LiveIntervalAnalysis.cpp revision a284cbf667e11660840dc7bae3ee9eeaa3c7cbd2
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39STATISTIC(numIntervals, "Number of original intervals");
40STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
41STATISTIC(numJoins    , "Number of interval joins performed");
42STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
43STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
44
45namespace {
46  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
47
48  static cl::opt<bool>
49  EnableJoining("join-liveintervals",
50                cl::desc("Coallesce copies (default=true)"),
51                cl::init(true));
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.addRequired<LiveVariables>();
56  AU.addPreservedID(PHIEliminationID);
57  AU.addRequiredID(PHIEliminationID);
58  AU.addRequiredID(TwoAddressInstructionPassID);
59  AU.addRequired<LoopInfo>();
60  MachineFunctionPass::getAnalysisUsage(AU);
61}
62
63void LiveIntervals::releaseMemory() {
64  mi2iMap_.clear();
65  i2miMap_.clear();
66  r2iMap_.clear();
67  r2rMap_.clear();
68}
69
70
71static bool isZeroLengthInterval(LiveInterval *li) {
72  for (LiveInterval::Ranges::const_iterator
73         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
74    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
75      return false;
76  return true;
77}
78
79
80/// runOnMachineFunction - Register allocate the whole function
81///
82bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
83  mf_ = &fn;
84  tm_ = &fn.getTarget();
85  mri_ = tm_->getRegisterInfo();
86  tii_ = tm_->getInstrInfo();
87  lv_ = &getAnalysis<LiveVariables>();
88  allocatableRegs_ = mri_->getAllocatableSet(fn);
89  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
90
91  // Number MachineInstrs and MachineBasicBlocks.
92  // Initialize MBB indexes to a sentinal.
93  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
94
95  unsigned MIIndex = 0;
96  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
97       MBB != E; ++MBB) {
98    // Set the MBB2IdxMap entry for this MBB.
99    MBB2IdxMap[MBB->getNumber()] = MIIndex;
100
101    // If this BB has any live ins, insert a dummy instruction at the
102    // beginning of the function that we will pretend "defines" the values. This
103    // is to make the interval analysis simpler by providing a number.
104    if (MBB->livein_begin() != MBB->livein_end()) {
105      unsigned FirstLiveIn = *MBB->livein_begin();
106
107      // Find a reg class that contains this live in.
108      const TargetRegisterClass *RC = 0;
109      for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
110             RCE = mri_->regclass_end(); RCI != RCE; ++RCI)
111        if ((*RCI)->contains(FirstLiveIn)) {
112          RC = *RCI;
113          break;
114        }
115
116      MachineInstr *OldFirstMI = MBB->begin();
117      mri_->copyRegToReg(*MBB, MBB->begin(),
118                         FirstLiveIn, FirstLiveIn, RC);
119      assert(OldFirstMI != MBB->begin() &&
120             "copyRetToReg didn't insert anything!");
121    }
122
123    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
124         I != E; ++I) {
125      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
126      assert(inserted && "multiple MachineInstr -> index mappings");
127      i2miMap_.push_back(I);
128      MIIndex += InstrSlots::NUM;
129    }
130  }
131
132  computeIntervals();
133
134  numIntervals += getNumIntervals();
135
136  DOUT << "********** INTERVALS **********\n";
137  for (iterator I = begin(), E = end(); I != E; ++I) {
138    I->second.print(DOUT, mri_);
139    DOUT << "\n";
140  }
141
142  // Join (coallesce) intervals if requested.
143  if (EnableJoining) joinIntervals();
144
145  numIntervalsAfter += getNumIntervals();
146
147
148  // perform a final pass over the instructions and compute spill
149  // weights, coalesce virtual registers and remove identity moves.
150  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
151
152  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
153       mbbi != mbbe; ++mbbi) {
154    MachineBasicBlock* mbb = mbbi;
155    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
156
157    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
158         mii != mie; ) {
159      // if the move will be an identity move delete it
160      unsigned srcReg, dstReg, RegRep;
161      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
162          (RegRep = rep(srcReg)) == rep(dstReg)) {
163        // remove from def list
164        getOrCreateInterval(RegRep);
165        RemoveMachineInstrFromMaps(mii);
166        mii = mbbi->erase(mii);
167        ++numPeep;
168      }
169      else {
170        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
171          const MachineOperand &mop = mii->getOperand(i);
172          if (mop.isRegister() && mop.getReg() &&
173              MRegisterInfo::isVirtualRegister(mop.getReg())) {
174            // replace register with representative register
175            unsigned reg = rep(mop.getReg());
176            mii->getOperand(i).setReg(reg);
177
178            LiveInterval &RegInt = getInterval(reg);
179            RegInt.weight +=
180              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
181          }
182        }
183        ++mii;
184      }
185    }
186  }
187
188
189  for (iterator I = begin(), E = end(); I != E; ++I) {
190    LiveInterval &LI = I->second;
191    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
192      // If the live interval length is essentially zero, i.e. in every live
193      // range the use follows def immediately, it doesn't make sense to spill
194      // it and hope it will be easier to allocate for this li.
195      if (isZeroLengthInterval(&LI))
196        LI.weight = HUGE_VALF;
197
198      // Divide the weight of the interval by its size.  This encourages
199      // spilling of intervals that are large and have few uses, and
200      // discourages spilling of small intervals with many uses.
201      unsigned Size = 0;
202      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
203        Size += II->end - II->start;
204
205      LI.weight /= Size;
206    }
207  }
208
209  DEBUG(dump());
210  return true;
211}
212
213/// print - Implement the dump method.
214void LiveIntervals::print(std::ostream &O, const Module* ) const {
215  O << "********** INTERVALS **********\n";
216  for (const_iterator I = begin(), E = end(); I != E; ++I) {
217    I->second.print(DOUT, mri_);
218    DOUT << "\n";
219  }
220
221  O << "********** MACHINEINSTRS **********\n";
222  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
223       mbbi != mbbe; ++mbbi) {
224    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
225    for (MachineBasicBlock::iterator mii = mbbi->begin(),
226           mie = mbbi->end(); mii != mie; ++mii) {
227      O << getInstructionIndex(mii) << '\t' << *mii;
228    }
229  }
230}
231
232/// CreateNewLiveInterval - Create a new live interval with the given live
233/// ranges. The new live interval will have an infinite spill weight.
234LiveInterval&
235LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
236                                     const std::vector<LiveRange> &LRs) {
237  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
238
239  // Create a new virtual register for the spill interval.
240  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
241
242  // Replace the old virtual registers in the machine operands with the shiny
243  // new one.
244  for (std::vector<LiveRange>::const_iterator
245         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
246    unsigned Index = getBaseIndex(I->start);
247    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
248
249    for (; Index != End; Index += InstrSlots::NUM) {
250      // Skip deleted instructions
251      while (Index != End && !getInstructionFromIndex(Index))
252        Index += InstrSlots::NUM;
253
254      if (Index == End) break;
255
256      MachineInstr *MI = getInstructionFromIndex(Index);
257
258      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
259        MachineOperand &MOp = MI->getOperand(J);
260        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
261          MOp.setReg(NewVReg);
262      }
263    }
264  }
265
266  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
267
268  // The spill weight is now infinity as it cannot be spilled again
269  NewLI.weight = float(HUGE_VAL);
270
271  for (std::vector<LiveRange>::const_iterator
272         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
273    DOUT << "  Adding live range " << *I << " to new interval\n";
274    NewLI.addRange(*I);
275  }
276
277  DOUT << "Created new live interval " << NewLI << "\n";
278  return NewLI;
279}
280
281std::vector<LiveInterval*> LiveIntervals::
282addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
283  // since this is called after the analysis is done we don't know if
284  // LiveVariables is available
285  lv_ = getAnalysisToUpdate<LiveVariables>();
286
287  std::vector<LiveInterval*> added;
288
289  assert(li.weight != HUGE_VALF &&
290         "attempt to spill already spilled interval!");
291
292  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
293  li.print(DOUT, mri_);
294  DOUT << '\n';
295
296  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
297
298  for (LiveInterval::Ranges::const_iterator
299         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
300    unsigned index = getBaseIndex(i->start);
301    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
302    for (; index != end; index += InstrSlots::NUM) {
303      // skip deleted instructions
304      while (index != end && !getInstructionFromIndex(index))
305        index += InstrSlots::NUM;
306      if (index == end) break;
307
308      MachineInstr *MI = getInstructionFromIndex(index);
309
310    RestartInstruction:
311      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
312        MachineOperand& mop = MI->getOperand(i);
313        if (mop.isRegister() && mop.getReg() == li.reg) {
314          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
315            // Attempt to fold the memory reference into the instruction.  If we
316            // can do this, we don't need to insert spill code.
317            if (lv_)
318              lv_->instructionChanged(MI, fmi);
319            MachineBasicBlock &MBB = *MI->getParent();
320            vrm.virtFolded(li.reg, MI, i, fmi);
321            mi2iMap_.erase(MI);
322            i2miMap_[index/InstrSlots::NUM] = fmi;
323            mi2iMap_[fmi] = index;
324            MI = MBB.insert(MBB.erase(MI), fmi);
325            ++numFolded;
326            // Folding the load/store can completely change the instruction in
327            // unpredictable ways, rescan it from the beginning.
328            goto RestartInstruction;
329          } else {
330            // Create a new virtual register for the spill interval.
331            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
332
333            // Scan all of the operands of this instruction rewriting operands
334            // to use NewVReg instead of li.reg as appropriate.  We do this for
335            // two reasons:
336            //
337            //   1. If the instr reads the same spilled vreg multiple times, we
338            //      want to reuse the NewVReg.
339            //   2. If the instr is a two-addr instruction, we are required to
340            //      keep the src/dst regs pinned.
341            //
342            // Keep track of whether we replace a use and/or def so that we can
343            // create the spill interval with the appropriate range.
344            mop.setReg(NewVReg);
345
346            bool HasUse = mop.isUse();
347            bool HasDef = mop.isDef();
348            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
349              if (MI->getOperand(j).isReg() &&
350                  MI->getOperand(j).getReg() == li.reg) {
351                MI->getOperand(j).setReg(NewVReg);
352                HasUse |= MI->getOperand(j).isUse();
353                HasDef |= MI->getOperand(j).isDef();
354              }
355            }
356
357            // create a new register for this spill
358            vrm.grow();
359            vrm.assignVirt2StackSlot(NewVReg, slot);
360            LiveInterval &nI = getOrCreateInterval(NewVReg);
361            assert(nI.empty());
362
363            // the spill weight is now infinity as it
364            // cannot be spilled again
365            nI.weight = HUGE_VALF;
366
367            if (HasUse) {
368              LiveRange LR(getLoadIndex(index), getUseIndex(index),
369                           nI.getNextValue(~0U, 0));
370              DOUT << " +" << LR;
371              nI.addRange(LR);
372            }
373            if (HasDef) {
374              LiveRange LR(getDefIndex(index), getStoreIndex(index),
375                           nI.getNextValue(~0U, 0));
376              DOUT << " +" << LR;
377              nI.addRange(LR);
378            }
379
380            added.push_back(&nI);
381
382            // update live variables if it is available
383            if (lv_)
384              lv_->addVirtualRegisterKilled(NewVReg, MI);
385
386            DOUT << "\t\t\t\tadded new interval: ";
387            nI.print(DOUT, mri_);
388            DOUT << '\n';
389          }
390        }
391      }
392    }
393  }
394
395  return added;
396}
397
398void LiveIntervals::printRegName(unsigned reg) const {
399  if (MRegisterInfo::isPhysicalRegister(reg))
400    cerr << mri_->getName(reg);
401  else
402    cerr << "%reg" << reg;
403}
404
405/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
406/// two addr elimination.
407static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
408                                const TargetInstrInfo *TII) {
409  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
410    MachineOperand &MO1 = MI->getOperand(i);
411    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
412      for (unsigned j = i+1; j < e; ++j) {
413        MachineOperand &MO2 = MI->getOperand(j);
414        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
415            MI->getInstrDescriptor()->
416            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
417          return true;
418      }
419    }
420  }
421  return false;
422}
423
424void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
425                                             MachineBasicBlock::iterator mi,
426                                             unsigned MIIdx,
427                                             LiveInterval &interval) {
428  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
429  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
430
431  // Virtual registers may be defined multiple times (due to phi
432  // elimination and 2-addr elimination).  Much of what we do only has to be
433  // done once for the vreg.  We use an empty interval to detect the first
434  // time we see a vreg.
435  if (interval.empty()) {
436    // Get the Idx of the defining instructions.
437    unsigned defIndex = getDefIndex(MIIdx);
438
439    unsigned ValNum;
440    unsigned SrcReg, DstReg;
441    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
442      ValNum = interval.getNextValue(~0U, 0);
443    else
444      ValNum = interval.getNextValue(defIndex, SrcReg);
445
446    assert(ValNum == 0 && "First value in interval is not 0?");
447    ValNum = 0;  // Clue in the optimizer.
448
449    // Loop over all of the blocks that the vreg is defined in.  There are
450    // two cases we have to handle here.  The most common case is a vreg
451    // whose lifetime is contained within a basic block.  In this case there
452    // will be a single kill, in MBB, which comes after the definition.
453    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
454      // FIXME: what about dead vars?
455      unsigned killIdx;
456      if (vi.Kills[0] != mi)
457        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
458      else
459        killIdx = defIndex+1;
460
461      // If the kill happens after the definition, we have an intra-block
462      // live range.
463      if (killIdx > defIndex) {
464        assert(vi.AliveBlocks.none() &&
465               "Shouldn't be alive across any blocks!");
466        LiveRange LR(defIndex, killIdx, ValNum);
467        interval.addRange(LR);
468        DOUT << " +" << LR << "\n";
469        return;
470      }
471    }
472
473    // The other case we handle is when a virtual register lives to the end
474    // of the defining block, potentially live across some blocks, then is
475    // live into some number of blocks, but gets killed.  Start by adding a
476    // range that goes from this definition to the end of the defining block.
477    LiveRange NewLR(defIndex,
478                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
479                    ValNum);
480    DOUT << " +" << NewLR;
481    interval.addRange(NewLR);
482
483    // Iterate over all of the blocks that the variable is completely
484    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
485    // live interval.
486    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
487      if (vi.AliveBlocks[i]) {
488        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
489        if (!MBB->empty()) {
490          LiveRange LR(getMBBStartIdx(i),
491                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
492                       ValNum);
493          interval.addRange(LR);
494          DOUT << " +" << LR;
495        }
496      }
497    }
498
499    // Finally, this virtual register is live from the start of any killing
500    // block to the 'use' slot of the killing instruction.
501    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
502      MachineInstr *Kill = vi.Kills[i];
503      LiveRange LR(getMBBStartIdx(Kill->getParent()),
504                   getUseIndex(getInstructionIndex(Kill))+1,
505                   ValNum);
506      interval.addRange(LR);
507      DOUT << " +" << LR;
508    }
509
510  } else {
511    // If this is the second time we see a virtual register definition, it
512    // must be due to phi elimination or two addr elimination.  If this is
513    // the result of two address elimination, then the vreg is one of the
514    // def-and-use register operand.
515    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
516      // If this is a two-address definition, then we have already processed
517      // the live range.  The only problem is that we didn't realize there
518      // are actually two values in the live interval.  Because of this we
519      // need to take the LiveRegion that defines this register and split it
520      // into two values.
521      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
522      unsigned RedefIndex = getDefIndex(MIIdx);
523
524      // Delete the initial value, which should be short and continuous,
525      // because the 2-addr copy must be in the same MBB as the redef.
526      interval.removeRange(DefIndex, RedefIndex);
527
528      // Two-address vregs should always only be redefined once.  This means
529      // that at this point, there should be exactly one value number in it.
530      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
531
532      // The new value number (#1) is defined by the instruction we claimed
533      // defined value #0.
534      unsigned ValNo = interval.getNextValue(0, 0);
535      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
536
537      // Value#0 is now defined by the 2-addr instruction.
538      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
539
540      // Add the new live interval which replaces the range for the input copy.
541      LiveRange LR(DefIndex, RedefIndex, ValNo);
542      DOUT << " replace range with " << LR;
543      interval.addRange(LR);
544
545      // If this redefinition is dead, we need to add a dummy unit live
546      // range covering the def slot.
547      if (lv_->RegisterDefIsDead(mi, interval.reg))
548        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
549
550      DOUT << "RESULT: ";
551      interval.print(DOUT, mri_);
552
553    } else {
554      // Otherwise, this must be because of phi elimination.  If this is the
555      // first redefinition of the vreg that we have seen, go back and change
556      // the live range in the PHI block to be a different value number.
557      if (interval.containsOneValue()) {
558        assert(vi.Kills.size() == 1 &&
559               "PHI elimination vreg should have one kill, the PHI itself!");
560
561        // Remove the old range that we now know has an incorrect number.
562        MachineInstr *Killer = vi.Kills[0];
563        unsigned Start = getMBBStartIdx(Killer->getParent());
564        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
565        DOUT << "Removing [" << Start << "," << End << "] from: ";
566        interval.print(DOUT, mri_); DOUT << "\n";
567        interval.removeRange(Start, End);
568        DOUT << "RESULT: "; interval.print(DOUT, mri_);
569
570        // Replace the interval with one of a NEW value number.  Note that this
571        // value number isn't actually defined by an instruction, weird huh? :)
572        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
573        DOUT << " replace range with " << LR;
574        interval.addRange(LR);
575        DOUT << "RESULT: "; interval.print(DOUT, mri_);
576      }
577
578      // In the case of PHI elimination, each variable definition is only
579      // live until the end of the block.  We've already taken care of the
580      // rest of the live range.
581      unsigned defIndex = getDefIndex(MIIdx);
582
583      unsigned ValNum;
584      unsigned SrcReg, DstReg;
585      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
586        ValNum = interval.getNextValue(~0U, 0);
587      else
588        ValNum = interval.getNextValue(defIndex, SrcReg);
589
590      LiveRange LR(defIndex,
591                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
592      interval.addRange(LR);
593      DOUT << " +" << LR;
594    }
595  }
596
597  DOUT << '\n';
598}
599
600void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
601                                              MachineBasicBlock::iterator mi,
602                                              unsigned MIIdx,
603                                              LiveInterval &interval,
604                                              unsigned SrcReg) {
605  // A physical register cannot be live across basic block, so its
606  // lifetime must end somewhere in its defining basic block.
607  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
608
609  unsigned baseIndex = MIIdx;
610  unsigned start = getDefIndex(baseIndex);
611  unsigned end = start;
612
613  // If it is not used after definition, it is considered dead at
614  // the instruction defining it. Hence its interval is:
615  // [defSlot(def), defSlot(def)+1)
616  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
617    DOUT << " dead";
618    end = getDefIndex(start) + 1;
619    goto exit;
620  }
621
622  // If it is not dead on definition, it must be killed by a
623  // subsequent instruction. Hence its interval is:
624  // [defSlot(def), useSlot(kill)+1)
625  while (++mi != MBB->end()) {
626    baseIndex += InstrSlots::NUM;
627    if (lv_->KillsRegister(mi, interval.reg)) {
628      DOUT << " killed";
629      end = getUseIndex(baseIndex) + 1;
630      goto exit;
631    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
632      // Another instruction redefines the register before it is ever read.
633      // Then the register is essentially dead at the instruction that defines
634      // it. Hence its interval is:
635      // [defSlot(def), defSlot(def)+1)
636      DOUT << " dead";
637      end = getDefIndex(start) + 1;
638      goto exit;
639    }
640  }
641
642  // The only case we should have a dead physreg here without a killing or
643  // instruction where we know it's dead is if it is live-in to the function
644  // and never used.
645  assert(!SrcReg && "physreg was not killed in defining block!");
646  end = getDefIndex(start) + 1;  // It's dead.
647
648exit:
649  assert(start < end && "did not find end of interval?");
650
651  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
652                                                 SrcReg));
653  interval.addRange(LR);
654  DOUT << " +" << LR << '\n';
655}
656
657void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
658                                      MachineBasicBlock::iterator MI,
659                                      unsigned MIIdx,
660                                      unsigned reg) {
661  if (MRegisterInfo::isVirtualRegister(reg))
662    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
663  else if (allocatableRegs_[reg]) {
664    unsigned SrcReg, DstReg;
665    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
666      SrcReg = 0;
667    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
668    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
669      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
670  }
671}
672
673/// computeIntervals - computes the live intervals for virtual
674/// registers. for some ordering of the machine instructions [1,N] a
675/// live interval is an interval [i, j) where 1 <= i <= j < N for
676/// which a variable is live
677void LiveIntervals::computeIntervals() {
678  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
679       << "********** Function: "
680       << ((Value*)mf_->getFunction())->getName() << '\n';
681  // Track the index of the current machine instr.
682  unsigned MIIndex = 0;
683  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
684       MBBI != E; ++MBBI) {
685    MachineBasicBlock *MBB = MBBI;
686    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
687
688    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
689
690    if (MBB->livein_begin() != MBB->livein_end()) {
691      // Process live-ins to this BB first.
692      for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
693             LE = MBB->livein_end(); LI != LE; ++LI) {
694        handlePhysicalRegisterDef(MBB, MBB->begin(), MIIndex,
695                                  getOrCreateInterval(*LI), 0);
696        for (const unsigned* AS = mri_->getAliasSet(*LI); *AS; ++AS)
697          handlePhysicalRegisterDef(MBB, MBB->begin(), MIIndex,
698                                    getOrCreateInterval(*AS), 0);
699      }
700      ++MI;
701      MIIndex += InstrSlots::NUM;
702    }
703
704    for (; MI != miEnd; ++MI) {
705      DOUT << MIIndex << "\t" << *MI;
706
707      // Handle defs.
708      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
709        MachineOperand &MO = MI->getOperand(i);
710        // handle register defs - build intervals
711        if (MO.isRegister() && MO.getReg() && MO.isDef())
712          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
713      }
714
715      MIIndex += InstrSlots::NUM;
716    }
717  }
718}
719
720/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
721/// being the source and IntB being the dest, thus this defines a value number
722/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
723/// see if we can merge these two pieces of B into a single value number,
724/// eliminating a copy.  For example:
725///
726///  A3 = B0
727///    ...
728///  B1 = A3      <- this copy
729///
730/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
731/// value number to be replaced with B0 (which simplifies the B liveinterval).
732///
733/// This returns true if an interval was modified.
734///
735bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
736                                         MachineInstr *CopyMI) {
737  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
738
739  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
740  // the example above.
741  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
742  unsigned BValNo = BLR->ValId;
743
744  // Get the location that B is defined at.  Two options: either this value has
745  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
746  // can't process it.
747  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
748  if (BValNoDefIdx == ~0U) return false;
749  assert(BValNoDefIdx == CopyIdx &&
750         "Copy doesn't define the value?");
751
752  // AValNo is the value number in A that defines the copy, A0 in the example.
753  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
754  unsigned AValNo = AValLR->ValId;
755
756  // If AValNo is defined as a copy from IntB, we can potentially process this.
757
758  // Get the instruction that defines this value number.
759  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
760  if (!SrcReg) return false;  // Not defined by a copy.
761
762  // If the value number is not defined by a copy instruction, ignore it.
763
764  // If the source register comes from an interval other than IntB, we can't
765  // handle this.
766  if (rep(SrcReg) != IntB.reg) return false;
767
768  // Get the LiveRange in IntB that this value number starts with.
769  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
770  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
771
772  // Make sure that the end of the live range is inside the same block as
773  // CopyMI.
774  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
775  if (!ValLREndInst ||
776      ValLREndInst->getParent() != CopyMI->getParent()) return false;
777
778  // Okay, we now know that ValLR ends in the same block that the CopyMI
779  // live-range starts.  If there are no intervening live ranges between them in
780  // IntB, we can merge them.
781  if (ValLR+1 != BLR) return false;
782
783  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
784
785  // We are about to delete CopyMI, so need to remove it as the 'instruction
786  // that defines this value #'.
787  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
788
789  // Okay, we can merge them.  We need to insert a new liverange:
790  // [ValLR.end, BLR.begin) of either value number, then we merge the
791  // two value numbers.
792  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
793  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
794
795  // If the IntB live range is assigned to a physical register, and if that
796  // physreg has aliases,
797  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
798    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
799      LiveInterval &AliasLI = getInterval(*AS);
800      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
801                                 AliasLI.getNextValue(~0U, 0)));
802    }
803  }
804
805  // Okay, merge "B1" into the same value number as "B0".
806  if (BValNo != ValLR->ValId)
807    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
808  DOUT << "   result = "; IntB.print(DOUT, mri_);
809  DOUT << "\n";
810
811  // Finally, delete the copy instruction.
812  RemoveMachineInstrFromMaps(CopyMI);
813  CopyMI->eraseFromParent();
814  ++numPeep;
815  return true;
816}
817
818
819/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
820/// which are the src/dst of the copy instruction CopyMI.  This returns true
821/// if the copy was successfully coallesced away, or if it is never possible
822/// to coallesce these this copy, due to register constraints.  It returns
823/// false if it is not currently possible to coallesce this interval, but
824/// it may be possible if other things get coallesced.
825bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
826                             unsigned SrcReg, unsigned DstReg) {
827  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
828
829  // Get representative registers.
830  SrcReg = rep(SrcReg);
831  DstReg = rep(DstReg);
832
833  // If they are already joined we continue.
834  if (SrcReg == DstReg) {
835    DOUT << "\tCopy already coallesced.\n";
836    return true;  // Not coallescable.
837  }
838
839  // If they are both physical registers, we cannot join them.
840  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
841      MRegisterInfo::isPhysicalRegister(DstReg)) {
842    DOUT << "\tCan not coallesce physregs.\n";
843    return true;  // Not coallescable.
844  }
845
846  // We only join virtual registers with allocatable physical registers.
847  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
848    DOUT << "\tSrc reg is unallocatable physreg.\n";
849    return true;  // Not coallescable.
850  }
851  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
852    DOUT << "\tDst reg is unallocatable physreg.\n";
853    return true;  // Not coallescable.
854  }
855
856  // If they are not of the same register class, we cannot join them.
857  if (differingRegisterClasses(SrcReg, DstReg)) {
858    DOUT << "\tSrc/Dest are different register classes.\n";
859    return true;  // Not coallescable.
860  }
861
862  LiveInterval &SrcInt = getInterval(SrcReg);
863  LiveInterval &DestInt = getInterval(DstReg);
864  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
865         "Register mapping is horribly broken!");
866
867  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
868  DOUT << " and "; DestInt.print(DOUT, mri_);
869  DOUT << ": ";
870
871  // Okay, attempt to join these two intervals.  On failure, this returns false.
872  // Otherwise, if one of the intervals being joined is a physreg, this method
873  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
874  // been modified, so we can use this information below to update aliases.
875  if (!JoinIntervals(DestInt, SrcInt)) {
876    // Coallescing failed.
877
878    // If we can eliminate the copy without merging the live ranges, do so now.
879    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
880      return true;
881
882    // Otherwise, we are unable to join the intervals.
883    DOUT << "Interference!\n";
884    return false;
885  }
886
887  bool Swapped = SrcReg == DestInt.reg;
888  if (Swapped)
889    std::swap(SrcReg, DstReg);
890  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
891         "LiveInterval::join didn't work right!");
892
893  // If we're about to merge live ranges into a physical register live range,
894  // we have to update any aliased register's live ranges to indicate that they
895  // have clobbered values for this range.
896  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
897    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
898      getInterval(*AS).MergeInClobberRanges(SrcInt);
899  }
900
901  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
902  DOUT << "\n";
903
904  // If the intervals were swapped by Join, swap them back so that the register
905  // mapping (in the r2i map) is correct.
906  if (Swapped) SrcInt.swap(DestInt);
907  r2iMap_.erase(SrcReg);
908  r2rMap_[SrcReg] = DstReg;
909
910  // Finally, delete the copy instruction.
911  RemoveMachineInstrFromMaps(CopyMI);
912  CopyMI->eraseFromParent();
913  ++numPeep;
914  ++numJoins;
915  return true;
916}
917
918/// ComputeUltimateVN - Assuming we are going to join two live intervals,
919/// compute what the resultant value numbers for each value in the input two
920/// ranges will be.  This is complicated by copies between the two which can
921/// and will commonly cause multiple value numbers to be merged into one.
922///
923/// VN is the value number that we're trying to resolve.  InstDefiningValue
924/// keeps track of the new InstDefiningValue assignment for the result
925/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
926/// whether a value in this or other is a copy from the opposite set.
927/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
928/// already been assigned.
929///
930/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
931/// contains the value number the copy is from.
932///
933static unsigned ComputeUltimateVN(unsigned VN,
934                                  SmallVector<std::pair<unsigned,
935                                                unsigned>, 16> &ValueNumberInfo,
936                                  SmallVector<int, 16> &ThisFromOther,
937                                  SmallVector<int, 16> &OtherFromThis,
938                                  SmallVector<int, 16> &ThisValNoAssignments,
939                                  SmallVector<int, 16> &OtherValNoAssignments,
940                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
941  // If the VN has already been computed, just return it.
942  if (ThisValNoAssignments[VN] >= 0)
943    return ThisValNoAssignments[VN];
944//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
945
946  // If this val is not a copy from the other val, then it must be a new value
947  // number in the destination.
948  int OtherValNo = ThisFromOther[VN];
949  if (OtherValNo == -1) {
950    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
951    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
952  }
953
954  // Otherwise, this *is* a copy from the RHS.  If the other side has already
955  // been computed, return it.
956  if (OtherValNoAssignments[OtherValNo] >= 0)
957    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
958
959  // Mark this value number as currently being computed, then ask what the
960  // ultimate value # of the other value is.
961  ThisValNoAssignments[VN] = -2;
962  unsigned UltimateVN =
963    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
964                      OtherFromThis, ThisFromOther,
965                      OtherValNoAssignments, ThisValNoAssignments,
966                      OtherLI, ThisLI);
967  return ThisValNoAssignments[VN] = UltimateVN;
968}
969
970static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
971  return std::find(V.begin(), V.end(), Val) != V.end();
972}
973
974/// SimpleJoin - Attempt to joint the specified interval into this one. The
975/// caller of this method must guarantee that the RHS only contains a single
976/// value number and that the RHS is not defined by a copy from this
977/// interval.  This returns false if the intervals are not joinable, or it
978/// joins them and returns true.
979bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
980  assert(RHS.containsOneValue());
981
982  // Some number (potentially more than one) value numbers in the current
983  // interval may be defined as copies from the RHS.  Scan the overlapping
984  // portions of the LHS and RHS, keeping track of this and looking for
985  // overlapping live ranges that are NOT defined as copies.  If these exist, we
986  // cannot coallesce.
987
988  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
989  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
990
991  if (LHSIt->start < RHSIt->start) {
992    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
993    if (LHSIt != LHS.begin()) --LHSIt;
994  } else if (RHSIt->start < LHSIt->start) {
995    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
996    if (RHSIt != RHS.begin()) --RHSIt;
997  }
998
999  SmallVector<unsigned, 8> EliminatedLHSVals;
1000
1001  while (1) {
1002    // Determine if these live intervals overlap.
1003    bool Overlaps = false;
1004    if (LHSIt->start <= RHSIt->start)
1005      Overlaps = LHSIt->end > RHSIt->start;
1006    else
1007      Overlaps = RHSIt->end > LHSIt->start;
1008
1009    // If the live intervals overlap, there are two interesting cases: if the
1010    // LHS interval is defined by a copy from the RHS, it's ok and we record
1011    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1012    // coallesce these live ranges and we bail out.
1013    if (Overlaps) {
1014      // If we haven't already recorded that this value # is safe, check it.
1015      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1016        // Copy from the RHS?
1017        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1018        if (rep(SrcReg) != RHS.reg)
1019          return false;    // Nope, bail out.
1020
1021        EliminatedLHSVals.push_back(LHSIt->ValId);
1022      }
1023
1024      // We know this entire LHS live range is okay, so skip it now.
1025      if (++LHSIt == LHSEnd) break;
1026      continue;
1027    }
1028
1029    if (LHSIt->end < RHSIt->end) {
1030      if (++LHSIt == LHSEnd) break;
1031    } else {
1032      // One interesting case to check here.  It's possible that we have
1033      // something like "X3 = Y" which defines a new value number in the LHS,
1034      // and is the last use of this liverange of the RHS.  In this case, we
1035      // want to notice this copy (so that it gets coallesced away) even though
1036      // the live ranges don't actually overlap.
1037      if (LHSIt->start == RHSIt->end) {
1038        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1039          // We already know that this value number is going to be merged in
1040          // if coallescing succeeds.  Just skip the liverange.
1041          if (++LHSIt == LHSEnd) break;
1042        } else {
1043          // Otherwise, if this is a copy from the RHS, mark it as being merged
1044          // in.
1045          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1046            EliminatedLHSVals.push_back(LHSIt->ValId);
1047
1048            // We know this entire LHS live range is okay, so skip it now.
1049            if (++LHSIt == LHSEnd) break;
1050          }
1051        }
1052      }
1053
1054      if (++RHSIt == RHSEnd) break;
1055    }
1056  }
1057
1058  // If we got here, we know that the coallescing will be successful and that
1059  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1060  // the most common case is that EliminatedLHSVals has a single number, we
1061  // optimize for it: if there is more than one value, we merge them all into
1062  // the lowest numbered one, then handle the interval as if we were merging
1063  // with one value number.
1064  unsigned LHSValNo;
1065  if (EliminatedLHSVals.size() > 1) {
1066    // Loop through all the equal value numbers merging them into the smallest
1067    // one.
1068    unsigned Smallest = EliminatedLHSVals[0];
1069    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1070      if (EliminatedLHSVals[i] < Smallest) {
1071        // Merge the current notion of the smallest into the smaller one.
1072        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1073        Smallest = EliminatedLHSVals[i];
1074      } else {
1075        // Merge into the smallest.
1076        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1077      }
1078    }
1079    LHSValNo = Smallest;
1080  } else {
1081    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1082    LHSValNo = EliminatedLHSVals[0];
1083  }
1084
1085  // Okay, now that there is a single LHS value number that we're merging the
1086  // RHS into, update the value number info for the LHS to indicate that the
1087  // value number is defined where the RHS value number was.
1088  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1089
1090  // Okay, the final step is to loop over the RHS live intervals, adding them to
1091  // the LHS.
1092  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1093  LHS.weight += RHS.weight;
1094
1095  return true;
1096}
1097
1098/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1099/// returns false.  Otherwise, if one of the intervals being joined is a
1100/// physreg, this method always canonicalizes LHS to be it.  The output
1101/// "RHS" will not have been modified, so we can use this information
1102/// below to update aliases.
1103bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1104  // Compute the final value assignment, assuming that the live ranges can be
1105  // coallesced.
1106  SmallVector<int, 16> LHSValNoAssignments;
1107  SmallVector<int, 16> RHSValNoAssignments;
1108  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1109
1110  // Compute ultimate value numbers for the LHS and RHS values.
1111  if (RHS.containsOneValue()) {
1112    // Copies from a liveinterval with a single value are simple to handle and
1113    // very common, handle the special case here.  This is important, because
1114    // often RHS is small and LHS is large (e.g. a physreg).
1115
1116    // Find out if the RHS is defined as a copy from some value in the LHS.
1117    int RHSValID = -1;
1118    std::pair<unsigned,unsigned> RHSValNoInfo;
1119    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1120    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1121      // If RHS is not defined as a copy from the LHS, we can use simpler and
1122      // faster checks to see if the live ranges are coallescable.  This joiner
1123      // can't swap the LHS/RHS intervals though.
1124      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1125        return SimpleJoin(LHS, RHS);
1126      } else {
1127        RHSValNoInfo = RHS.getValNumInfo(0);
1128      }
1129    } else {
1130      // It was defined as a copy from the LHS, find out what value # it is.
1131      unsigned ValInst = RHS.getInstForValNum(0);
1132      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1133      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1134    }
1135
1136    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1137    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1138    ValueNumberInfo.resize(LHS.getNumValNums());
1139
1140    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1141    // should now get updated.
1142    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1143      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1144        if (rep(LHSSrcReg) != RHS.reg) {
1145          // If this is not a copy from the RHS, its value number will be
1146          // unmodified by the coallescing.
1147          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1148          LHSValNoAssignments[VN] = VN;
1149        } else if (RHSValID == -1) {
1150          // Otherwise, it is a copy from the RHS, and we don't already have a
1151          // value# for it.  Keep the current value number, but remember it.
1152          LHSValNoAssignments[VN] = RHSValID = VN;
1153          ValueNumberInfo[VN] = RHSValNoInfo;
1154        } else {
1155          // Otherwise, use the specified value #.
1156          LHSValNoAssignments[VN] = RHSValID;
1157          if (VN != (unsigned)RHSValID)
1158            ValueNumberInfo[VN].first = ~1U;
1159          else
1160            ValueNumberInfo[VN] = RHSValNoInfo;
1161        }
1162      } else {
1163        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1164        LHSValNoAssignments[VN] = VN;
1165      }
1166    }
1167
1168    assert(RHSValID != -1 && "Didn't find value #?");
1169    RHSValNoAssignments[0] = RHSValID;
1170
1171  } else {
1172    // Loop over the value numbers of the LHS, seeing if any are defined from
1173    // the RHS.
1174    SmallVector<int, 16> LHSValsDefinedFromRHS;
1175    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1176    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1177      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1178      if (ValSrcReg == 0)  // Src not defined by a copy?
1179        continue;
1180
1181      // DstReg is known to be a register in the LHS interval.  If the src is
1182      // from the RHS interval, we can use its value #.
1183      if (rep(ValSrcReg) != RHS.reg)
1184        continue;
1185
1186      // Figure out the value # from the RHS.
1187      unsigned ValInst = LHS.getInstForValNum(VN);
1188      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1189    }
1190
1191    // Loop over the value numbers of the RHS, seeing if any are defined from
1192    // the LHS.
1193    SmallVector<int, 16> RHSValsDefinedFromLHS;
1194    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1195    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1196      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1197      if (ValSrcReg == 0)  // Src not defined by a copy?
1198        continue;
1199
1200      // DstReg is known to be a register in the RHS interval.  If the src is
1201      // from the LHS interval, we can use its value #.
1202      if (rep(ValSrcReg) != LHS.reg)
1203        continue;
1204
1205      // Figure out the value # from the LHS.
1206      unsigned ValInst = RHS.getInstForValNum(VN);
1207      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1208    }
1209
1210    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1211    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1212    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1213
1214    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1215      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1216        continue;
1217      ComputeUltimateVN(VN, ValueNumberInfo,
1218                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1219                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1220    }
1221    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1222      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1223        continue;
1224      // If this value number isn't a copy from the LHS, it's a new number.
1225      if (RHSValsDefinedFromLHS[VN] == -1) {
1226        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1227        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1228        continue;
1229      }
1230
1231      ComputeUltimateVN(VN, ValueNumberInfo,
1232                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1233                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1234    }
1235  }
1236
1237  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1238  // interval lists to see if these intervals are coallescable.
1239  LiveInterval::const_iterator I = LHS.begin();
1240  LiveInterval::const_iterator IE = LHS.end();
1241  LiveInterval::const_iterator J = RHS.begin();
1242  LiveInterval::const_iterator JE = RHS.end();
1243
1244  // Skip ahead until the first place of potential sharing.
1245  if (I->start < J->start) {
1246    I = std::upper_bound(I, IE, J->start);
1247    if (I != LHS.begin()) --I;
1248  } else if (J->start < I->start) {
1249    J = std::upper_bound(J, JE, I->start);
1250    if (J != RHS.begin()) --J;
1251  }
1252
1253  while (1) {
1254    // Determine if these two live ranges overlap.
1255    bool Overlaps;
1256    if (I->start < J->start) {
1257      Overlaps = I->end > J->start;
1258    } else {
1259      Overlaps = J->end > I->start;
1260    }
1261
1262    // If so, check value # info to determine if they are really different.
1263    if (Overlaps) {
1264      // If the live range overlap will map to the same value number in the
1265      // result liverange, we can still coallesce them.  If not, we can't.
1266      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1267        return false;
1268    }
1269
1270    if (I->end < J->end) {
1271      ++I;
1272      if (I == IE) break;
1273    } else {
1274      ++J;
1275      if (J == JE) break;
1276    }
1277  }
1278
1279  // If we get here, we know that we can coallesce the live ranges.  Ask the
1280  // intervals to coallesce themselves now.
1281  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1282           ValueNumberInfo);
1283  return true;
1284}
1285
1286
1287namespace {
1288  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1289  // depth of the basic block (the unsigned), and then on the MBB number.
1290  struct DepthMBBCompare {
1291    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1292    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1293      if (LHS.first > RHS.first) return true;   // Deeper loops first
1294      return LHS.first == RHS.first &&
1295        LHS.second->getNumber() < RHS.second->getNumber();
1296    }
1297  };
1298}
1299
1300
1301void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1302                                       std::vector<CopyRec> &TryAgain) {
1303  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1304
1305  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1306       MII != E;) {
1307    MachineInstr *Inst = MII++;
1308
1309    // If this isn't a copy, we can't join intervals.
1310    unsigned SrcReg, DstReg;
1311    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1312
1313    if (!JoinCopy(Inst, SrcReg, DstReg))
1314      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1315  }
1316}
1317
1318
1319void LiveIntervals::joinIntervals() {
1320  DOUT << "********** JOINING INTERVALS ***********\n";
1321
1322  std::vector<CopyRec> TryAgainList;
1323
1324  const LoopInfo &LI = getAnalysis<LoopInfo>();
1325  if (LI.begin() == LI.end()) {
1326    // If there are no loops in the function, join intervals in function order.
1327    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1328         I != E; ++I)
1329      CopyCoallesceInMBB(I, TryAgainList);
1330  } else {
1331    // Otherwise, join intervals in inner loops before other intervals.
1332    // Unfortunately we can't just iterate over loop hierarchy here because
1333    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1334    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1335    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1336         I != E; ++I)
1337      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1338
1339    // Sort by loop depth.
1340    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1341
1342    // Finally, join intervals in loop nest order.
1343    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1344      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1345  }
1346
1347  // Joining intervals can allow other intervals to be joined.  Iteratively join
1348  // until we make no progress.
1349  bool ProgressMade = true;
1350  while (ProgressMade) {
1351    ProgressMade = false;
1352
1353    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1354      CopyRec &TheCopy = TryAgainList[i];
1355      if (TheCopy.MI &&
1356          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1357        TheCopy.MI = 0;   // Mark this one as done.
1358        ProgressMade = true;
1359      }
1360    }
1361  }
1362
1363  DOUT << "*** Register mapping ***\n";
1364  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1365    if (r2rMap_[i]) {
1366      DOUT << "  reg " << i << " -> ";
1367      DEBUG(printRegName(r2rMap_[i]));
1368      DOUT << "\n";
1369    }
1370}
1371
1372/// Return true if the two specified registers belong to different register
1373/// classes.  The registers may be either phys or virt regs.
1374bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1375                                             unsigned RegB) const {
1376
1377  // Get the register classes for the first reg.
1378  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1379    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1380           "Shouldn't consider two physregs!");
1381    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1382  }
1383
1384  // Compare against the regclass for the second reg.
1385  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1386  if (MRegisterInfo::isVirtualRegister(RegB))
1387    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1388  else
1389    return !RegClass->contains(RegB);
1390}
1391
1392LiveInterval LiveIntervals::createInterval(unsigned reg) {
1393  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1394                       HUGE_VALF : 0.0F;
1395  return LiveInterval(reg, Weight);
1396}
1397