LiveIntervalAnalysis.cpp revision 97af751deb9b26fd42fbcee082da9ccc4ded5b45
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
41
42  static Statistic<> numIntervals
43  ("liveintervals", "Number of original intervals");
44
45  static Statistic<> numIntervalsAfter
46  ("liveintervals", "Number of intervals after coalescing");
47
48  static Statistic<> numJoins
49  ("liveintervals", "Number of interval joins performed");
50
51  static Statistic<> numPeep
52  ("liveintervals", "Number of identity moves eliminated after coalescing");
53
54  static Statistic<> numFolded
55  ("liveintervals", "Number of loads/stores folded into instructions");
56
57  static cl::opt<bool>
58  EnableJoining("join-liveintervals",
59                cl::desc("Coallesce copies (default=true)"),
60                cl::init(true));
61}
62
63void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
64  AU.addRequired<LiveVariables>();
65  AU.addPreservedID(PHIEliminationID);
66  AU.addRequiredID(PHIEliminationID);
67  AU.addRequiredID(TwoAddressInstructionPassID);
68  AU.addRequired<LoopInfo>();
69  MachineFunctionPass::getAnalysisUsage(AU);
70}
71
72void LiveIntervals::releaseMemory() {
73  mi2iMap_.clear();
74  i2miMap_.clear();
75  r2iMap_.clear();
76  r2rMap_.clear();
77}
78
79
80static bool isZeroLengthInterval(LiveInterval *li) {
81  for (LiveInterval::Ranges::const_iterator
82         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
83    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
84      return false;
85  return true;
86}
87
88
89/// runOnMachineFunction - Register allocate the whole function
90///
91bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
92  mf_ = &fn;
93  tm_ = &fn.getTarget();
94  mri_ = tm_->getRegisterInfo();
95  tii_ = tm_->getInstrInfo();
96  lv_ = &getAnalysis<LiveVariables>();
97  allocatableRegs_ = mri_->getAllocatableSet(fn);
98  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
99
100  // If this function has any live ins, insert a dummy instruction at the
101  // beginning of the function that we will pretend "defines" the values.  This
102  // is to make the interval analysis simpler by providing a number.
103  if (fn.livein_begin() != fn.livein_end()) {
104    unsigned FirstLiveIn = fn.livein_begin()->first;
105
106    // Find a reg class that contains this live in.
107    const TargetRegisterClass *RC = 0;
108    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
109           E = mri_->regclass_end(); RCI != E; ++RCI)
110      if ((*RCI)->contains(FirstLiveIn)) {
111        RC = *RCI;
112        break;
113      }
114
115    MachineInstr *OldFirstMI = fn.begin()->begin();
116    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
117                       FirstLiveIn, FirstLiveIn, RC);
118    assert(OldFirstMI != fn.begin()->begin() &&
119           "copyRetToReg didn't insert anything!");
120  }
121
122  // Number MachineInstrs and MachineBasicBlocks.
123  // Initialize MBB indexes to a sentinal.
124  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
125
126  unsigned MIIndex = 0;
127  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
128       MBB != E; ++MBB) {
129    // Set the MBB2IdxMap entry for this MBB.
130    MBB2IdxMap[MBB->getNumber()] = MIIndex;
131
132    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
133         I != E; ++I) {
134      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
135      assert(inserted && "multiple MachineInstr -> index mappings");
136      i2miMap_.push_back(I);
137      MIIndex += InstrSlots::NUM;
138    }
139  }
140
141  // Note intervals due to live-in values.
142  if (fn.livein_begin() != fn.livein_end()) {
143    MachineBasicBlock *Entry = fn.begin();
144    for (MachineFunction::livein_iterator I = fn.livein_begin(),
145           E = fn.livein_end(); I != E; ++I) {
146      handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
147                                getOrCreateInterval(I->first), 0);
148      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
149        handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
150                                  getOrCreateInterval(*AS), 0);
151    }
152  }
153
154  computeIntervals();
155
156  numIntervals += getNumIntervals();
157
158  DOUT << "********** INTERVALS **********\n";
159  for (iterator I = begin(), E = end(); I != E; ++I) {
160    I->second.print(DOUT, mri_);
161    DOUT << "\n";
162  }
163
164  // Join (coallesce) intervals if requested.
165  if (EnableJoining) joinIntervals();
166
167  numIntervalsAfter += getNumIntervals();
168
169
170  // perform a final pass over the instructions and compute spill
171  // weights, coalesce virtual registers and remove identity moves.
172  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
173
174  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
175       mbbi != mbbe; ++mbbi) {
176    MachineBasicBlock* mbb = mbbi;
177    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
178
179    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
180         mii != mie; ) {
181      // if the move will be an identity move delete it
182      unsigned srcReg, dstReg, RegRep;
183      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
184          (RegRep = rep(srcReg)) == rep(dstReg)) {
185        // remove from def list
186        getOrCreateInterval(RegRep);
187        RemoveMachineInstrFromMaps(mii);
188        mii = mbbi->erase(mii);
189        ++numPeep;
190      }
191      else {
192        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
193          const MachineOperand &mop = mii->getOperand(i);
194          if (mop.isRegister() && mop.getReg() &&
195              MRegisterInfo::isVirtualRegister(mop.getReg())) {
196            // replace register with representative register
197            unsigned reg = rep(mop.getReg());
198            mii->getOperand(i).setReg(reg);
199
200            LiveInterval &RegInt = getInterval(reg);
201            RegInt.weight +=
202              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
203          }
204        }
205        ++mii;
206      }
207    }
208  }
209
210
211  for (iterator I = begin(), E = end(); I != E; ++I) {
212    LiveInterval &LI = I->second;
213    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
214      // If the live interval length is essentially zero, i.e. in every live
215      // range the use follows def immediately, it doesn't make sense to spill
216      // it and hope it will be easier to allocate for this li.
217      if (isZeroLengthInterval(&LI))
218        LI.weight = HUGE_VALF;
219
220      // Divide the weight of the interval by its size.  This encourages
221      // spilling of intervals that are large and have few uses, and
222      // discourages spilling of small intervals with many uses.
223      unsigned Size = 0;
224      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
225        Size += II->end - II->start;
226
227      LI.weight /= Size;
228    }
229  }
230
231  DEBUG(dump());
232  return true;
233}
234
235/// print - Implement the dump method.
236void LiveIntervals::print(std::ostream &O, const Module* ) const {
237  O << "********** INTERVALS **********\n";
238  for (const_iterator I = begin(), E = end(); I != E; ++I) {
239    I->second.print(DOUT, mri_);
240    DOUT << "\n";
241  }
242
243  O << "********** MACHINEINSTRS **********\n";
244  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
245       mbbi != mbbe; ++mbbi) {
246    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
247    for (MachineBasicBlock::iterator mii = mbbi->begin(),
248           mie = mbbi->end(); mii != mie; ++mii) {
249      O << getInstructionIndex(mii) << '\t' << *mii;
250    }
251  }
252}
253
254/// CreateNewLiveInterval - Create a new live interval with the given live
255/// ranges. The new live interval will have an infinite spill weight.
256LiveInterval&
257LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
258                                     const std::vector<LiveRange> &LRs) {
259  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
260
261  // Create a new virtual register for the spill interval.
262  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
263
264  // Replace the old virtual registers in the machine operands with the shiny
265  // new one.
266  for (std::vector<LiveRange>::const_iterator
267         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
268    unsigned Index = getBaseIndex(I->start);
269    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
270
271    for (; Index != End; Index += InstrSlots::NUM) {
272      // Skip deleted instructions
273      while (Index != End && !getInstructionFromIndex(Index))
274        Index += InstrSlots::NUM;
275
276      if (Index == End) break;
277
278      MachineInstr *MI = getInstructionFromIndex(Index);
279
280      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
281        MachineOperand &MOp = MI->getOperand(J);
282        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
283          MOp.setReg(NewVReg);
284      }
285    }
286  }
287
288  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
289
290  // The spill weight is now infinity as it cannot be spilled again
291  NewLI.weight = float(HUGE_VAL);
292
293  for (std::vector<LiveRange>::const_iterator
294         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
295    DOUT << "  Adding live range " << *I << " to new interval\n";
296    NewLI.addRange(*I);
297  }
298
299  DOUT << "Created new live interval " << NewLI << "\n";
300  return NewLI;
301}
302
303std::vector<LiveInterval*> LiveIntervals::
304addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
305  // since this is called after the analysis is done we don't know if
306  // LiveVariables is available
307  lv_ = getAnalysisToUpdate<LiveVariables>();
308
309  std::vector<LiveInterval*> added;
310
311  assert(li.weight != HUGE_VALF &&
312         "attempt to spill already spilled interval!");
313
314  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
315  li.print(DOUT, mri_);
316  DOUT << '\n';
317
318  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
319
320  for (LiveInterval::Ranges::const_iterator
321         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
322    unsigned index = getBaseIndex(i->start);
323    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
324    for (; index != end; index += InstrSlots::NUM) {
325      // skip deleted instructions
326      while (index != end && !getInstructionFromIndex(index))
327        index += InstrSlots::NUM;
328      if (index == end) break;
329
330      MachineInstr *MI = getInstructionFromIndex(index);
331
332    RestartInstruction:
333      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
334        MachineOperand& mop = MI->getOperand(i);
335        if (mop.isRegister() && mop.getReg() == li.reg) {
336          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
337            // Attempt to fold the memory reference into the instruction.  If we
338            // can do this, we don't need to insert spill code.
339            if (lv_)
340              lv_->instructionChanged(MI, fmi);
341            MachineBasicBlock &MBB = *MI->getParent();
342            vrm.virtFolded(li.reg, MI, i, fmi);
343            mi2iMap_.erase(MI);
344            i2miMap_[index/InstrSlots::NUM] = fmi;
345            mi2iMap_[fmi] = index;
346            MI = MBB.insert(MBB.erase(MI), fmi);
347            ++numFolded;
348            // Folding the load/store can completely change the instruction in
349            // unpredictable ways, rescan it from the beginning.
350            goto RestartInstruction;
351          } else {
352            // Create a new virtual register for the spill interval.
353            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
354
355            // Scan all of the operands of this instruction rewriting operands
356            // to use NewVReg instead of li.reg as appropriate.  We do this for
357            // two reasons:
358            //
359            //   1. If the instr reads the same spilled vreg multiple times, we
360            //      want to reuse the NewVReg.
361            //   2. If the instr is a two-addr instruction, we are required to
362            //      keep the src/dst regs pinned.
363            //
364            // Keep track of whether we replace a use and/or def so that we can
365            // create the spill interval with the appropriate range.
366            mop.setReg(NewVReg);
367
368            bool HasUse = mop.isUse();
369            bool HasDef = mop.isDef();
370            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
371              if (MI->getOperand(j).isReg() &&
372                  MI->getOperand(j).getReg() == li.reg) {
373                MI->getOperand(j).setReg(NewVReg);
374                HasUse |= MI->getOperand(j).isUse();
375                HasDef |= MI->getOperand(j).isDef();
376              }
377            }
378
379            // create a new register for this spill
380            vrm.grow();
381            vrm.assignVirt2StackSlot(NewVReg, slot);
382            LiveInterval &nI = getOrCreateInterval(NewVReg);
383            assert(nI.empty());
384
385            // the spill weight is now infinity as it
386            // cannot be spilled again
387            nI.weight = HUGE_VALF;
388
389            if (HasUse) {
390              LiveRange LR(getLoadIndex(index), getUseIndex(index),
391                           nI.getNextValue(~0U, 0));
392              DOUT << " +" << LR;
393              nI.addRange(LR);
394            }
395            if (HasDef) {
396              LiveRange LR(getDefIndex(index), getStoreIndex(index),
397                           nI.getNextValue(~0U, 0));
398              DOUT << " +" << LR;
399              nI.addRange(LR);
400            }
401
402            added.push_back(&nI);
403
404            // update live variables if it is available
405            if (lv_)
406              lv_->addVirtualRegisterKilled(NewVReg, MI);
407
408            DOUT << "\t\t\t\tadded new interval: ";
409            nI.print(DOUT, mri_);
410            DOUT << '\n';
411          }
412        }
413      }
414    }
415  }
416
417  return added;
418}
419
420void LiveIntervals::printRegName(unsigned reg) const {
421  if (MRegisterInfo::isPhysicalRegister(reg))
422    llvm_cerr << mri_->getName(reg);
423  else
424    llvm_cerr << "%reg" << reg;
425}
426
427/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
428/// two addr elimination.
429static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
430                                const TargetInstrInfo *TII) {
431  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
432    MachineOperand &MO1 = MI->getOperand(i);
433    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
434      for (unsigned j = i+1; j < e; ++j) {
435        MachineOperand &MO2 = MI->getOperand(j);
436        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
437            TII->getOperandConstraint(MI->getOpcode(),j,TOI::TIED_TO) == (int)i)
438          return true;
439      }
440    }
441  }
442  return false;
443}
444
445void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
446                                             MachineBasicBlock::iterator mi,
447                                             unsigned MIIdx,
448                                             LiveInterval &interval) {
449  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
450  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
451
452  // Virtual registers may be defined multiple times (due to phi
453  // elimination and 2-addr elimination).  Much of what we do only has to be
454  // done once for the vreg.  We use an empty interval to detect the first
455  // time we see a vreg.
456  if (interval.empty()) {
457    // Get the Idx of the defining instructions.
458    unsigned defIndex = getDefIndex(MIIdx);
459
460    unsigned ValNum;
461    unsigned SrcReg, DstReg;
462    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
463      ValNum = interval.getNextValue(~0U, 0);
464    else
465      ValNum = interval.getNextValue(defIndex, SrcReg);
466
467    assert(ValNum == 0 && "First value in interval is not 0?");
468    ValNum = 0;  // Clue in the optimizer.
469
470    // Loop over all of the blocks that the vreg is defined in.  There are
471    // two cases we have to handle here.  The most common case is a vreg
472    // whose lifetime is contained within a basic block.  In this case there
473    // will be a single kill, in MBB, which comes after the definition.
474    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
475      // FIXME: what about dead vars?
476      unsigned killIdx;
477      if (vi.Kills[0] != mi)
478        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
479      else
480        killIdx = defIndex+1;
481
482      // If the kill happens after the definition, we have an intra-block
483      // live range.
484      if (killIdx > defIndex) {
485        assert(vi.AliveBlocks.empty() &&
486               "Shouldn't be alive across any blocks!");
487        LiveRange LR(defIndex, killIdx, ValNum);
488        interval.addRange(LR);
489        DOUT << " +" << LR << "\n";
490        return;
491      }
492    }
493
494    // The other case we handle is when a virtual register lives to the end
495    // of the defining block, potentially live across some blocks, then is
496    // live into some number of blocks, but gets killed.  Start by adding a
497    // range that goes from this definition to the end of the defining block.
498    LiveRange NewLR(defIndex,
499                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
500                    ValNum);
501    DOUT << " +" << NewLR;
502    interval.addRange(NewLR);
503
504    // Iterate over all of the blocks that the variable is completely
505    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
506    // live interval.
507    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
508      if (vi.AliveBlocks[i]) {
509        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
510        if (!MBB->empty()) {
511          LiveRange LR(getMBBStartIdx(i),
512                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
513                       ValNum);
514          interval.addRange(LR);
515          DOUT << " +" << LR;
516        }
517      }
518    }
519
520    // Finally, this virtual register is live from the start of any killing
521    // block to the 'use' slot of the killing instruction.
522    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
523      MachineInstr *Kill = vi.Kills[i];
524      LiveRange LR(getMBBStartIdx(Kill->getParent()),
525                   getUseIndex(getInstructionIndex(Kill))+1,
526                   ValNum);
527      interval.addRange(LR);
528      DOUT << " +" << LR;
529    }
530
531  } else {
532    // If this is the second time we see a virtual register definition, it
533    // must be due to phi elimination or two addr elimination.  If this is
534    // the result of two address elimination, then the vreg is one of the
535    // def-and-use register operand.
536    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
537      // If this is a two-address definition, then we have already processed
538      // the live range.  The only problem is that we didn't realize there
539      // are actually two values in the live interval.  Because of this we
540      // need to take the LiveRegion that defines this register and split it
541      // into two values.
542      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
543      unsigned RedefIndex = getDefIndex(MIIdx);
544
545      // Delete the initial value, which should be short and continuous,
546      // because the 2-addr copy must be in the same MBB as the redef.
547      interval.removeRange(DefIndex, RedefIndex);
548
549      // Two-address vregs should always only be redefined once.  This means
550      // that at this point, there should be exactly one value number in it.
551      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
552
553      // The new value number (#1) is defined by the instruction we claimed
554      // defined value #0.
555      unsigned ValNo = interval.getNextValue(0, 0);
556      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
557
558      // Value#0 is now defined by the 2-addr instruction.
559      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
560
561      // Add the new live interval which replaces the range for the input copy.
562      LiveRange LR(DefIndex, RedefIndex, ValNo);
563      DOUT << " replace range with " << LR;
564      interval.addRange(LR);
565
566      // If this redefinition is dead, we need to add a dummy unit live
567      // range covering the def slot.
568      if (lv_->RegisterDefIsDead(mi, interval.reg))
569        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
570
571      DOUT << "RESULT: ";
572      interval.print(DOUT, mri_);
573
574    } else {
575      // Otherwise, this must be because of phi elimination.  If this is the
576      // first redefinition of the vreg that we have seen, go back and change
577      // the live range in the PHI block to be a different value number.
578      if (interval.containsOneValue()) {
579        assert(vi.Kills.size() == 1 &&
580               "PHI elimination vreg should have one kill, the PHI itself!");
581
582        // Remove the old range that we now know has an incorrect number.
583        MachineInstr *Killer = vi.Kills[0];
584        unsigned Start = getMBBStartIdx(Killer->getParent());
585        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
586        DOUT << "Removing [" << Start << "," << End << "] from: ";
587        interval.print(DOUT, mri_); DOUT << "\n";
588        interval.removeRange(Start, End);
589        DOUT << "RESULT: "; interval.print(DOUT, mri_);
590
591        // Replace the interval with one of a NEW value number.  Note that this
592        // value number isn't actually defined by an instruction, weird huh? :)
593        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
594        DOUT << " replace range with " << LR;
595        interval.addRange(LR);
596        DOUT << "RESULT: "; interval.print(DOUT, mri_);
597      }
598
599      // In the case of PHI elimination, each variable definition is only
600      // live until the end of the block.  We've already taken care of the
601      // rest of the live range.
602      unsigned defIndex = getDefIndex(MIIdx);
603
604      unsigned ValNum;
605      unsigned SrcReg, DstReg;
606      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
607        ValNum = interval.getNextValue(~0U, 0);
608      else
609        ValNum = interval.getNextValue(defIndex, SrcReg);
610
611      LiveRange LR(defIndex,
612                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
613      interval.addRange(LR);
614      DOUT << " +" << LR;
615    }
616  }
617
618  DOUT << '\n';
619}
620
621void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
622                                              MachineBasicBlock::iterator mi,
623                                              unsigned MIIdx,
624                                              LiveInterval &interval,
625                                              unsigned SrcReg) {
626  // A physical register cannot be live across basic block, so its
627  // lifetime must end somewhere in its defining basic block.
628  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
629
630  unsigned baseIndex = MIIdx;
631  unsigned start = getDefIndex(baseIndex);
632  unsigned end = start;
633
634  // If it is not used after definition, it is considered dead at
635  // the instruction defining it. Hence its interval is:
636  // [defSlot(def), defSlot(def)+1)
637  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
638    DOUT << " dead";
639    end = getDefIndex(start) + 1;
640    goto exit;
641  }
642
643  // If it is not dead on definition, it must be killed by a
644  // subsequent instruction. Hence its interval is:
645  // [defSlot(def), useSlot(kill)+1)
646  while (++mi != MBB->end()) {
647    baseIndex += InstrSlots::NUM;
648    if (lv_->KillsRegister(mi, interval.reg)) {
649      DOUT << " killed";
650      end = getUseIndex(baseIndex) + 1;
651      goto exit;
652    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
653      // Another instruction redefines the register before it is ever read.
654      // Then the register is essentially dead at the instruction that defines
655      // it. Hence its interval is:
656      // [defSlot(def), defSlot(def)+1)
657      DOUT << " dead";
658      end = getDefIndex(start) + 1;
659      goto exit;
660    }
661  }
662
663  // The only case we should have a dead physreg here without a killing or
664  // instruction where we know it's dead is if it is live-in to the function
665  // and never used.
666  assert(!SrcReg && "physreg was not killed in defining block!");
667  end = getDefIndex(start) + 1;  // It's dead.
668
669exit:
670  assert(start < end && "did not find end of interval?");
671
672  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
673                                                 SrcReg));
674  interval.addRange(LR);
675  DOUT << " +" << LR << '\n';
676}
677
678void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
679                                      MachineBasicBlock::iterator MI,
680                                      unsigned MIIdx,
681                                      unsigned reg) {
682  if (MRegisterInfo::isVirtualRegister(reg))
683    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
684  else if (allocatableRegs_[reg]) {
685    unsigned SrcReg, DstReg;
686    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
687      SrcReg = 0;
688    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
689    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
690      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
691  }
692}
693
694/// computeIntervals - computes the live intervals for virtual
695/// registers. for some ordering of the machine instructions [1,N] a
696/// live interval is an interval [i, j) where 1 <= i <= j < N for
697/// which a variable is live
698void LiveIntervals::computeIntervals() {
699  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
700       << "********** Function: "
701       << ((Value*)mf_->getFunction())->getName() << '\n';
702  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
703
704  // Track the index of the current machine instr.
705  unsigned MIIndex = 0;
706  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
707       MBBI != E; ++MBBI) {
708    MachineBasicBlock *MBB = MBBI;
709    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
710
711    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
712    if (IgnoreFirstInstr) {
713      ++MI;
714      IgnoreFirstInstr = false;
715      MIIndex += InstrSlots::NUM;
716    }
717
718    for (; MI != miEnd; ++MI) {
719      DOUT << MIIndex << "\t" << *MI;
720
721      // Handle defs.
722      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
723        MachineOperand &MO = MI->getOperand(i);
724        // handle register defs - build intervals
725        if (MO.isRegister() && MO.getReg() && MO.isDef())
726          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
727      }
728
729      MIIndex += InstrSlots::NUM;
730    }
731  }
732}
733
734/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
735/// being the source and IntB being the dest, thus this defines a value number
736/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
737/// see if we can merge these two pieces of B into a single value number,
738/// eliminating a copy.  For example:
739///
740///  A3 = B0
741///    ...
742///  B1 = A3      <- this copy
743///
744/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
745/// value number to be replaced with B0 (which simplifies the B liveinterval).
746///
747/// This returns true if an interval was modified.
748///
749bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
750                                         MachineInstr *CopyMI) {
751  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
752
753  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
754  // the example above.
755  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
756  unsigned BValNo = BLR->ValId;
757
758  // Get the location that B is defined at.  Two options: either this value has
759  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
760  // can't process it.
761  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
762  if (BValNoDefIdx == ~0U) return false;
763  assert(BValNoDefIdx == CopyIdx &&
764         "Copy doesn't define the value?");
765
766  // AValNo is the value number in A that defines the copy, A0 in the example.
767  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
768  unsigned AValNo = AValLR->ValId;
769
770  // If AValNo is defined as a copy from IntB, we can potentially process this.
771
772  // Get the instruction that defines this value number.
773  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
774  if (!SrcReg) return false;  // Not defined by a copy.
775
776  // If the value number is not defined by a copy instruction, ignore it.
777
778  // If the source register comes from an interval other than IntB, we can't
779  // handle this.
780  if (rep(SrcReg) != IntB.reg) return false;
781
782  // Get the LiveRange in IntB that this value number starts with.
783  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
784  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
785
786  // Make sure that the end of the live range is inside the same block as
787  // CopyMI.
788  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
789  if (!ValLREndInst ||
790      ValLREndInst->getParent() != CopyMI->getParent()) return false;
791
792  // Okay, we now know that ValLR ends in the same block that the CopyMI
793  // live-range starts.  If there are no intervening live ranges between them in
794  // IntB, we can merge them.
795  if (ValLR+1 != BLR) return false;
796
797  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
798
799  // We are about to delete CopyMI, so need to remove it as the 'instruction
800  // that defines this value #'.
801  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
802
803  // Okay, we can merge them.  We need to insert a new liverange:
804  // [ValLR.end, BLR.begin) of either value number, then we merge the
805  // two value numbers.
806  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
807  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
808
809  // If the IntB live range is assigned to a physical register, and if that
810  // physreg has aliases,
811  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
812    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
813      LiveInterval &AliasLI = getInterval(*AS);
814      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
815                                 AliasLI.getNextValue(~0U, 0)));
816    }
817  }
818
819  // Okay, merge "B1" into the same value number as "B0".
820  if (BValNo != ValLR->ValId)
821    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
822  DOUT << "   result = "; IntB.print(DOUT, mri_);
823  DOUT << "\n";
824
825  // Finally, delete the copy instruction.
826  RemoveMachineInstrFromMaps(CopyMI);
827  CopyMI->eraseFromParent();
828  ++numPeep;
829  return true;
830}
831
832
833/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
834/// which are the src/dst of the copy instruction CopyMI.  This returns true
835/// if the copy was successfully coallesced away, or if it is never possible
836/// to coallesce these this copy, due to register constraints.  It returns
837/// false if it is not currently possible to coallesce this interval, but
838/// it may be possible if other things get coallesced.
839bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
840                             unsigned SrcReg, unsigned DstReg) {
841  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
842
843  // Get representative registers.
844  SrcReg = rep(SrcReg);
845  DstReg = rep(DstReg);
846
847  // If they are already joined we continue.
848  if (SrcReg == DstReg) {
849    DOUT << "\tCopy already coallesced.\n";
850    return true;  // Not coallescable.
851  }
852
853  // If they are both physical registers, we cannot join them.
854  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
855      MRegisterInfo::isPhysicalRegister(DstReg)) {
856    DOUT << "\tCan not coallesce physregs.\n";
857    return true;  // Not coallescable.
858  }
859
860  // We only join virtual registers with allocatable physical registers.
861  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
862    DOUT << "\tSrc reg is unallocatable physreg.\n";
863    return true;  // Not coallescable.
864  }
865  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
866    DOUT << "\tDst reg is unallocatable physreg.\n";
867    return true;  // Not coallescable.
868  }
869
870  // If they are not of the same register class, we cannot join them.
871  if (differingRegisterClasses(SrcReg, DstReg)) {
872    DOUT << "\tSrc/Dest are different register classes.\n";
873    return true;  // Not coallescable.
874  }
875
876  LiveInterval &SrcInt = getInterval(SrcReg);
877  LiveInterval &DestInt = getInterval(DstReg);
878  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
879         "Register mapping is horribly broken!");
880
881  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
882  DOUT << " and "; DestInt.print(DOUT, mri_);
883  DOUT << ": ";
884
885  // Okay, attempt to join these two intervals.  On failure, this returns false.
886  // Otherwise, if one of the intervals being joined is a physreg, this method
887  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
888  // been modified, so we can use this information below to update aliases.
889  if (!JoinIntervals(DestInt, SrcInt)) {
890    // Coallescing failed.
891
892    // If we can eliminate the copy without merging the live ranges, do so now.
893    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
894      return true;
895
896    // Otherwise, we are unable to join the intervals.
897    DOUT << "Interference!\n";
898    return false;
899  }
900
901  bool Swapped = SrcReg == DestInt.reg;
902  if (Swapped)
903    std::swap(SrcReg, DstReg);
904  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
905         "LiveInterval::join didn't work right!");
906
907  // If we're about to merge live ranges into a physical register live range,
908  // we have to update any aliased register's live ranges to indicate that they
909  // have clobbered values for this range.
910  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
911    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
912      getInterval(*AS).MergeInClobberRanges(SrcInt);
913  }
914
915  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
916  DOUT << "\n";
917
918  // If the intervals were swapped by Join, swap them back so that the register
919  // mapping (in the r2i map) is correct.
920  if (Swapped) SrcInt.swap(DestInt);
921  r2iMap_.erase(SrcReg);
922  r2rMap_[SrcReg] = DstReg;
923
924  // Finally, delete the copy instruction.
925  RemoveMachineInstrFromMaps(CopyMI);
926  CopyMI->eraseFromParent();
927  ++numPeep;
928  ++numJoins;
929  return true;
930}
931
932/// ComputeUltimateVN - Assuming we are going to join two live intervals,
933/// compute what the resultant value numbers for each value in the input two
934/// ranges will be.  This is complicated by copies between the two which can
935/// and will commonly cause multiple value numbers to be merged into one.
936///
937/// VN is the value number that we're trying to resolve.  InstDefiningValue
938/// keeps track of the new InstDefiningValue assignment for the result
939/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
940/// whether a value in this or other is a copy from the opposite set.
941/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
942/// already been assigned.
943///
944/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
945/// contains the value number the copy is from.
946///
947static unsigned ComputeUltimateVN(unsigned VN,
948                                  SmallVector<std::pair<unsigned,
949                                                unsigned>, 16> &ValueNumberInfo,
950                                  SmallVector<int, 16> &ThisFromOther,
951                                  SmallVector<int, 16> &OtherFromThis,
952                                  SmallVector<int, 16> &ThisValNoAssignments,
953                                  SmallVector<int, 16> &OtherValNoAssignments,
954                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
955  // If the VN has already been computed, just return it.
956  if (ThisValNoAssignments[VN] >= 0)
957    return ThisValNoAssignments[VN];
958//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
959
960  // If this val is not a copy from the other val, then it must be a new value
961  // number in the destination.
962  int OtherValNo = ThisFromOther[VN];
963  if (OtherValNo == -1) {
964    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
965    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
966  }
967
968  // Otherwise, this *is* a copy from the RHS.  If the other side has already
969  // been computed, return it.
970  if (OtherValNoAssignments[OtherValNo] >= 0)
971    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
972
973  // Mark this value number as currently being computed, then ask what the
974  // ultimate value # of the other value is.
975  ThisValNoAssignments[VN] = -2;
976  unsigned UltimateVN =
977    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
978                      OtherFromThis, ThisFromOther,
979                      OtherValNoAssignments, ThisValNoAssignments,
980                      OtherLI, ThisLI);
981  return ThisValNoAssignments[VN] = UltimateVN;
982}
983
984static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
985  return std::find(V.begin(), V.end(), Val) != V.end();
986}
987
988/// SimpleJoin - Attempt to joint the specified interval into this one. The
989/// caller of this method must guarantee that the RHS only contains a single
990/// value number and that the RHS is not defined by a copy from this
991/// interval.  This returns false if the intervals are not joinable, or it
992/// joins them and returns true.
993bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
994  assert(RHS.containsOneValue());
995
996  // Some number (potentially more than one) value numbers in the current
997  // interval may be defined as copies from the RHS.  Scan the overlapping
998  // portions of the LHS and RHS, keeping track of this and looking for
999  // overlapping live ranges that are NOT defined as copies.  If these exist, we
1000  // cannot coallesce.
1001
1002  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1003  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1004
1005  if (LHSIt->start < RHSIt->start) {
1006    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1007    if (LHSIt != LHS.begin()) --LHSIt;
1008  } else if (RHSIt->start < LHSIt->start) {
1009    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1010    if (RHSIt != RHS.begin()) --RHSIt;
1011  }
1012
1013  SmallVector<unsigned, 8> EliminatedLHSVals;
1014
1015  while (1) {
1016    // Determine if these live intervals overlap.
1017    bool Overlaps = false;
1018    if (LHSIt->start <= RHSIt->start)
1019      Overlaps = LHSIt->end > RHSIt->start;
1020    else
1021      Overlaps = RHSIt->end > LHSIt->start;
1022
1023    // If the live intervals overlap, there are two interesting cases: if the
1024    // LHS interval is defined by a copy from the RHS, it's ok and we record
1025    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1026    // coallesce these live ranges and we bail out.
1027    if (Overlaps) {
1028      // If we haven't already recorded that this value # is safe, check it.
1029      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1030        // Copy from the RHS?
1031        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1032        if (rep(SrcReg) != RHS.reg)
1033          return false;    // Nope, bail out.
1034
1035        EliminatedLHSVals.push_back(LHSIt->ValId);
1036      }
1037
1038      // We know this entire LHS live range is okay, so skip it now.
1039      if (++LHSIt == LHSEnd) break;
1040      continue;
1041    }
1042
1043    if (LHSIt->end < RHSIt->end) {
1044      if (++LHSIt == LHSEnd) break;
1045    } else {
1046      // One interesting case to check here.  It's possible that we have
1047      // something like "X3 = Y" which defines a new value number in the LHS,
1048      // and is the last use of this liverange of the RHS.  In this case, we
1049      // want to notice this copy (so that it gets coallesced away) even though
1050      // the live ranges don't actually overlap.
1051      if (LHSIt->start == RHSIt->end) {
1052        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1053          // We already know that this value number is going to be merged in
1054          // if coallescing succeeds.  Just skip the liverange.
1055          if (++LHSIt == LHSEnd) break;
1056        } else {
1057          // Otherwise, if this is a copy from the RHS, mark it as being merged
1058          // in.
1059          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1060            EliminatedLHSVals.push_back(LHSIt->ValId);
1061
1062            // We know this entire LHS live range is okay, so skip it now.
1063            if (++LHSIt == LHSEnd) break;
1064          }
1065        }
1066      }
1067
1068      if (++RHSIt == RHSEnd) break;
1069    }
1070  }
1071
1072  // If we got here, we know that the coallescing will be successful and that
1073  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1074  // the most common case is that EliminatedLHSVals has a single number, we
1075  // optimize for it: if there is more than one value, we merge them all into
1076  // the lowest numbered one, then handle the interval as if we were merging
1077  // with one value number.
1078  unsigned LHSValNo;
1079  if (EliminatedLHSVals.size() > 1) {
1080    // Loop through all the equal value numbers merging them into the smallest
1081    // one.
1082    unsigned Smallest = EliminatedLHSVals[0];
1083    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1084      if (EliminatedLHSVals[i] < Smallest) {
1085        // Merge the current notion of the smallest into the smaller one.
1086        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1087        Smallest = EliminatedLHSVals[i];
1088      } else {
1089        // Merge into the smallest.
1090        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1091      }
1092    }
1093    LHSValNo = Smallest;
1094  } else {
1095    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1096    LHSValNo = EliminatedLHSVals[0];
1097  }
1098
1099  // Okay, now that there is a single LHS value number that we're merging the
1100  // RHS into, update the value number info for the LHS to indicate that the
1101  // value number is defined where the RHS value number was.
1102  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1103
1104  // Okay, the final step is to loop over the RHS live intervals, adding them to
1105  // the LHS.
1106  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1107  LHS.weight += RHS.weight;
1108
1109  return true;
1110}
1111
1112/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1113/// returns false.  Otherwise, if one of the intervals being joined is a
1114/// physreg, this method always canonicalizes LHS to be it.  The output
1115/// "RHS" will not have been modified, so we can use this information
1116/// below to update aliases.
1117bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1118  // Compute the final value assignment, assuming that the live ranges can be
1119  // coallesced.
1120  SmallVector<int, 16> LHSValNoAssignments;
1121  SmallVector<int, 16> RHSValNoAssignments;
1122  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1123
1124  // Compute ultimate value numbers for the LHS and RHS values.
1125  if (RHS.containsOneValue()) {
1126    // Copies from a liveinterval with a single value are simple to handle and
1127    // very common, handle the special case here.  This is important, because
1128    // often RHS is small and LHS is large (e.g. a physreg).
1129
1130    // Find out if the RHS is defined as a copy from some value in the LHS.
1131    int RHSValID = -1;
1132    std::pair<unsigned,unsigned> RHSValNoInfo;
1133    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1134    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1135      // If RHS is not defined as a copy from the LHS, we can use simpler and
1136      // faster checks to see if the live ranges are coallescable.  This joiner
1137      // can't swap the LHS/RHS intervals though.
1138      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1139        return SimpleJoin(LHS, RHS);
1140      } else {
1141        RHSValNoInfo = RHS.getValNumInfo(0);
1142      }
1143    } else {
1144      // It was defined as a copy from the LHS, find out what value # it is.
1145      unsigned ValInst = RHS.getInstForValNum(0);
1146      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1147      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1148    }
1149
1150    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1151    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1152    ValueNumberInfo.resize(LHS.getNumValNums());
1153
1154    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1155    // should now get updated.
1156    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1157      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1158        if (rep(LHSSrcReg) != RHS.reg) {
1159          // If this is not a copy from the RHS, its value number will be
1160          // unmodified by the coallescing.
1161          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1162          LHSValNoAssignments[VN] = VN;
1163        } else if (RHSValID == -1) {
1164          // Otherwise, it is a copy from the RHS, and we don't already have a
1165          // value# for it.  Keep the current value number, but remember it.
1166          LHSValNoAssignments[VN] = RHSValID = VN;
1167          ValueNumberInfo[VN] = RHSValNoInfo;
1168        } else {
1169          // Otherwise, use the specified value #.
1170          LHSValNoAssignments[VN] = RHSValID;
1171          if (VN != (unsigned)RHSValID)
1172            ValueNumberInfo[VN].first = ~1U;
1173          else
1174            ValueNumberInfo[VN] = RHSValNoInfo;
1175        }
1176      } else {
1177        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1178        LHSValNoAssignments[VN] = VN;
1179      }
1180    }
1181
1182    assert(RHSValID != -1 && "Didn't find value #?");
1183    RHSValNoAssignments[0] = RHSValID;
1184
1185  } else {
1186    // Loop over the value numbers of the LHS, seeing if any are defined from
1187    // the RHS.
1188    SmallVector<int, 16> LHSValsDefinedFromRHS;
1189    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1190    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1191      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1192      if (ValSrcReg == 0)  // Src not defined by a copy?
1193        continue;
1194
1195      // DstReg is known to be a register in the LHS interval.  If the src is
1196      // from the RHS interval, we can use its value #.
1197      if (rep(ValSrcReg) != RHS.reg)
1198        continue;
1199
1200      // Figure out the value # from the RHS.
1201      unsigned ValInst = LHS.getInstForValNum(VN);
1202      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1203    }
1204
1205    // Loop over the value numbers of the RHS, seeing if any are defined from
1206    // the LHS.
1207    SmallVector<int, 16> RHSValsDefinedFromLHS;
1208    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1209    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1210      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1211      if (ValSrcReg == 0)  // Src not defined by a copy?
1212        continue;
1213
1214      // DstReg is known to be a register in the RHS interval.  If the src is
1215      // from the LHS interval, we can use its value #.
1216      if (rep(ValSrcReg) != LHS.reg)
1217        continue;
1218
1219      // Figure out the value # from the LHS.
1220      unsigned ValInst = RHS.getInstForValNum(VN);
1221      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1222    }
1223
1224    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1225    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1226    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1227
1228    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1229      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1230        continue;
1231      ComputeUltimateVN(VN, ValueNumberInfo,
1232                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1233                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1234    }
1235    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1236      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1237        continue;
1238      // If this value number isn't a copy from the LHS, it's a new number.
1239      if (RHSValsDefinedFromLHS[VN] == -1) {
1240        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1241        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1242        continue;
1243      }
1244
1245      ComputeUltimateVN(VN, ValueNumberInfo,
1246                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1247                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1248    }
1249  }
1250
1251  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1252  // interval lists to see if these intervals are coallescable.
1253  LiveInterval::const_iterator I = LHS.begin();
1254  LiveInterval::const_iterator IE = LHS.end();
1255  LiveInterval::const_iterator J = RHS.begin();
1256  LiveInterval::const_iterator JE = RHS.end();
1257
1258  // Skip ahead until the first place of potential sharing.
1259  if (I->start < J->start) {
1260    I = std::upper_bound(I, IE, J->start);
1261    if (I != LHS.begin()) --I;
1262  } else if (J->start < I->start) {
1263    J = std::upper_bound(J, JE, I->start);
1264    if (J != RHS.begin()) --J;
1265  }
1266
1267  while (1) {
1268    // Determine if these two live ranges overlap.
1269    bool Overlaps;
1270    if (I->start < J->start) {
1271      Overlaps = I->end > J->start;
1272    } else {
1273      Overlaps = J->end > I->start;
1274    }
1275
1276    // If so, check value # info to determine if they are really different.
1277    if (Overlaps) {
1278      // If the live range overlap will map to the same value number in the
1279      // result liverange, we can still coallesce them.  If not, we can't.
1280      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1281        return false;
1282    }
1283
1284    if (I->end < J->end) {
1285      ++I;
1286      if (I == IE) break;
1287    } else {
1288      ++J;
1289      if (J == JE) break;
1290    }
1291  }
1292
1293  // If we get here, we know that we can coallesce the live ranges.  Ask the
1294  // intervals to coallesce themselves now.
1295  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1296           ValueNumberInfo);
1297  return true;
1298}
1299
1300
1301namespace {
1302  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1303  // depth of the basic block (the unsigned), and then on the MBB number.
1304  struct DepthMBBCompare {
1305    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1306    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1307      if (LHS.first > RHS.first) return true;   // Deeper loops first
1308      return LHS.first == RHS.first &&
1309        LHS.second->getNumber() < RHS.second->getNumber();
1310    }
1311  };
1312}
1313
1314
1315void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1316                                       std::vector<CopyRec> &TryAgain) {
1317  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1318
1319  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1320       MII != E;) {
1321    MachineInstr *Inst = MII++;
1322
1323    // If this isn't a copy, we can't join intervals.
1324    unsigned SrcReg, DstReg;
1325    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1326
1327    if (!JoinCopy(Inst, SrcReg, DstReg))
1328      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1329  }
1330}
1331
1332
1333void LiveIntervals::joinIntervals() {
1334  DOUT << "********** JOINING INTERVALS ***********\n";
1335
1336  std::vector<CopyRec> TryAgainList;
1337
1338  const LoopInfo &LI = getAnalysis<LoopInfo>();
1339  if (LI.begin() == LI.end()) {
1340    // If there are no loops in the function, join intervals in function order.
1341    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1342         I != E; ++I)
1343      CopyCoallesceInMBB(I, TryAgainList);
1344  } else {
1345    // Otherwise, join intervals in inner loops before other intervals.
1346    // Unfortunately we can't just iterate over loop hierarchy here because
1347    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1348    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1349    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1350         I != E; ++I)
1351      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1352
1353    // Sort by loop depth.
1354    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1355
1356    // Finally, join intervals in loop nest order.
1357    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1358      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1359  }
1360
1361  // Joining intervals can allow other intervals to be joined.  Iteratively join
1362  // until we make no progress.
1363  bool ProgressMade = true;
1364  while (ProgressMade) {
1365    ProgressMade = false;
1366
1367    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1368      CopyRec &TheCopy = TryAgainList[i];
1369      if (TheCopy.MI &&
1370          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1371        TheCopy.MI = 0;   // Mark this one as done.
1372        ProgressMade = true;
1373      }
1374    }
1375  }
1376
1377  DOUT << "*** Register mapping ***\n";
1378  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1379    if (r2rMap_[i]) {
1380      DOUT << "  reg " << i << " -> ";
1381      DEBUG(printRegName(r2rMap_[i]));
1382      DOUT << "\n";
1383    }
1384}
1385
1386/// Return true if the two specified registers belong to different register
1387/// classes.  The registers may be either phys or virt regs.
1388bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1389                                             unsigned RegB) const {
1390
1391  // Get the register classes for the first reg.
1392  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1393    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1394           "Shouldn't consider two physregs!");
1395    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1396  }
1397
1398  // Compare against the regclass for the second reg.
1399  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1400  if (MRegisterInfo::isVirtualRegister(RegB))
1401    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1402  else
1403    return !RegClass->contains(RegB);
1404}
1405
1406LiveInterval LiveIntervals::createInterval(unsigned reg) {
1407  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1408                       HUGE_VALF : 0.0F;
1409  return LiveInterval(reg, Weight);
1410}
1411