LiveIntervalAnalysis.cpp revision 8640f4e666086cc6e7447dc164105e428e6cb81a
1//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervals.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "Support/CommandLine.h"
31#include "Support/Debug.h"
32#include "Support/Statistic.h"
33#include "Support/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36#include <iostream>
37
38using namespace llvm;
39
40namespace {
41    RegisterAnalysis<LiveIntervals> X("liveintervals",
42                                      "Live Interval Analysis");
43
44    Statistic<> numIntervals
45    ("liveintervals", "Number of original intervals");
46
47    Statistic<> numIntervalsAfter
48    ("liveintervals", "Number of intervals after coalescing");
49
50    Statistic<> numJoins
51    ("liveintervals", "Number of interval joins performed");
52
53    Statistic<> numPeep
54    ("liveintervals", "Number of identity moves eliminated after coalescing");
55
56    Statistic<> numFolded
57    ("liveintervals", "Number of loads/stores folded into instructions");
58
59    cl::opt<bool>
60    EnableJoining("join-liveintervals",
61                  cl::desc("Join compatible live intervals"),
62                  cl::init(true));
63};
64
65void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
66{
67    AU.addPreserved<LiveVariables>();
68    AU.addRequired<LiveVariables>();
69    AU.addPreservedID(PHIEliminationID);
70    AU.addRequiredID(PHIEliminationID);
71    AU.addRequiredID(TwoAddressInstructionPassID);
72    AU.addRequired<LoopInfo>();
73    MachineFunctionPass::getAnalysisUsage(AU);
74}
75
76void LiveIntervals::releaseMemory()
77{
78    mi2iMap_.clear();
79    i2miMap_.clear();
80    r2iMap_.clear();
81    r2rMap_.clear();
82    intervals_.clear();
83}
84
85
86/// runOnMachineFunction - Register allocate the whole function
87///
88bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
89    mf_ = &fn;
90    tm_ = &fn.getTarget();
91    mri_ = tm_->getRegisterInfo();
92    lv_ = &getAnalysis<LiveVariables>();
93
94    // number MachineInstrs
95    unsigned miIndex = 0;
96    for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
97         mbb != mbbEnd; ++mbb)
98        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
99             mi != miEnd; ++mi) {
100            bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
101            assert(inserted && "multiple MachineInstr -> index mappings");
102            i2miMap_.push_back(mi);
103            miIndex += InstrSlots::NUM;
104        }
105
106    computeIntervals();
107
108    numIntervals += intervals_.size();
109
110    // join intervals if requested
111    if (EnableJoining) joinIntervals();
112
113    numIntervalsAfter += intervals_.size();
114
115    // perform a final pass over the instructions and compute spill
116    // weights, coalesce virtual registers and remove identity moves
117    const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
118    const TargetInstrInfo& tii = *tm_->getInstrInfo();
119
120    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
121         mbbi != mbbe; ++mbbi) {
122        MachineBasicBlock* mbb = mbbi;
123        unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
124
125        for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
126             mii != mie; ) {
127            // if the move will be an identity move delete it
128            unsigned srcReg, dstReg;
129            if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
130                rep(srcReg) == rep(dstReg)) {
131                // remove from def list
132                LiveInterval& interval = getOrCreateInterval(rep(dstReg));
133                // remove index -> MachineInstr and
134                // MachineInstr -> index mappings
135                Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
136                if (mi2i != mi2iMap_.end()) {
137                    i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
138                    mi2iMap_.erase(mi2i);
139                }
140                mii = mbbi->erase(mii);
141                ++numPeep;
142            }
143            else {
144                for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
145                    const MachineOperand& mop = mii->getOperand(i);
146                    if (mop.isRegister() && mop.getReg() &&
147                        MRegisterInfo::isVirtualRegister(mop.getReg())) {
148                        // replace register with representative register
149                        unsigned reg = rep(mop.getReg());
150                        mii->SetMachineOperandReg(i, reg);
151
152                        Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
153                        assert(r2iit != r2iMap_.end());
154                        r2iit->second->weight +=
155                            (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
156                    }
157                }
158                ++mii;
159            }
160        }
161    }
162
163    intervals_.sort();
164    DEBUG(std::cerr << "********** INTERVALS **********\n");
165    DEBUG(std::copy(intervals_.begin(), intervals_.end(),
166                    std::ostream_iterator<LiveInterval>(std::cerr, "\n")));
167    DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
168    DEBUG(
169        for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
170             mbbi != mbbe; ++mbbi) {
171            std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
172            for (MachineBasicBlock::iterator mii = mbbi->begin(),
173                     mie = mbbi->end(); mii != mie; ++mii) {
174                std::cerr << getInstructionIndex(mii) << '\t';
175                mii->print(std::cerr, tm_);
176            }
177        });
178
179    return true;
180}
181
182namespace {
183    /// CompareIntervalStar - This is a simple comparison function for interval
184    /// pointers.  It compares based on their starting point.
185    struct CompareIntervalStar {
186        bool operator()(LiveInterval *LHS, LiveInterval* RHS) const {
187            return LHS->start() < RHS->start();
188        }
189    };
190}
191
192std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
193    const LiveInterval& li,
194    VirtRegMap& vrm,
195    int slot)
196{
197    std::vector<LiveInterval*> added;
198
199    assert(li.weight != HUGE_VAL &&
200           "attempt to spill already spilled interval!");
201
202    DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
203          << li << '\n');
204
205    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
206
207    for (LiveInterval::Ranges::const_iterator
208              i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
209        unsigned index = getBaseIndex(i->first);
210        unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
211        for (; index != end; index += InstrSlots::NUM) {
212            // skip deleted instructions
213            while (index != end && !getInstructionFromIndex(index))
214                index += InstrSlots::NUM;
215            if (index == end) break;
216
217            MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
218
219        for_operand:
220            for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
221                MachineOperand& mop = mi->getOperand(i);
222                if (mop.isRegister() && mop.getReg() == li.reg) {
223                    if (MachineInstr* fmi =
224                        mri_->foldMemoryOperand(mi, i, slot)) {
225                        lv_->instructionChanged(mi, fmi);
226                        vrm.virtFolded(li.reg, mi, fmi);
227                        mi2iMap_.erase(mi);
228                        i2miMap_[index/InstrSlots::NUM] = fmi;
229                        mi2iMap_[fmi] = index;
230                        MachineBasicBlock& mbb = *mi->getParent();
231                        mi = mbb.insert(mbb.erase(mi), fmi);
232                        ++numFolded;
233                        goto for_operand;
234                    }
235                    else {
236                        // This is tricky. We need to add information in
237                        // the interval about the spill code so we have to
238                        // use our extra load/store slots.
239                        //
240                        // If we have a use we are going to have a load so
241                        // we start the interval from the load slot
242                        // onwards. Otherwise we start from the def slot.
243                        unsigned start = (mop.isUse() ?
244                                          getLoadIndex(index) :
245                                          getDefIndex(index));
246                        // If we have a def we are going to have a store
247                        // right after it so we end the interval after the
248                        // use of the next instruction. Otherwise we end
249                        // after the use of this instruction.
250                        unsigned end = 1 + (mop.isDef() ?
251                                            getStoreIndex(index) :
252                                            getUseIndex(index));
253
254                        // create a new register for this spill
255                        unsigned nReg =
256                            mf_->getSSARegMap()->createVirtualRegister(rc);
257                        mi->SetMachineOperandReg(i, nReg);
258                        vrm.grow();
259                        vrm.assignVirt2StackSlot(nReg, slot);
260                        LiveInterval& nI = getOrCreateInterval(nReg);
261                        assert(nI.empty());
262                        // the spill weight is now infinity as it
263                        // cannot be spilled again
264                        nI.weight = HUGE_VAL;
265                        nI.addRange(start, end);
266                        added.push_back(&nI);
267                        // update live variables
268                        lv_->addVirtualRegisterKilled(nReg, mi);
269                        DEBUG(std::cerr << "\t\t\t\tadded new interval: "
270                              << nI << '\n');
271                    }
272                }
273            }
274        }
275    }
276
277    // FIXME: This method MUST return intervals in sorted order.  If a
278    // particular machine instruction both uses and defines the vreg being
279    // spilled (e.g.,  vr = vr + 1) and if the def is processed before the
280    // use, the list ends up not sorted.
281    //
282    // The proper way to fix this is to process all uses of the vreg before we
283    // process any defs.  However, this would require refactoring the above
284    // blob of code, which I'm not feeling up to right now.
285    std::sort(added.begin(), added.end(), CompareIntervalStar());
286    return added;
287}
288
289void LiveIntervals::printRegName(unsigned reg) const
290{
291    if (MRegisterInfo::isPhysicalRegister(reg))
292        std::cerr << mri_->getName(reg);
293    else
294        std::cerr << "%reg" << reg;
295}
296
297void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
298                                             MachineBasicBlock::iterator mi,
299                                             LiveInterval& interval)
300{
301    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
302    LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
303
304    // Virtual registers may be defined multiple times (due to phi
305    // elimination).  Much of what we do only has to be done once for the vreg.
306    // We use an empty interval to detect the first time we see a vreg.
307    if (interval.empty()) {
308
309       // Get the Idx of the defining instructions.
310       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
311
312       // Loop over all of the blocks that the vreg is defined in.  There are
313       // two cases we have to handle here.  The most common case is a vreg
314       // whose lifetime is contained within a basic block.  In this case there
315       // will be a single kill, in MBB, which comes after the definition.
316       if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
317           // FIXME: what about dead vars?
318           unsigned killIdx;
319           if (vi.Kills[0] != mi)
320               killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
321           else
322               killIdx = defIndex+1;
323
324           // If the kill happens after the definition, we have an intra-block
325           // live range.
326           if (killIdx > defIndex) {
327              assert(vi.AliveBlocks.empty() &&
328                     "Shouldn't be alive across any blocks!");
329              interval.addRange(defIndex, killIdx);
330              return;
331           }
332       }
333
334       // The other case we handle is when a virtual register lives to the end
335       // of the defining block, potentially live across some blocks, then is
336       // live into some number of blocks, but gets killed.  Start by adding a
337       // range that goes from this definition to the end of the defining block.
338       interval.addRange(defIndex,
339                         getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
340
341       // Iterate over all of the blocks that the variable is completely
342       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
343       // live interval.
344       for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
345           if (vi.AliveBlocks[i]) {
346               MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
347               if (!mbb->empty()) {
348                   interval.addRange(
349                       getInstructionIndex(&mbb->front()),
350                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
351               }
352           }
353       }
354
355       // Finally, this virtual register is live from the start of any killing
356       // block to the 'use' slot of the killing instruction.
357       for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
358           MachineInstr *Kill = vi.Kills[i];
359           interval.addRange(getInstructionIndex(Kill->getParent()->begin()),
360                             getUseIndex(getInstructionIndex(Kill))+1);
361       }
362
363    } else {
364       // If this is the second time we see a virtual register definition, it
365       // must be due to phi elimination.  In this case, the defined value will
366       // be live until the end of the basic block it is defined in.
367       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
368       interval.addRange(defIndex,
369                         getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
370    }
371
372    DEBUG(std::cerr << '\n');
373}
374
375void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
376                                              MachineBasicBlock::iterator mi,
377                                              LiveInterval& interval)
378{
379    // A physical register cannot be live across basic block, so its
380    // lifetime must end somewhere in its defining basic block.
381    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
382    typedef LiveVariables::killed_iterator KillIter;
383
384    MachineBasicBlock::iterator e = mbb->end();
385    unsigned baseIndex = getInstructionIndex(mi);
386    unsigned start = getDefIndex(baseIndex);
387    unsigned end = start;
388
389    // If it is not used after definition, it is considered dead at
390    // the instruction defining it. Hence its interval is:
391    // [defSlot(def), defSlot(def)+1)
392    for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
393         ki != ke; ++ki) {
394        if (interval.reg == ki->second) {
395            DEBUG(std::cerr << " dead");
396            end = getDefIndex(start) + 1;
397            goto exit;
398        }
399    }
400
401    // If it is not dead on definition, it must be killed by a
402    // subsequent instruction. Hence its interval is:
403    // [defSlot(def), useSlot(kill)+1)
404    do {
405        ++mi;
406        baseIndex += InstrSlots::NUM;
407        for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
408             ki != ke; ++ki) {
409            if (interval.reg == ki->second) {
410                DEBUG(std::cerr << " killed");
411                end = getUseIndex(baseIndex) + 1;
412                goto exit;
413            }
414        }
415    } while (mi != e);
416
417exit:
418    assert(start < end && "did not find end of interval?");
419    interval.addRange(start, end);
420    DEBUG(std::cerr << '\n');
421}
422
423void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
424                                      MachineBasicBlock::iterator mi,
425                                      unsigned reg)
426{
427    if (MRegisterInfo::isPhysicalRegister(reg)) {
428        if (lv_->getAllocatablePhysicalRegisters()[reg]) {
429            handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg));
430            for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
431                handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as));
432        }
433    }
434    else
435        handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg));
436}
437
438unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
439{
440    Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
441    return (it == mi2iMap_.end() ?
442            std::numeric_limits<unsigned>::max() :
443            it->second);
444}
445
446MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
447{
448    index /= InstrSlots::NUM; // convert index to vector index
449    assert(index < i2miMap_.size() &&
450           "index does not correspond to an instruction");
451    return i2miMap_[index];
452}
453
454/// computeIntervals - computes the live intervals for virtual
455/// registers. for some ordering of the machine instructions [1,N] a
456/// live interval is an interval [i, j) where 1 <= i <= j < N for
457/// which a variable is live
458void LiveIntervals::computeIntervals()
459{
460    DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
461    DEBUG(std::cerr << "********** Function: "
462          << ((Value*)mf_->getFunction())->getName() << '\n');
463
464    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
465         I != E; ++I) {
466        MachineBasicBlock* mbb = I;
467        DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
468
469        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
470             mi != miEnd; ++mi) {
471            const TargetInstrDescriptor& tid =
472                tm_->getInstrInfo()->get(mi->getOpcode());
473            DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
474                  mi->print(std::cerr, tm_));
475
476            // handle implicit defs
477            for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
478                handleRegisterDef(mbb, mi, *id);
479
480            // handle explicit defs
481            for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
482                MachineOperand& mop = mi->getOperand(i);
483                // handle register defs - build intervals
484                if (mop.isRegister() && mop.getReg() && mop.isDef())
485                    handleRegisterDef(mbb, mi, mop.getReg());
486            }
487        }
488    }
489}
490
491unsigned LiveIntervals::rep(unsigned reg)
492{
493    Reg2RegMap::iterator it = r2rMap_.find(reg);
494    if (it != r2rMap_.end())
495        return it->second = rep(it->second);
496    return reg;
497}
498
499void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
500    DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
501    const TargetInstrInfo& tii = *tm_->getInstrInfo();
502
503    for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
504         mi != mie; ++mi) {
505        const TargetInstrDescriptor& tid = tii.get(mi->getOpcode());
506        DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
507              mi->print(std::cerr, tm_););
508
509        // we only join virtual registers with allocatable
510        // physical registers since we do not have liveness information
511        // on not allocatable physical registers
512        unsigned regA, regB;
513        if (tii.isMoveInstr(*mi, regA, regB) &&
514            (MRegisterInfo::isVirtualRegister(regA) ||
515             lv_->getAllocatablePhysicalRegisters()[regA]) &&
516            (MRegisterInfo::isVirtualRegister(regB) ||
517             lv_->getAllocatablePhysicalRegisters()[regB])) {
518
519            // get representative registers
520            regA = rep(regA);
521            regB = rep(regB);
522
523            // if they are already joined we continue
524            if (regA == regB)
525                continue;
526
527            Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
528            assert(r2iA != r2iMap_.end() &&
529                   "Found unknown vreg in 'isMoveInstr' instruction");
530            Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
531            assert(r2iB != r2iMap_.end() &&
532                   "Found unknown vreg in 'isMoveInstr' instruction");
533
534            Intervals::iterator intA = r2iA->second;
535            Intervals::iterator intB = r2iB->second;
536
537            // both A and B are virtual registers
538            if (MRegisterInfo::isVirtualRegister(intA->reg) &&
539                MRegisterInfo::isVirtualRegister(intB->reg)) {
540
541                const TargetRegisterClass *rcA, *rcB;
542                rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
543                rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
544                // if they are not of the same register class we continue
545                if (rcA != rcB)
546                    continue;
547
548                // if their intervals do not overlap we join them
549                if (!intB->overlaps(*intA)) {
550                    intA->join(*intB);
551                    r2iB->second = r2iA->second;
552                    r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
553                    intervals_.erase(intB);
554                }
555            } else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
556                       MRegisterInfo::isPhysicalRegister(intB->reg)) {
557                if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
558                    std::swap(regA, regB);
559                    std::swap(intA, intB);
560                    std::swap(r2iA, r2iB);
561                }
562
563                assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
564                       MRegisterInfo::isVirtualRegister(intB->reg) &&
565                       "A must be physical and B must be virtual");
566
567                const TargetRegisterClass *rcA, *rcB;
568                rcA = mri_->getRegClass(intA->reg);
569                rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
570                // if they are not of the same register class we continue
571                if (rcA != rcB)
572                    continue;
573
574                if (!intA->overlaps(*intB) &&
575                    !overlapsAliases(*intA, *intB)) {
576                    intA->join(*intB);
577                    r2iB->second = r2iA->second;
578                    r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
579                    intervals_.erase(intB);
580                }
581            }
582        }
583    }
584}
585
586namespace {
587  // DepthMBBCompare - Comparison predicate that sort first based on the loop
588  // depth of the basic block (the unsigned), and then on the MBB number.
589  struct DepthMBBCompare {
590    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
591    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
592      if (LHS.first > RHS.first) return true;   // Deeper loops first
593      return LHS.first == RHS.first &&
594             LHS.second->getNumber() < RHS.second->getNumber();
595    }
596  };
597}
598
599void LiveIntervals::joinIntervals() {
600  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
601
602  const LoopInfo &LI = getAnalysis<LoopInfo>();
603  if (LI.begin() == LI.end()) {
604    // If there are no loops in the function, join intervals in function order.
605    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
606         I != E; ++I)
607      joinIntervalsInMachineBB(I);
608  } else {
609    // Otherwise, join intervals in inner loops before other intervals.
610    // Unfortunately we can't just iterate over loop hierarchy here because
611    // there may be more MBB's than BB's.  Collect MBB's for sorting.
612    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
613    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
614         I != E; ++I)
615      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
616
617    // Sort by loop depth.
618    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
619
620    // Finally, join intervals in loop nest order.
621    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
622      joinIntervalsInMachineBB(MBBs[i].second);
623  }
624}
625
626bool LiveIntervals::overlapsAliases(const LiveInterval& lhs,
627                                    const LiveInterval& rhs) const
628{
629    assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
630           "first interval must describe a physical register");
631
632    for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
633        Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
634        assert(r2i != r2iMap_.end() && "alias does not have interval?");
635        if (rhs.overlaps(*r2i->second))
636            return true;
637    }
638
639    return false;
640}
641
642LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg)
643{
644    Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
645    if (r2iit == r2iMap_.end() || r2iit->first != reg) {
646        intervals_.push_back(LiveInterval(reg));
647        r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
648    }
649
650    return *r2iit->second;
651}
652
653LiveInterval::LiveInterval(unsigned r)
654    : reg(r),
655      weight((MRegisterInfo::isPhysicalRegister(r) ?  HUGE_VAL : 0.0F))
656{
657}
658
659bool LiveInterval::spilled() const
660{
661    return (weight == HUGE_VAL &&
662            MRegisterInfo::isVirtualRegister(reg));
663}
664
665// An example for liveAt():
666//
667// this = [1,4), liveAt(0) will return false. The instruction defining
668// this spans slots [0,3]. The interval belongs to an spilled
669// definition of the variable it represents. This is because slot 1 is
670// used (def slot) and spans up to slot 3 (store slot).
671//
672bool LiveInterval::liveAt(unsigned index) const
673{
674    Range dummy(index, index+1);
675    Ranges::const_iterator r = std::upper_bound(ranges.begin(),
676                                                ranges.end(),
677                                                dummy);
678    if (r == ranges.begin())
679        return false;
680
681    --r;
682    return index >= r->first && index < r->second;
683}
684
685// An example for overlaps():
686//
687// 0: A = ...
688// 4: B = ...
689// 8: C = A + B ;; last use of A
690//
691// The live intervals should look like:
692//
693// A = [3, 11)
694// B = [7, x)
695// C = [11, y)
696//
697// A->overlaps(C) should return false since we want to be able to join
698// A and C.
699bool LiveInterval::overlaps(const LiveInterval& other) const
700{
701    Ranges::const_iterator i = ranges.begin();
702    Ranges::const_iterator ie = ranges.end();
703    Ranges::const_iterator j = other.ranges.begin();
704    Ranges::const_iterator je = other.ranges.end();
705    if (i->first < j->first) {
706        i = std::upper_bound(i, ie, *j);
707        if (i != ranges.begin()) --i;
708    }
709    else if (j->first < i->first) {
710        j = std::upper_bound(j, je, *i);
711        if (j != other.ranges.begin()) --j;
712    }
713
714    while (i != ie && j != je) {
715        if (i->first == j->first) {
716            return true;
717        }
718        else {
719            if (i->first > j->first) {
720                swap(i, j);
721                swap(ie, je);
722            }
723            assert(i->first < j->first);
724
725            if (i->second > j->first) {
726                return true;
727            }
728            else {
729                ++i;
730            }
731        }
732    }
733
734    return false;
735}
736
737void LiveInterval::addRange(unsigned start, unsigned end)
738{
739    assert(start < end && "Invalid range to add!");
740    DEBUG(std::cerr << " +[" << start << ',' << end << ")");
741    //assert(start < end && "invalid range?");
742    Range range = std::make_pair(start, end);
743    Ranges::iterator it =
744        ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
745                      range);
746
747    it = mergeRangesForward(it);
748    it = mergeRangesBackward(it);
749}
750
751void LiveInterval::join(const LiveInterval& other)
752{
753    DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other);
754    Ranges::iterator cur = ranges.begin();
755
756    for (Ranges::const_iterator i = other.ranges.begin(),
757             e = other.ranges.end(); i != e; ++i) {
758        cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
759        cur = mergeRangesForward(cur);
760        cur = mergeRangesBackward(cur);
761    }
762    weight += other.weight;
763    ++numJoins;
764    DEBUG(std::cerr << ".  Result = " << *this << "\n");
765}
766
767LiveInterval::Ranges::iterator LiveInterval::
768mergeRangesForward(Ranges::iterator it)
769{
770    Ranges::iterator n;
771    while ((n = next(it)) != ranges.end()) {
772        if (n->first > it->second)
773            break;
774        it->second = std::max(it->second, n->second);
775        n = ranges.erase(n);
776    }
777    return it;
778}
779
780LiveInterval::Ranges::iterator LiveInterval::
781mergeRangesBackward(Ranges::iterator it)
782{
783    while (it != ranges.begin()) {
784        Ranges::iterator p = prior(it);
785        if (it->first > p->second)
786            break;
787
788        it->first = std::min(it->first, p->first);
789        it->second = std::max(it->second, p->second);
790        it = ranges.erase(p);
791    }
792
793    return it;
794}
795
796std::ostream& llvm::operator<<(std::ostream& os, const LiveInterval& li)
797{
798    os << "%reg" << li.reg << ',' << li.weight;
799    if (li.empty())
800        return os << "EMPTY";
801
802    os << " = ";
803    for (LiveInterval::Ranges::const_iterator
804             i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
805        os << "[" << i->first << "," << i->second << ")";
806    }
807    return os;
808}
809