655      DOUT << " +" << LR;
656    }
657  }
658
659  DOUT << '\n';
660}
661
662void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
663                                              MachineBasicBlock::iterator mi,
664                                              unsigned MIIdx,
665                                              LiveInterval &interval,
666                                              unsigned SrcReg) {
667  // A physical register cannot be live across basic block, so its
668  // lifetime must end somewhere in its defining basic block.
669  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
670
671  unsigned baseIndex = MIIdx;
672  unsigned start = getDefIndex(baseIndex);
673  unsigned end = start;
674
675  // If it is not used after definition, it is considered dead at
676  // the instruction defining it. Hence its interval is:
677  // [defSlot(def), defSlot(def)+1)
678  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
679    DOUT << " dead";
680    end = getDefIndex(start) + 1;
681    goto exit;
682  }
683
684  // If it is not dead on definition, it must be killed by a
685  // subsequent instruction. Hence its interval is:
686  // [defSlot(def), useSlot(kill)+1)
687  while (++mi != MBB->end()) {
688    baseIndex += InstrSlots::NUM;
689    if (lv_->KillsRegister(mi, interval.reg)) {
690      DOUT << " killed";
691      end = getUseIndex(baseIndex) + 1;
692      goto exit;
693    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
694      // Another instruction redefines the register before it is ever read.
695      // Then the register is essentially dead at the instruction that defines
696      // it. Hence its interval is:
697      // [defSlot(def), defSlot(def)+1)
698      DOUT << " dead";
699      end = getDefIndex(start) + 1;
700      goto exit;
701    }
702  }
703
704  // The only case we should have a dead physreg here without a killing or
705  // instruction where we know it's dead is if it is live-in to the function
706  // and never used.
707  assert(!SrcReg && "physreg was not killed in defining block!");
708  end = getDefIndex(start) + 1;  // It's dead.
709
710exit:
711  assert(start < end && "did not find end of interval?");
712
713  // Already exists? Extend old live interval.
714  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
715  VNInfo *ValNo = (OldLR != interval.end())
716    ? OldLR->valno : interval.getNextValue(start, SrcReg);
717  LiveRange LR(start, end, ValNo);
718  interval.addRange(LR);
719  interval.addKill(*LR.valno, end);
720  DOUT << " +" << LR << '\n';
721}
722
723void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
724                                      MachineBasicBlock::iterator MI,
725                                      unsigned MIIdx,
726                                      unsigned reg) {
727  if (MRegisterInfo::isVirtualRegister(reg))
728    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
729  else if (allocatableRegs_[reg]) {
730    unsigned SrcReg, DstReg;
731    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
732      SrcReg = 0;
733    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
734    // Def of a register also defines its sub-registers.
735    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
736      // Avoid processing some defs more than once.
737      if (!MI->findRegisterDefOperand(*AS))
738        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
739  }
740}
741
742void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
743                                         unsigned MIIdx,
744                                         LiveInterval &interval, bool isAlias) {
745  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
746
747  // Look for kills, if it reaches a def before it's killed, then it shouldn't
748  // be considered a livein.
749  MachineBasicBlock::iterator mi = MBB->begin();
750  unsigned baseIndex = MIIdx;
751  unsigned start = baseIndex;
752  unsigned end = start;
753  while (mi != MBB->end()) {
754    if (lv_->KillsRegister(mi, interval.reg)) {
755      DOUT << " killed";
756      end = getUseIndex(baseIndex) + 1;
757      goto exit;
758    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
759      // Another instruction redefines the register before it is ever read.
760      // Then the register is essentially dead at the instruction that defines
761      // it. Hence its interval is:
762      // [defSlot(def), defSlot(def)+1)
763      DOUT << " dead";
764      end = getDefIndex(start) + 1;
765      goto exit;
766    }
767
768    baseIndex += InstrSlots::NUM;
769    ++mi;
770  }
771
772exit:
773  // Live-in register might not be used at all.
774  if (end == MIIdx) {
775    if (isAlias) {
776      DOUT << " dead";
777      end = getDefIndex(MIIdx) + 1;
778    } else {
779      DOUT << " live through";
780      end = baseIndex;
781    }
782  }
783
784  LiveRange LR(start, end, interval.getNextValue(start, 0));
785  interval.addRange(LR);
786  interval.addKill(*LR.valno, end);
787  DOUT << " +" << LR << '\n';
788}
789
790/// computeIntervals - computes the live intervals for virtual
791/// registers. for some ordering of the machine instructions [1,N] a
792/// live interval is an interval [i, j) where 1 <= i <= j < N for
793/// which a variable is live
794void LiveIntervals::computeIntervals() {
795  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
796       << "********** Function: "
797       << ((Value*)mf_->getFunction())->getName() << '\n';
798  // Track the index of the current machine instr.
799  unsigned MIIndex = 0;
800  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
801       MBBI != E; ++MBBI) {
802    MachineBasicBlock *MBB = MBBI;
803    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
804
805    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
806
807    if (MBB->livein_begin() != MBB->livein_end()) {
808      // Create intervals for live-ins to this BB first.
809      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
810             LE = MBB->livein_end(); LI != LE; ++LI) {
811        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
812        // Multiple live-ins can alias the same register.
813        for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
814          if (!hasInterval(*AS))
815            handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
816                                 true);
817      }
818    }
819
820    for (; MI != miEnd; ++MI) {
821      DOUT << MIIndex << "\t" << *MI;
822
823      // Handle defs.
824      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
825        MachineOperand &MO = MI->getOperand(i);
826        // handle register defs - build intervals
827        if (MO.isRegister() && MO.getReg() && MO.isDef())
828          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
829      }
830
831      MIIndex += InstrSlots::NUM;
832    }
833  }
834}
835
836LiveInterval LiveIntervals::createInterval(unsigned reg) {
837  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
838                       HUGE_VALF : 0.0F;
839  return LiveInterval(reg, Weight);
840}
841