LiveIntervalAnalysis.cpp revision b2beac2b9671f7d9773329d62c2821c8ac449ac5
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Support/CommandLine.h"
31#include "llvm/Support/Debug.h"
32#include "llvm/Support/ErrorHandling.h"
33#include "llvm/Support/raw_ostream.h"
34#include "llvm/ADT/DenseSet.h"
35#include "llvm/ADT/STLExtras.h"
36#include "LiveRangeCalc.h"
37#include <algorithm>
38#include <limits>
39#include <cmath>
40using namespace llvm;
41
42// Switch to the new experimental algorithm for computing live intervals.
43static cl::opt<bool>
44NewLiveIntervals("new-live-intervals", cl::Hidden,
45                 cl::desc("Use new algorithm forcomputing live intervals"));
46
47char LiveIntervals::ID = 0;
48INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
49                "Live Interval Analysis", false, false)
50INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
51INITIALIZE_PASS_DEPENDENCY(LiveVariables)
52INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
53INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
54INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
55                "Live Interval Analysis", false, false)
56
57void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
58  AU.setPreservesCFG();
59  AU.addRequired<AliasAnalysis>();
60  AU.addPreserved<AliasAnalysis>();
61  AU.addRequired<LiveVariables>();
62  AU.addPreserved<LiveVariables>();
63  AU.addPreservedID(MachineLoopInfoID);
64  AU.addRequiredTransitiveID(MachineDominatorsID);
65  AU.addPreservedID(MachineDominatorsID);
66  AU.addPreserved<SlotIndexes>();
67  AU.addRequiredTransitive<SlotIndexes>();
68  MachineFunctionPass::getAnalysisUsage(AU);
69}
70
71LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
72  DomTree(0), LRCalc(0) {
73  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
74}
75
76LiveIntervals::~LiveIntervals() {
77  delete LRCalc;
78}
79
80void LiveIntervals::releaseMemory() {
81  // Free the live intervals themselves.
82  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
83    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
84  VirtRegIntervals.clear();
85  RegMaskSlots.clear();
86  RegMaskBits.clear();
87  RegMaskBlocks.clear();
88
89  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
90    delete RegUnitIntervals[i];
91  RegUnitIntervals.clear();
92
93  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
94  VNInfoAllocator.Reset();
95}
96
97/// runOnMachineFunction - Register allocate the whole function
98///
99bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
100  MF = &fn;
101  MRI = &MF->getRegInfo();
102  TM = &fn.getTarget();
103  TRI = TM->getRegisterInfo();
104  TII = TM->getInstrInfo();
105  AA = &getAnalysis<AliasAnalysis>();
106  LV = &getAnalysis<LiveVariables>();
107  Indexes = &getAnalysis<SlotIndexes>();
108  DomTree = &getAnalysis<MachineDominatorTree>();
109  if (!LRCalc)
110    LRCalc = new LiveRangeCalc();
111  AllocatableRegs = TRI->getAllocatableSet(fn);
112  ReservedRegs = TRI->getReservedRegs(fn);
113
114  // Allocate space for all virtual registers.
115  VirtRegIntervals.resize(MRI->getNumVirtRegs());
116
117  if (NewLiveIntervals) {
118    // This is the new way of computing live intervals.
119    // It is independent of LiveVariables, and it can run at any time.
120    computeVirtRegs();
121    computeRegMasks();
122  } else {
123    // This is the old way of computing live intervals.
124    // It depends on LiveVariables.
125    computeIntervals();
126  }
127  computeLiveInRegUnits();
128
129  DEBUG(dump());
130  return true;
131}
132
133/// print - Implement the dump method.
134void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
135  OS << "********** INTERVALS **********\n";
136
137  // Dump the regunits.
138  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
139    if (LiveInterval *LI = RegUnitIntervals[i])
140      OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
141
142  // Dump the virtregs.
143  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
144    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
145    if (hasInterval(Reg))
146      OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
147  }
148
149  printInstrs(OS);
150}
151
152void LiveIntervals::printInstrs(raw_ostream &OS) const {
153  OS << "********** MACHINEINSTRS **********\n";
154  MF->print(OS, Indexes);
155}
156
157void LiveIntervals::dumpInstrs() const {
158  printInstrs(dbgs());
159}
160
161static
162bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
163  unsigned Reg = MI.getOperand(MOIdx).getReg();
164  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
165    const MachineOperand &MO = MI.getOperand(i);
166    if (!MO.isReg())
167      continue;
168    if (MO.getReg() == Reg && MO.isDef()) {
169      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
170             MI.getOperand(MOIdx).getSubReg() &&
171             (MO.getSubReg() || MO.isImplicit()));
172      return true;
173    }
174  }
175  return false;
176}
177
178/// isPartialRedef - Return true if the specified def at the specific index is
179/// partially re-defining the specified live interval. A common case of this is
180/// a definition of the sub-register.
181bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
182                                   LiveInterval &interval) {
183  if (!MO.getSubReg() || MO.isEarlyClobber())
184    return false;
185
186  SlotIndex RedefIndex = MIIdx.getRegSlot();
187  const LiveRange *OldLR =
188    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
189  MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
190  if (DefMI != 0) {
191    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
192  }
193  return false;
194}
195
196void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
197                                             MachineBasicBlock::iterator mi,
198                                             SlotIndex MIIdx,
199                                             MachineOperand& MO,
200                                             unsigned MOIdx,
201                                             LiveInterval &interval) {
202  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
203
204  // Virtual registers may be defined multiple times (due to phi
205  // elimination and 2-addr elimination).  Much of what we do only has to be
206  // done once for the vreg.  We use an empty interval to detect the first
207  // time we see a vreg.
208  LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
209  if (interval.empty()) {
210    // Get the Idx of the defining instructions.
211    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
212
213    // Make sure the first definition is not a partial redefinition.
214    assert(!MO.readsReg() && "First def cannot also read virtual register "
215           "missing <undef> flag?");
216
217    VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
218    assert(ValNo->id == 0 && "First value in interval is not 0?");
219
220    // Loop over all of the blocks that the vreg is defined in.  There are
221    // two cases we have to handle here.  The most common case is a vreg
222    // whose lifetime is contained within a basic block.  In this case there
223    // will be a single kill, in MBB, which comes after the definition.
224    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
225      // FIXME: what about dead vars?
226      SlotIndex killIdx;
227      if (vi.Kills[0] != mi)
228        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
229      else
230        killIdx = defIndex.getDeadSlot();
231
232      // If the kill happens after the definition, we have an intra-block
233      // live range.
234      if (killIdx > defIndex) {
235        assert(vi.AliveBlocks.empty() &&
236               "Shouldn't be alive across any blocks!");
237        LiveRange LR(defIndex, killIdx, ValNo);
238        interval.addRange(LR);
239        DEBUG(dbgs() << " +" << LR << "\n");
240        return;
241      }
242    }
243
244    // The other case we handle is when a virtual register lives to the end
245    // of the defining block, potentially live across some blocks, then is
246    // live into some number of blocks, but gets killed.  Start by adding a
247    // range that goes from this definition to the end of the defining block.
248    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
249    DEBUG(dbgs() << " +" << NewLR);
250    interval.addRange(NewLR);
251
252    bool PHIJoin = LV->isPHIJoin(interval.reg);
253
254    if (PHIJoin) {
255      // A phi join register is killed at the end of the MBB and revived as a
256      // new valno in the killing blocks.
257      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
258      DEBUG(dbgs() << " phi-join");
259    } else {
260      // Iterate over all of the blocks that the variable is completely
261      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
262      // live interval.
263      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
264               E = vi.AliveBlocks.end(); I != E; ++I) {
265        MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
266        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
267                     ValNo);
268        interval.addRange(LR);
269        DEBUG(dbgs() << " +" << LR);
270      }
271    }
272
273    // Finally, this virtual register is live from the start of any killing
274    // block to the 'use' slot of the killing instruction.
275    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
276      MachineInstr *Kill = vi.Kills[i];
277      SlotIndex Start = getMBBStartIdx(Kill->getParent());
278      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
279
280      // Create interval with one of a NEW value number.  Note that this value
281      // number isn't actually defined by an instruction, weird huh? :)
282      if (PHIJoin) {
283        assert(getInstructionFromIndex(Start) == 0 &&
284               "PHI def index points at actual instruction.");
285        ValNo = interval.getNextValue(Start, VNInfoAllocator);
286      }
287      LiveRange LR(Start, killIdx, ValNo);
288      interval.addRange(LR);
289      DEBUG(dbgs() << " +" << LR);
290    }
291
292  } else {
293    if (MultipleDefsBySameMI(*mi, MOIdx))
294      // Multiple defs of the same virtual register by the same instruction.
295      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
296      // This is likely due to elimination of REG_SEQUENCE instructions. Return
297      // here since there is nothing to do.
298      return;
299
300    // If this is the second time we see a virtual register definition, it
301    // must be due to phi elimination or two addr elimination.  If this is
302    // the result of two address elimination, then the vreg is one of the
303    // def-and-use register operand.
304
305    // It may also be partial redef like this:
306    // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
307    // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
308    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
309    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
310      // If this is a two-address definition, then we have already processed
311      // the live range.  The only problem is that we didn't realize there
312      // are actually two values in the live interval.  Because of this we
313      // need to take the LiveRegion that defines this register and split it
314      // into two values.
315      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
316
317      const LiveRange *OldLR =
318        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
319      VNInfo *OldValNo = OldLR->valno;
320      SlotIndex DefIndex = OldValNo->def.getRegSlot();
321
322      // Delete the previous value, which should be short and continuous,
323      // because the 2-addr copy must be in the same MBB as the redef.
324      interval.removeRange(DefIndex, RedefIndex);
325
326      // The new value number (#1) is defined by the instruction we claimed
327      // defined value #0.
328      VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
329
330      // Value#0 is now defined by the 2-addr instruction.
331      OldValNo->def = RedefIndex;
332
333      // Add the new live interval which replaces the range for the input copy.
334      LiveRange LR(DefIndex, RedefIndex, ValNo);
335      DEBUG(dbgs() << " replace range with " << LR);
336      interval.addRange(LR);
337
338      // If this redefinition is dead, we need to add a dummy unit live
339      // range covering the def slot.
340      if (MO.isDead())
341        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
342                                    OldValNo));
343
344      DEBUG(dbgs() << " RESULT: " << interval);
345    } else if (LV->isPHIJoin(interval.reg)) {
346      // In the case of PHI elimination, each variable definition is only
347      // live until the end of the block.  We've already taken care of the
348      // rest of the live range.
349
350      SlotIndex defIndex = MIIdx.getRegSlot();
351      if (MO.isEarlyClobber())
352        defIndex = MIIdx.getRegSlot(true);
353
354      VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
355
356      SlotIndex killIndex = getMBBEndIdx(mbb);
357      LiveRange LR(defIndex, killIndex, ValNo);
358      interval.addRange(LR);
359      DEBUG(dbgs() << " phi-join +" << LR);
360    } else {
361      llvm_unreachable("Multiply defined register");
362    }
363  }
364
365  DEBUG(dbgs() << '\n');
366}
367
368void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
369                                      MachineBasicBlock::iterator MI,
370                                      SlotIndex MIIdx,
371                                      MachineOperand& MO,
372                                      unsigned MOIdx) {
373  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
374    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
375                             getOrCreateInterval(MO.getReg()));
376}
377
378/// computeIntervals - computes the live intervals for virtual
379/// registers. for some ordering of the machine instructions [1,N] a
380/// live interval is an interval [i, j) where 1 <= i <= j < N for
381/// which a variable is live
382void LiveIntervals::computeIntervals() {
383  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
384               << "********** Function: "
385               << ((Value*)MF->getFunction())->getName() << '\n');
386
387  RegMaskBlocks.resize(MF->getNumBlockIDs());
388
389  SmallVector<unsigned, 8> UndefUses;
390  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
391       MBBI != E; ++MBBI) {
392    MachineBasicBlock *MBB = MBBI;
393    RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
394
395    if (MBB->empty())
396      continue;
397
398    // Track the index of the current machine instr.
399    SlotIndex MIIndex = getMBBStartIdx(MBB);
400    DEBUG(dbgs() << "BB#" << MBB->getNumber()
401          << ":\t\t# derived from " << MBB->getName() << "\n");
402
403    // Skip over empty initial indices.
404    if (getInstructionFromIndex(MIIndex) == 0)
405      MIIndex = Indexes->getNextNonNullIndex(MIIndex);
406
407    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
408         MI != miEnd; ++MI) {
409      DEBUG(dbgs() << MIIndex << "\t" << *MI);
410      if (MI->isDebugValue())
411        continue;
412      assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
413             "Lost SlotIndex synchronization");
414
415      // Handle defs.
416      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
417        MachineOperand &MO = MI->getOperand(i);
418
419        // Collect register masks.
420        if (MO.isRegMask()) {
421          RegMaskSlots.push_back(MIIndex.getRegSlot());
422          RegMaskBits.push_back(MO.getRegMask());
423          continue;
424        }
425
426        if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
427          continue;
428
429        // handle register defs - build intervals
430        if (MO.isDef())
431          handleRegisterDef(MBB, MI, MIIndex, MO, i);
432        else if (MO.isUndef())
433          UndefUses.push_back(MO.getReg());
434      }
435
436      // Move to the next instr slot.
437      MIIndex = Indexes->getNextNonNullIndex(MIIndex);
438    }
439
440    // Compute the number of register mask instructions in this block.
441    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
442    RMB.second = RegMaskSlots.size() - RMB.first;;
443  }
444
445  // Create empty intervals for registers defined by implicit_def's (except
446  // for those implicit_def that define values which are liveout of their
447  // blocks.
448  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
449    unsigned UndefReg = UndefUses[i];
450    (void)getOrCreateInterval(UndefReg);
451  }
452}
453
454LiveInterval* LiveIntervals::createInterval(unsigned reg) {
455  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
456  return new LiveInterval(reg, Weight);
457}
458
459
460/// computeVirtRegInterval - Compute the live interval of a virtual register,
461/// based on defs and uses.
462void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
463  assert(LRCalc && "LRCalc not initialized.");
464  assert(LI->empty() && "Should only compute empty intervals.");
465  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
466  LRCalc->createDeadDefs(LI);
467  LRCalc->extendToUses(LI);
468}
469
470void LiveIntervals::computeVirtRegs() {
471  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
472    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
473    if (MRI->reg_nodbg_empty(Reg))
474      continue;
475    LiveInterval *LI = createInterval(Reg);
476    VirtRegIntervals[Reg] = LI;
477    computeVirtRegInterval(LI);
478  }
479}
480
481void LiveIntervals::computeRegMasks() {
482  RegMaskBlocks.resize(MF->getNumBlockIDs());
483
484  // Find all instructions with regmask operands.
485  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
486       MBBI != E; ++MBBI) {
487    MachineBasicBlock *MBB = MBBI;
488    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
489    RMB.first = RegMaskSlots.size();
490    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
491         MI != ME; ++MI)
492      for (MIOperands MO(MI); MO.isValid(); ++MO) {
493        if (!MO->isRegMask())
494          continue;
495          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
496          RegMaskBits.push_back(MO->getRegMask());
497      }
498    // Compute the number of register mask instructions in this block.
499    RMB.second = RegMaskSlots.size() - RMB.first;;
500  }
501}
502
503//===----------------------------------------------------------------------===//
504//                           Register Unit Liveness
505//===----------------------------------------------------------------------===//
506//
507// Fixed interference typically comes from ABI boundaries: Function arguments
508// and return values are passed in fixed registers, and so are exception
509// pointers entering landing pads. Certain instructions require values to be
510// present in specific registers. That is also represented through fixed
511// interference.
512//
513
514/// computeRegUnitInterval - Compute the live interval of a register unit, based
515/// on the uses and defs of aliasing registers.  The interval should be empty,
516/// or contain only dead phi-defs from ABI blocks.
517void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
518  unsigned Unit = LI->reg;
519
520  assert(LRCalc && "LRCalc not initialized.");
521  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
522
523  // The physregs aliasing Unit are the roots and their super-registers.
524  // Create all values as dead defs before extending to uses. Note that roots
525  // may share super-registers. That's OK because createDeadDefs() is
526  // idempotent. It is very rare for a register unit to have multiple roots, so
527  // uniquing super-registers is probably not worthwhile.
528  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
529    unsigned Root = *Roots;
530    if (!MRI->reg_empty(Root))
531      LRCalc->createDeadDefs(LI, Root);
532    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
533      if (!MRI->reg_empty(*Supers))
534        LRCalc->createDeadDefs(LI, *Supers);
535    }
536  }
537
538  // Now extend LI to reach all uses.
539  // Ignore uses of reserved registers. We only track defs of those.
540  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
541    unsigned Root = *Roots;
542    if (!isReserved(Root) && !MRI->reg_empty(Root))
543      LRCalc->extendToUses(LI, Root);
544    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
545      unsigned Reg = *Supers;
546      if (!isReserved(Reg) && !MRI->reg_empty(Reg))
547        LRCalc->extendToUses(LI, Reg);
548    }
549  }
550}
551
552
553/// computeLiveInRegUnits - Precompute the live ranges of any register units
554/// that are live-in to an ABI block somewhere. Register values can appear
555/// without a corresponding def when entering the entry block or a landing pad.
556///
557void LiveIntervals::computeLiveInRegUnits() {
558  RegUnitIntervals.resize(TRI->getNumRegUnits());
559  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
560
561  // Keep track of the intervals allocated.
562  SmallVector<LiveInterval*, 8> NewIntvs;
563
564  // Check all basic blocks for live-ins.
565  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
566       MFI != MFE; ++MFI) {
567    const MachineBasicBlock *MBB = MFI;
568
569    // We only care about ABI blocks: Entry + landing pads.
570    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
571      continue;
572
573    // Create phi-defs at Begin for all live-in registers.
574    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
575    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
576    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
577         LIE = MBB->livein_end(); LII != LIE; ++LII) {
578      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
579        unsigned Unit = *Units;
580        LiveInterval *Intv = RegUnitIntervals[Unit];
581        if (!Intv) {
582          Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
583          NewIntvs.push_back(Intv);
584        }
585        VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
586        (void)VNI;
587        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
588      }
589    }
590    DEBUG(dbgs() << '\n');
591  }
592  DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
593
594  // Compute the 'normal' part of the intervals.
595  for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
596    computeRegUnitInterval(NewIntvs[i]);
597}
598
599
600/// shrinkToUses - After removing some uses of a register, shrink its live
601/// range to just the remaining uses. This method does not compute reaching
602/// defs for new uses, and it doesn't remove dead defs.
603bool LiveIntervals::shrinkToUses(LiveInterval *li,
604                                 SmallVectorImpl<MachineInstr*> *dead) {
605  DEBUG(dbgs() << "Shrink: " << *li << '\n');
606  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
607         && "Can only shrink virtual registers");
608  // Find all the values used, including PHI kills.
609  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
610
611  // Blocks that have already been added to WorkList as live-out.
612  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
613
614  // Visit all instructions reading li->reg.
615  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
616       MachineInstr *UseMI = I.skipInstruction();) {
617    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
618      continue;
619    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
620    LiveRangeQuery LRQ(*li, Idx);
621    VNInfo *VNI = LRQ.valueIn();
622    if (!VNI) {
623      // This shouldn't happen: readsVirtualRegister returns true, but there is
624      // no live value. It is likely caused by a target getting <undef> flags
625      // wrong.
626      DEBUG(dbgs() << Idx << '\t' << *UseMI
627                   << "Warning: Instr claims to read non-existent value in "
628                    << *li << '\n');
629      continue;
630    }
631    // Special case: An early-clobber tied operand reads and writes the
632    // register one slot early.
633    if (VNInfo *DefVNI = LRQ.valueDefined())
634      Idx = DefVNI->def;
635
636    WorkList.push_back(std::make_pair(Idx, VNI));
637  }
638
639  // Create a new live interval with only minimal live segments per def.
640  LiveInterval NewLI(li->reg, 0);
641  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
642       I != E; ++I) {
643    VNInfo *VNI = *I;
644    if (VNI->isUnused())
645      continue;
646    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
647  }
648
649  // Keep track of the PHIs that are in use.
650  SmallPtrSet<VNInfo*, 8> UsedPHIs;
651
652  // Extend intervals to reach all uses in WorkList.
653  while (!WorkList.empty()) {
654    SlotIndex Idx = WorkList.back().first;
655    VNInfo *VNI = WorkList.back().second;
656    WorkList.pop_back();
657    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
658    SlotIndex BlockStart = getMBBStartIdx(MBB);
659
660    // Extend the live range for VNI to be live at Idx.
661    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
662      (void)ExtVNI;
663      assert(ExtVNI == VNI && "Unexpected existing value number");
664      // Is this a PHIDef we haven't seen before?
665      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
666        continue;
667      // The PHI is live, make sure the predecessors are live-out.
668      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
669           PE = MBB->pred_end(); PI != PE; ++PI) {
670        if (!LiveOut.insert(*PI))
671          continue;
672        SlotIndex Stop = getMBBEndIdx(*PI);
673        // A predecessor is not required to have a live-out value for a PHI.
674        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
675          WorkList.push_back(std::make_pair(Stop, PVNI));
676      }
677      continue;
678    }
679
680    // VNI is live-in to MBB.
681    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
682    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
683
684    // Make sure VNI is live-out from the predecessors.
685    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
686         PE = MBB->pred_end(); PI != PE; ++PI) {
687      if (!LiveOut.insert(*PI))
688        continue;
689      SlotIndex Stop = getMBBEndIdx(*PI);
690      assert(li->getVNInfoBefore(Stop) == VNI &&
691             "Wrong value out of predecessor");
692      WorkList.push_back(std::make_pair(Stop, VNI));
693    }
694  }
695
696  // Handle dead values.
697  bool CanSeparate = false;
698  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
699       I != E; ++I) {
700    VNInfo *VNI = *I;
701    if (VNI->isUnused())
702      continue;
703    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
704    assert(LII != NewLI.end() && "Missing live range for PHI");
705    if (LII->end != VNI->def.getDeadSlot())
706      continue;
707    if (VNI->isPHIDef()) {
708      // This is a dead PHI. Remove it.
709      VNI->markUnused();
710      NewLI.removeRange(*LII);
711      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
712      CanSeparate = true;
713    } else {
714      // This is a dead def. Make sure the instruction knows.
715      MachineInstr *MI = getInstructionFromIndex(VNI->def);
716      assert(MI && "No instruction defining live value");
717      MI->addRegisterDead(li->reg, TRI);
718      if (dead && MI->allDefsAreDead()) {
719        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
720        dead->push_back(MI);
721      }
722    }
723  }
724
725  // Move the trimmed ranges back.
726  li->ranges.swap(NewLI.ranges);
727  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
728  return CanSeparate;
729}
730
731
732//===----------------------------------------------------------------------===//
733// Register allocator hooks.
734//
735
736void LiveIntervals::addKillFlags() {
737  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
738    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
739    if (MRI->reg_nodbg_empty(Reg))
740      continue;
741    LiveInterval *LI = &getInterval(Reg);
742
743    // Every instruction that kills Reg corresponds to a live range end point.
744    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
745         ++RI) {
746      // A block index indicates an MBB edge.
747      if (RI->end.isBlock())
748        continue;
749      MachineInstr *MI = getInstructionFromIndex(RI->end);
750      if (!MI)
751        continue;
752      MI->addRegisterKilled(Reg, NULL);
753    }
754  }
755}
756
757MachineBasicBlock*
758LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
759  // A local live range must be fully contained inside the block, meaning it is
760  // defined and killed at instructions, not at block boundaries. It is not
761  // live in or or out of any block.
762  //
763  // It is technically possible to have a PHI-defined live range identical to a
764  // single block, but we are going to return false in that case.
765
766  SlotIndex Start = LI.beginIndex();
767  if (Start.isBlock())
768    return NULL;
769
770  SlotIndex Stop = LI.endIndex();
771  if (Stop.isBlock())
772    return NULL;
773
774  // getMBBFromIndex doesn't need to search the MBB table when both indexes
775  // belong to proper instructions.
776  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
777  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
778  return MBB1 == MBB2 ? MBB1 : NULL;
779}
780
781bool
782LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
783  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
784       I != E; ++I) {
785    const VNInfo *PHI = *I;
786    if (PHI->isUnused() || !PHI->isPHIDef())
787      continue;
788    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
789    // Conservatively return true instead of scanning huge predecessor lists.
790    if (PHIMBB->pred_size() > 100)
791      return true;
792    for (MachineBasicBlock::const_pred_iterator
793         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
794      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
795        return true;
796  }
797  return false;
798}
799
800float
801LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
802  // Limit the loop depth ridiculousness.
803  if (loopDepth > 200)
804    loopDepth = 200;
805
806  // The loop depth is used to roughly estimate the number of times the
807  // instruction is executed. Something like 10^d is simple, but will quickly
808  // overflow a float. This expression behaves like 10^d for small d, but is
809  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
810  // headroom before overflow.
811  // By the way, powf() might be unavailable here. For consistency,
812  // We may take pow(double,double).
813  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
814
815  return (isDef + isUse) * lc;
816}
817
818LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
819                                                  MachineInstr* startInst) {
820  LiveInterval& Interval = getOrCreateInterval(reg);
821  VNInfo* VN = Interval.getNextValue(
822    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
823    getVNInfoAllocator());
824  LiveRange LR(
825     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
826     getMBBEndIdx(startInst->getParent()), VN);
827  Interval.addRange(LR);
828
829  return LR;
830}
831
832
833//===----------------------------------------------------------------------===//
834//                          Register mask functions
835//===----------------------------------------------------------------------===//
836
837bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
838                                             BitVector &UsableRegs) {
839  if (LI.empty())
840    return false;
841  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
842
843  // Use a smaller arrays for local live ranges.
844  ArrayRef<SlotIndex> Slots;
845  ArrayRef<const uint32_t*> Bits;
846  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
847    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
848    Bits = getRegMaskBitsInBlock(MBB->getNumber());
849  } else {
850    Slots = getRegMaskSlots();
851    Bits = getRegMaskBits();
852  }
853
854  // We are going to enumerate all the register mask slots contained in LI.
855  // Start with a binary search of RegMaskSlots to find a starting point.
856  ArrayRef<SlotIndex>::iterator SlotI =
857    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
858  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
859
860  // No slots in range, LI begins after the last call.
861  if (SlotI == SlotE)
862    return false;
863
864  bool Found = false;
865  for (;;) {
866    assert(*SlotI >= LiveI->start);
867    // Loop over all slots overlapping this segment.
868    while (*SlotI < LiveI->end) {
869      // *SlotI overlaps LI. Collect mask bits.
870      if (!Found) {
871        // This is the first overlap. Initialize UsableRegs to all ones.
872        UsableRegs.clear();
873        UsableRegs.resize(TRI->getNumRegs(), true);
874        Found = true;
875      }
876      // Remove usable registers clobbered by this mask.
877      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
878      if (++SlotI == SlotE)
879        return Found;
880    }
881    // *SlotI is beyond the current LI segment.
882    LiveI = LI.advanceTo(LiveI, *SlotI);
883    if (LiveI == LiveE)
884      return Found;
885    // Advance SlotI until it overlaps.
886    while (*SlotI < LiveI->start)
887      if (++SlotI == SlotE)
888        return Found;
889  }
890}
891
892//===----------------------------------------------------------------------===//
893//                         IntervalUpdate class.
894//===----------------------------------------------------------------------===//
895
896// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
897class LiveIntervals::HMEditor {
898private:
899  LiveIntervals& LIS;
900  const MachineRegisterInfo& MRI;
901  const TargetRegisterInfo& TRI;
902  SlotIndex NewIdx;
903
904  typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
905  typedef DenseSet<IntRangePair> RangeSet;
906
907  struct RegRanges {
908    LiveRange* Use;
909    LiveRange* EC;
910    LiveRange* Dead;
911    LiveRange* Def;
912    RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
913  };
914  typedef DenseMap<unsigned, RegRanges> BundleRanges;
915
916public:
917  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
918           const TargetRegisterInfo& TRI, SlotIndex NewIdx)
919    : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
920
921  // Update intervals for all operands of MI from OldIdx to NewIdx.
922  // This assumes that MI used to be at OldIdx, and now resides at
923  // NewIdx.
924  void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
925    assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
926
927    // Collect the operands.
928    RangeSet Entering, Internal, Exiting;
929    bool hasRegMaskOp = false;
930    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
931
932    // To keep the LiveRanges valid within an interval, move the ranges closest
933    // to the destination first. This prevents ranges from overlapping, to that
934    // APIs like removeRange still work.
935    if (NewIdx < OldIdx) {
936      moveAllEnteringFrom(OldIdx, Entering);
937      moveAllInternalFrom(OldIdx, Internal);
938      moveAllExitingFrom(OldIdx, Exiting);
939    }
940    else {
941      moveAllExitingFrom(OldIdx, Exiting);
942      moveAllInternalFrom(OldIdx, Internal);
943      moveAllEnteringFrom(OldIdx, Entering);
944    }
945
946    if (hasRegMaskOp)
947      updateRegMaskSlots(OldIdx);
948
949#ifndef NDEBUG
950    LIValidator validator;
951    validator = std::for_each(Entering.begin(), Entering.end(), validator);
952    validator = std::for_each(Internal.begin(), Internal.end(), validator);
953    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
954    assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
955#endif
956
957  }
958
959  // Update intervals for all operands of MI to refer to BundleStart's
960  // SlotIndex.
961  void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
962    if (MI == BundleStart)
963      return; // Bundling instr with itself - nothing to do.
964
965    SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
966    assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
967           "SlotIndex <-> Instruction mapping broken for MI");
968
969    // Collect all ranges already in the bundle.
970    MachineBasicBlock::instr_iterator BII(BundleStart);
971    RangeSet Entering, Internal, Exiting;
972    bool hasRegMaskOp = false;
973    collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
974    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
975    for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
976      if (&*BII == MI)
977        continue;
978      collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
979      assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
980    }
981
982    BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
983
984    Entering.clear();
985    Internal.clear();
986    Exiting.clear();
987    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
988    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
989
990    DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
991    DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
992    DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
993
994    moveAllEnteringFromInto(OldIdx, Entering, BR);
995    moveAllInternalFromInto(OldIdx, Internal, BR);
996    moveAllExitingFromInto(OldIdx, Exiting, BR);
997
998
999#ifndef NDEBUG
1000    LIValidator validator;
1001    validator = std::for_each(Entering.begin(), Entering.end(), validator);
1002    validator = std::for_each(Internal.begin(), Internal.end(), validator);
1003    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1004    assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
1005#endif
1006  }
1007
1008private:
1009
1010#ifndef NDEBUG
1011  class LIValidator {
1012  private:
1013    DenseSet<const LiveInterval*> Checked, Bogus;
1014  public:
1015    void operator()(const IntRangePair& P) {
1016      const LiveInterval* LI = P.first;
1017      if (Checked.count(LI))
1018        return;
1019      Checked.insert(LI);
1020      if (LI->empty())
1021        return;
1022      SlotIndex LastEnd = LI->begin()->start;
1023      for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
1024           LRI != LRE; ++LRI) {
1025        const LiveRange& LR = *LRI;
1026        if (LastEnd > LR.start || LR.start >= LR.end)
1027          Bogus.insert(LI);
1028        LastEnd = LR.end;
1029      }
1030    }
1031
1032    bool rangesOk() const {
1033      return Bogus.empty();
1034    }
1035  };
1036#endif
1037
1038  // Collect IntRangePairs for all operands of MI that may need fixing.
1039  // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
1040  // maps).
1041  void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
1042                     RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
1043    hasRegMaskOp = false;
1044    for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1045                                    MOE = MI->operands_end();
1046         MOI != MOE; ++MOI) {
1047      const MachineOperand& MO = *MOI;
1048
1049      if (MO.isRegMask()) {
1050        hasRegMaskOp = true;
1051        continue;
1052      }
1053
1054      if (!MO.isReg() || MO.getReg() == 0)
1055        continue;
1056
1057      unsigned Reg = MO.getReg();
1058
1059      // TODO: Currently we're skipping uses that are reserved or have no
1060      // interval, but we're not updating their kills. This should be
1061      // fixed.
1062      if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
1063        continue;
1064
1065      // Collect ranges for register units. These live ranges are computed on
1066      // demand, so just skip any that haven't been computed yet.
1067      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1068        for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1069          if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
1070            collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
1071      } else {
1072        // Collect ranges for individual virtual registers.
1073        collectRanges(MO, &LIS.getInterval(Reg),
1074                      Entering, Internal, Exiting, OldIdx);
1075      }
1076    }
1077  }
1078
1079  void collectRanges(const MachineOperand &MO, LiveInterval *LI,
1080                     RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting,
1081                     SlotIndex OldIdx) {
1082    if (MO.readsReg()) {
1083      LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
1084      if (LR != 0)
1085        Entering.insert(std::make_pair(LI, LR));
1086    }
1087    if (MO.isDef()) {
1088      LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
1089      assert(LR != 0 && "No live range for def?");
1090      if (LR->end > OldIdx.getDeadSlot())
1091        Exiting.insert(std::make_pair(LI, LR));
1092      else
1093        Internal.insert(std::make_pair(LI, LR));
1094    }
1095  }
1096
1097  BundleRanges createBundleRanges(RangeSet& Entering,
1098                                  RangeSet& Internal,
1099                                  RangeSet& Exiting) {
1100    BundleRanges BR;
1101
1102    for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1103         EI != EE; ++EI) {
1104      LiveInterval* LI = EI->first;
1105      LiveRange* LR = EI->second;
1106      BR[LI->reg].Use = LR;
1107    }
1108
1109    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1110         II != IE; ++II) {
1111      LiveInterval* LI = II->first;
1112      LiveRange* LR = II->second;
1113      if (LR->end.isDead()) {
1114        BR[LI->reg].Dead = LR;
1115      } else {
1116        BR[LI->reg].EC = LR;
1117      }
1118    }
1119
1120    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1121         EI != EE; ++EI) {
1122      LiveInterval* LI = EI->first;
1123      LiveRange* LR = EI->second;
1124      BR[LI->reg].Def = LR;
1125    }
1126
1127    return BR;
1128  }
1129
1130  void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
1131    MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
1132    if (!OldKillMI->killsRegister(reg))
1133      return; // Bail out if we don't have kill flags on the old register.
1134    MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
1135    assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
1136    assert(!NewKillMI->killsRegister(reg) &&
1137           "New kill instr is already a kill.");
1138    OldKillMI->clearRegisterKills(reg, &TRI);
1139    NewKillMI->addRegisterKilled(reg, &TRI);
1140  }
1141
1142  void updateRegMaskSlots(SlotIndex OldIdx) {
1143    SmallVectorImpl<SlotIndex>::iterator RI =
1144      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1145                       OldIdx);
1146    assert(*RI == OldIdx && "No RegMask at OldIdx.");
1147    *RI = NewIdx;
1148    assert(*prior(RI) < *RI && *RI < *next(RI) &&
1149           "RegSlots out of order. Did you move one call across another?");
1150  }
1151
1152  // Return the last use of reg between NewIdx and OldIdx.
1153  SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
1154    SlotIndex LastUse = NewIdx;
1155    for (MachineRegisterInfo::use_nodbg_iterator
1156           UI = MRI.use_nodbg_begin(Reg),
1157           UE = MRI.use_nodbg_end();
1158         UI != UE; UI.skipInstruction()) {
1159      const MachineInstr* MI = &*UI;
1160      SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1161      if (InstSlot > LastUse && InstSlot < OldIdx)
1162        LastUse = InstSlot;
1163    }
1164    return LastUse;
1165  }
1166
1167  void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
1168    LiveInterval* LI = P.first;
1169    LiveRange* LR = P.second;
1170    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1171    if (LiveThrough)
1172      return;
1173    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1174    if (LastUse != NewIdx)
1175      moveKillFlags(LI->reg, NewIdx, LastUse);
1176    LR->end = LastUse.getRegSlot();
1177  }
1178
1179  void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
1180    LiveInterval* LI = P.first;
1181    LiveRange* LR = P.second;
1182    // Extend the LiveRange if NewIdx is past the end.
1183    if (NewIdx > LR->end) {
1184      // Move kill flags if OldIdx was not originally the end
1185      // (otherwise LR->end points to an invalid slot).
1186      if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
1187        assert(LR->end > OldIdx && "LiveRange does not cover original slot");
1188        moveKillFlags(LI->reg, LR->end, NewIdx);
1189      }
1190      LR->end = NewIdx.getRegSlot();
1191    }
1192  }
1193
1194  void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
1195    bool GoingUp = NewIdx < OldIdx;
1196
1197    if (GoingUp) {
1198      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1199           EI != EE; ++EI)
1200        moveEnteringUpFrom(OldIdx, *EI);
1201    } else {
1202      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1203           EI != EE; ++EI)
1204        moveEnteringDownFrom(OldIdx, *EI);
1205    }
1206  }
1207
1208  void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
1209    LiveInterval* LI = P.first;
1210    LiveRange* LR = P.second;
1211    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1212           LR->end <= OldIdx.getDeadSlot() &&
1213           "Range should be internal to OldIdx.");
1214    LiveRange Tmp(*LR);
1215    Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1216    Tmp.valno->def = Tmp.start;
1217    Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
1218    LI->removeRange(*LR);
1219    LI->addRange(Tmp);
1220  }
1221
1222  void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
1223    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1224         II != IE; ++II)
1225      moveInternalFrom(OldIdx, *II);
1226  }
1227
1228  void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
1229    LiveRange* LR = P.second;
1230    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1231           "Range should start in OldIdx.");
1232    assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
1233    SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1234    LR->start = NewStart;
1235    LR->valno->def = NewStart;
1236  }
1237
1238  void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
1239    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1240         EI != EE; ++EI)
1241      moveExitingFrom(OldIdx, *EI);
1242  }
1243
1244  void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
1245                              BundleRanges& BR) {
1246    LiveInterval* LI = P.first;
1247    LiveRange* LR = P.second;
1248    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1249    if (LiveThrough) {
1250      assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
1251             "Def in bundle should be def range.");
1252      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1253             "If bundle has use for this reg it should be LR.");
1254      BR[LI->reg].Use = LR;
1255      return;
1256    }
1257
1258    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1259    moveKillFlags(LI->reg, OldIdx, LastUse);
1260
1261    if (LR->start < NewIdx) {
1262      // Becoming a new entering range.
1263      assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
1264             "Bundle shouldn't be re-defining reg mid-range.");
1265      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1266             "Bundle shouldn't have different use range for same reg.");
1267      LR->end = LastUse.getRegSlot();
1268      BR[LI->reg].Use = LR;
1269    } else {
1270      // Becoming a new Dead-def.
1271      assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
1272             "Live range starting at unexpected slot.");
1273      assert(BR[LI->reg].Def == LR && "Reg should have def range.");
1274      assert(BR[LI->reg].Dead == 0 &&
1275               "Can't have def and dead def of same reg in a bundle.");
1276      LR->end = LastUse.getDeadSlot();
1277      BR[LI->reg].Dead = BR[LI->reg].Def;
1278      BR[LI->reg].Def = 0;
1279    }
1280  }
1281
1282  void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
1283                                BundleRanges& BR) {
1284    LiveInterval* LI = P.first;
1285    LiveRange* LR = P.second;
1286    if (NewIdx > LR->end) {
1287      // Range extended to bundle. Add to bundle uses.
1288      // Note: Currently adds kill flags to bundle start.
1289      assert(BR[LI->reg].Use == 0 &&
1290             "Bundle already has use range for reg.");
1291      moveKillFlags(LI->reg, LR->end, NewIdx);
1292      LR->end = NewIdx.getRegSlot();
1293      BR[LI->reg].Use = LR;
1294    } else {
1295      assert(BR[LI->reg].Use != 0 &&
1296             "Bundle should already have a use range for reg.");
1297    }
1298  }
1299
1300  void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
1301                               BundleRanges& BR) {
1302    bool GoingUp = NewIdx < OldIdx;
1303
1304    if (GoingUp) {
1305      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1306           EI != EE; ++EI)
1307        moveEnteringUpFromInto(OldIdx, *EI, BR);
1308    } else {
1309      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1310           EI != EE; ++EI)
1311        moveEnteringDownFromInto(OldIdx, *EI, BR);
1312    }
1313  }
1314
1315  void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
1316                            BundleRanges& BR) {
1317    // TODO: Sane rules for moving ranges into bundles.
1318  }
1319
1320  void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
1321                               BundleRanges& BR) {
1322    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1323         II != IE; ++II)
1324      moveInternalFromInto(OldIdx, *II, BR);
1325  }
1326
1327  void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
1328                           BundleRanges& BR) {
1329    LiveInterval* LI = P.first;
1330    LiveRange* LR = P.second;
1331
1332    assert(LR->start.isRegister() &&
1333           "Don't know how to merge exiting ECs into bundles yet.");
1334
1335    if (LR->end > NewIdx.getDeadSlot()) {
1336      // This range is becoming an exiting range on the bundle.
1337      // If there was an old dead-def of this reg, delete it.
1338      if (BR[LI->reg].Dead != 0) {
1339        LI->removeRange(*BR[LI->reg].Dead);
1340        BR[LI->reg].Dead = 0;
1341      }
1342      assert(BR[LI->reg].Def == 0 &&
1343             "Can't have two defs for the same variable exiting a bundle.");
1344      LR->start = NewIdx.getRegSlot();
1345      LR->valno->def = LR->start;
1346      BR[LI->reg].Def = LR;
1347    } else {
1348      // This range is becoming internal to the bundle.
1349      assert(LR->end == NewIdx.getRegSlot() &&
1350             "Can't bundle def whose kill is before the bundle");
1351      if (BR[LI->reg].Dead || BR[LI->reg].Def) {
1352        // Already have a def for this. Just delete range.
1353        LI->removeRange(*LR);
1354      } else {
1355        // Make range dead, record.
1356        LR->end = NewIdx.getDeadSlot();
1357        BR[LI->reg].Dead = LR;
1358        assert(BR[LI->reg].Use == LR &&
1359               "Range becoming dead should currently be use.");
1360      }
1361      // In both cases the range is no longer a use on the bundle.
1362      BR[LI->reg].Use = 0;
1363    }
1364  }
1365
1366  void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
1367                              BundleRanges& BR) {
1368    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1369         EI != EE; ++EI)
1370      moveExitingFromInto(OldIdx, *EI, BR);
1371  }
1372
1373};
1374
1375void LiveIntervals::handleMove(MachineInstr* MI) {
1376  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1377  Indexes->removeMachineInstrFromMaps(MI);
1378  SlotIndex NewIndex = MI->isInsideBundle() ?
1379                        Indexes->getInstructionIndex(MI) :
1380                        Indexes->insertMachineInstrInMaps(MI);
1381  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1382         OldIndex < getMBBEndIdx(MI->getParent()) &&
1383         "Cannot handle moves across basic block boundaries.");
1384  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1385
1386  HMEditor HME(*this, *MRI, *TRI, NewIndex);
1387  HME.moveAllRangesFrom(MI, OldIndex);
1388}
1389
1390void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1391                                         MachineInstr* BundleStart) {
1392  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1393  HMEditor HME(*this, *MRI, *TRI, NewIndex);
1394  HME.moveAllRangesInto(MI, BundleStart);
1395}
1396