LiveIntervalAnalysis.cpp revision ba59a1e453e110f7b84233f07613f9c5d9a39b87
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36using namespace llvm;
37
38namespace {
39  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
40
41  static Statistic<> numIntervals
42  ("liveintervals", "Number of original intervals");
43
44  static Statistic<> numIntervalsAfter
45  ("liveintervals", "Number of intervals after coalescing");
46
47  static Statistic<> numJoins
48  ("liveintervals", "Number of interval joins performed");
49
50  static Statistic<> numPeep
51  ("liveintervals", "Number of identity moves eliminated after coalescing");
52
53  static Statistic<> numFolded
54  ("liveintervals", "Number of loads/stores folded into instructions");
55
56  static cl::opt<bool>
57  EnableJoining("join-liveintervals",
58                cl::desc("Coallesce copies (default=true)"),
59                cl::init(true));
60}
61
62void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
63  AU.addRequired<LiveVariables>();
64  AU.addPreservedID(PHIEliminationID);
65  AU.addRequiredID(PHIEliminationID);
66  AU.addRequiredID(TwoAddressInstructionPassID);
67  AU.addRequired<LoopInfo>();
68  MachineFunctionPass::getAnalysisUsage(AU);
69}
70
71void LiveIntervals::releaseMemory() {
72  mi2iMap_.clear();
73  i2miMap_.clear();
74  r2iMap_.clear();
75  r2rMap_.clear();
76}
77
78
79static bool isZeroLengthInterval(LiveInterval *li) {
80  for (LiveInterval::Ranges::const_iterator
81         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
82    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
83      return false;
84  return true;
85}
86
87
88/// runOnMachineFunction - Register allocate the whole function
89///
90bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
91  mf_ = &fn;
92  tm_ = &fn.getTarget();
93  mri_ = tm_->getRegisterInfo();
94  tii_ = tm_->getInstrInfo();
95  lv_ = &getAnalysis<LiveVariables>();
96  allocatableRegs_ = mri_->getAllocatableSet(fn);
97  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
98
99  // If this function has any live ins, insert a dummy instruction at the
100  // beginning of the function that we will pretend "defines" the values.  This
101  // is to make the interval analysis simpler by providing a number.
102  if (fn.livein_begin() != fn.livein_end()) {
103    unsigned FirstLiveIn = fn.livein_begin()->first;
104
105    // Find a reg class that contains this live in.
106    const TargetRegisterClass *RC = 0;
107    for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
108           E = mri_->regclass_end(); RCI != E; ++RCI)
109      if ((*RCI)->contains(FirstLiveIn)) {
110        RC = *RCI;
111        break;
112      }
113
114    MachineInstr *OldFirstMI = fn.begin()->begin();
115    mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
116                       FirstLiveIn, FirstLiveIn, RC);
117    assert(OldFirstMI != fn.begin()->begin() &&
118           "copyRetToReg didn't insert anything!");
119  }
120
121  // Number MachineInstrs and MachineBasicBlocks.
122  // Initialize MBB indexes to a sentinal.
123  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
124
125  unsigned MIIndex = 0;
126  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
127       MBB != E; ++MBB) {
128    // Set the MBB2IdxMap entry for this MBB.
129    MBB2IdxMap[MBB->getNumber()] = MIIndex;
130
131    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
132         I != E; ++I) {
133      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
134      assert(inserted && "multiple MachineInstr -> index mappings");
135      i2miMap_.push_back(I);
136      MIIndex += InstrSlots::NUM;
137    }
138  }
139
140  // Note intervals due to live-in values.
141  if (fn.livein_begin() != fn.livein_end()) {
142    MachineBasicBlock *Entry = fn.begin();
143    for (MachineFunction::livein_iterator I = fn.livein_begin(),
144           E = fn.livein_end(); I != E; ++I) {
145      handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
146                                getOrCreateInterval(I->first), 0);
147      for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
148        handlePhysicalRegisterDef(Entry, Entry->begin(), 0,
149                                  getOrCreateInterval(*AS), 0);
150    }
151  }
152
153  computeIntervals();
154
155  numIntervals += getNumIntervals();
156
157  DOUT << "********** INTERVALS **********\n";
158  for (iterator I = begin(), E = end(); I != E; ++I) {
159    I->second.print(DOUT, mri_);
160    DOUT << "\n";
161  }
162
163  // Join (coallesce) intervals if requested.
164  if (EnableJoining) joinIntervals();
165
166  numIntervalsAfter += getNumIntervals();
167
168
169  // perform a final pass over the instructions and compute spill
170  // weights, coalesce virtual registers and remove identity moves.
171  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
172
173  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
174       mbbi != mbbe; ++mbbi) {
175    MachineBasicBlock* mbb = mbbi;
176    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
177
178    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
179         mii != mie; ) {
180      // if the move will be an identity move delete it
181      unsigned srcReg, dstReg, RegRep;
182      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
183          (RegRep = rep(srcReg)) == rep(dstReg)) {
184        // remove from def list
185        getOrCreateInterval(RegRep);
186        RemoveMachineInstrFromMaps(mii);
187        mii = mbbi->erase(mii);
188        ++numPeep;
189      }
190      else {
191        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
192          const MachineOperand &mop = mii->getOperand(i);
193          if (mop.isRegister() && mop.getReg() &&
194              MRegisterInfo::isVirtualRegister(mop.getReg())) {
195            // replace register with representative register
196            unsigned reg = rep(mop.getReg());
197            mii->getOperand(i).setReg(reg);
198
199            LiveInterval &RegInt = getInterval(reg);
200            RegInt.weight +=
201              (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
202          }
203        }
204        ++mii;
205      }
206    }
207  }
208
209
210  for (iterator I = begin(), E = end(); I != E; ++I) {
211    LiveInterval &LI = I->second;
212    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
213      // If the live interval length is essentially zero, i.e. in every live
214      // range the use follows def immediately, it doesn't make sense to spill
215      // it and hope it will be easier to allocate for this li.
216      if (isZeroLengthInterval(&LI))
217        LI.weight = HUGE_VALF;
218
219      // Divide the weight of the interval by its size.  This encourages
220      // spilling of intervals that are large and have few uses, and
221      // discourages spilling of small intervals with many uses.
222      unsigned Size = 0;
223      for (LiveInterval::iterator II = LI.begin(), E = LI.end(); II != E;++II)
224        Size += II->end - II->start;
225
226      LI.weight /= Size;
227    }
228  }
229
230  DEBUG(dump());
231  return true;
232}
233
234/// print - Implement the dump method.
235void LiveIntervals::print(std::ostream &O, const Module* ) const {
236  O << "********** INTERVALS **********\n";
237  for (const_iterator I = begin(), E = end(); I != E; ++I) {
238    I->second.print(DOUT, mri_);
239    DOUT << "\n";
240  }
241
242  O << "********** MACHINEINSTRS **********\n";
243  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
244       mbbi != mbbe; ++mbbi) {
245    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
246    for (MachineBasicBlock::iterator mii = mbbi->begin(),
247           mie = mbbi->end(); mii != mie; ++mii) {
248      O << getInstructionIndex(mii) << '\t' << *mii;
249    }
250  }
251}
252
253/// CreateNewLiveInterval - Create a new live interval with the given live
254/// ranges. The new live interval will have an infinite spill weight.
255LiveInterval&
256LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
257                                     const std::vector<LiveRange> &LRs) {
258  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
259
260  // Create a new virtual register for the spill interval.
261  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
262
263  // Replace the old virtual registers in the machine operands with the shiny
264  // new one.
265  for (std::vector<LiveRange>::const_iterator
266         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
267    unsigned Index = getBaseIndex(I->start);
268    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
269
270    for (; Index != End; Index += InstrSlots::NUM) {
271      // Skip deleted instructions
272      while (Index != End && !getInstructionFromIndex(Index))
273        Index += InstrSlots::NUM;
274
275      if (Index == End) break;
276
277      MachineInstr *MI = getInstructionFromIndex(Index);
278
279      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
280        MachineOperand &MOp = MI->getOperand(J);
281        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
282          MOp.setReg(NewVReg);
283      }
284    }
285  }
286
287  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
288
289  // The spill weight is now infinity as it cannot be spilled again
290  NewLI.weight = float(HUGE_VAL);
291
292  for (std::vector<LiveRange>::const_iterator
293         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
294    DOUT << "  Adding live range " << *I << " to new interval\n";
295    NewLI.addRange(*I);
296  }
297
298  DOUT << "Created new live interval " << NewLI << "\n";
299  return NewLI;
300}
301
302std::vector<LiveInterval*> LiveIntervals::
303addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
304  // since this is called after the analysis is done we don't know if
305  // LiveVariables is available
306  lv_ = getAnalysisToUpdate<LiveVariables>();
307
308  std::vector<LiveInterval*> added;
309
310  assert(li.weight != HUGE_VALF &&
311         "attempt to spill already spilled interval!");
312
313  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
314  li.print(DOUT, mri_);
315  DOUT << '\n';
316
317  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
318
319  for (LiveInterval::Ranges::const_iterator
320         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
321    unsigned index = getBaseIndex(i->start);
322    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
323    for (; index != end; index += InstrSlots::NUM) {
324      // skip deleted instructions
325      while (index != end && !getInstructionFromIndex(index))
326        index += InstrSlots::NUM;
327      if (index == end) break;
328
329      MachineInstr *MI = getInstructionFromIndex(index);
330
331    RestartInstruction:
332      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
333        MachineOperand& mop = MI->getOperand(i);
334        if (mop.isRegister() && mop.getReg() == li.reg) {
335          if (MachineInstr *fmi = mri_->foldMemoryOperand(MI, i, slot)) {
336            // Attempt to fold the memory reference into the instruction.  If we
337            // can do this, we don't need to insert spill code.
338            if (lv_)
339              lv_->instructionChanged(MI, fmi);
340            MachineBasicBlock &MBB = *MI->getParent();
341            vrm.virtFolded(li.reg, MI, i, fmi);
342            mi2iMap_.erase(MI);
343            i2miMap_[index/InstrSlots::NUM] = fmi;
344            mi2iMap_[fmi] = index;
345            MI = MBB.insert(MBB.erase(MI), fmi);
346            ++numFolded;
347            // Folding the load/store can completely change the instruction in
348            // unpredictable ways, rescan it from the beginning.
349            goto RestartInstruction;
350          } else {
351            // Create a new virtual register for the spill interval.
352            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
353
354            // Scan all of the operands of this instruction rewriting operands
355            // to use NewVReg instead of li.reg as appropriate.  We do this for
356            // two reasons:
357            //
358            //   1. If the instr reads the same spilled vreg multiple times, we
359            //      want to reuse the NewVReg.
360            //   2. If the instr is a two-addr instruction, we are required to
361            //      keep the src/dst regs pinned.
362            //
363            // Keep track of whether we replace a use and/or def so that we can
364            // create the spill interval with the appropriate range.
365            mop.setReg(NewVReg);
366
367            bool HasUse = mop.isUse();
368            bool HasDef = mop.isDef();
369            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
370              if (MI->getOperand(j).isReg() &&
371                  MI->getOperand(j).getReg() == li.reg) {
372                MI->getOperand(j).setReg(NewVReg);
373                HasUse |= MI->getOperand(j).isUse();
374                HasDef |= MI->getOperand(j).isDef();
375              }
376            }
377
378            // create a new register for this spill
379            vrm.grow();
380            vrm.assignVirt2StackSlot(NewVReg, slot);
381            LiveInterval &nI = getOrCreateInterval(NewVReg);
382            assert(nI.empty());
383
384            // the spill weight is now infinity as it
385            // cannot be spilled again
386            nI.weight = HUGE_VALF;
387
388            if (HasUse) {
389              LiveRange LR(getLoadIndex(index), getUseIndex(index),
390                           nI.getNextValue(~0U, 0));
391              DOUT << " +" << LR;
392              nI.addRange(LR);
393            }
394            if (HasDef) {
395              LiveRange LR(getDefIndex(index), getStoreIndex(index),
396                           nI.getNextValue(~0U, 0));
397              DOUT << " +" << LR;
398              nI.addRange(LR);
399            }
400
401            added.push_back(&nI);
402
403            // update live variables if it is available
404            if (lv_)
405              lv_->addVirtualRegisterKilled(NewVReg, MI);
406
407            DOUT << "\t\t\t\tadded new interval: ";
408            nI.print(DOUT, mri_);
409            DOUT << '\n';
410          }
411        }
412      }
413    }
414  }
415
416  return added;
417}
418
419void LiveIntervals::printRegName(unsigned reg) const {
420  if (MRegisterInfo::isPhysicalRegister(reg))
421    llvm_cerr << mri_->getName(reg);
422  else
423    llvm_cerr << "%reg" << reg;
424}
425
426/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
427/// two addr elimination.
428static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
429                                const TargetInstrInfo *TII) {
430  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
431    MachineOperand &MO1 = MI->getOperand(i);
432    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
433      for (unsigned j = i+1; j < e; ++j) {
434        MachineOperand &MO2 = MI->getOperand(j);
435        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
436            TII->getOperandConstraint(MI->getOpcode(),j,TOI::TIED_TO) == (int)i)
437          return true;
438      }
439    }
440  }
441  return false;
442}
443
444void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
445                                             MachineBasicBlock::iterator mi,
446                                             unsigned MIIdx,
447                                             LiveInterval &interval) {
448  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
449  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
450
451  // Virtual registers may be defined multiple times (due to phi
452  // elimination and 2-addr elimination).  Much of what we do only has to be
453  // done once for the vreg.  We use an empty interval to detect the first
454  // time we see a vreg.
455  if (interval.empty()) {
456    // Get the Idx of the defining instructions.
457    unsigned defIndex = getDefIndex(MIIdx);
458
459    unsigned ValNum;
460    unsigned SrcReg, DstReg;
461    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
462      ValNum = interval.getNextValue(~0U, 0);
463    else
464      ValNum = interval.getNextValue(defIndex, SrcReg);
465
466    assert(ValNum == 0 && "First value in interval is not 0?");
467    ValNum = 0;  // Clue in the optimizer.
468
469    // Loop over all of the blocks that the vreg is defined in.  There are
470    // two cases we have to handle here.  The most common case is a vreg
471    // whose lifetime is contained within a basic block.  In this case there
472    // will be a single kill, in MBB, which comes after the definition.
473    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
474      // FIXME: what about dead vars?
475      unsigned killIdx;
476      if (vi.Kills[0] != mi)
477        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
478      else
479        killIdx = defIndex+1;
480
481      // If the kill happens after the definition, we have an intra-block
482      // live range.
483      if (killIdx > defIndex) {
484        assert(vi.AliveBlocks.empty() &&
485               "Shouldn't be alive across any blocks!");
486        LiveRange LR(defIndex, killIdx, ValNum);
487        interval.addRange(LR);
488        DOUT << " +" << LR << "\n";
489        return;
490      }
491    }
492
493    // The other case we handle is when a virtual register lives to the end
494    // of the defining block, potentially live across some blocks, then is
495    // live into some number of blocks, but gets killed.  Start by adding a
496    // range that goes from this definition to the end of the defining block.
497    LiveRange NewLR(defIndex,
498                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
499                    ValNum);
500    DOUT << " +" << NewLR;
501    interval.addRange(NewLR);
502
503    // Iterate over all of the blocks that the variable is completely
504    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
505    // live interval.
506    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
507      if (vi.AliveBlocks[i]) {
508        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
509        if (!MBB->empty()) {
510          LiveRange LR(getMBBStartIdx(i),
511                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
512                       ValNum);
513          interval.addRange(LR);
514          DOUT << " +" << LR;
515        }
516      }
517    }
518
519    // Finally, this virtual register is live from the start of any killing
520    // block to the 'use' slot of the killing instruction.
521    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
522      MachineInstr *Kill = vi.Kills[i];
523      LiveRange LR(getMBBStartIdx(Kill->getParent()),
524                   getUseIndex(getInstructionIndex(Kill))+1,
525                   ValNum);
526      interval.addRange(LR);
527      DOUT << " +" << LR;
528    }
529
530  } else {
531    // If this is the second time we see a virtual register definition, it
532    // must be due to phi elimination or two addr elimination.  If this is
533    // the result of two address elimination, then the vreg is one of the
534    // def-and-use register operand.
535    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
536      // If this is a two-address definition, then we have already processed
537      // the live range.  The only problem is that we didn't realize there
538      // are actually two values in the live interval.  Because of this we
539      // need to take the LiveRegion that defines this register and split it
540      // into two values.
541      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
542      unsigned RedefIndex = getDefIndex(MIIdx);
543
544      // Delete the initial value, which should be short and continuous,
545      // because the 2-addr copy must be in the same MBB as the redef.
546      interval.removeRange(DefIndex, RedefIndex);
547
548      // Two-address vregs should always only be redefined once.  This means
549      // that at this point, there should be exactly one value number in it.
550      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
551
552      // The new value number (#1) is defined by the instruction we claimed
553      // defined value #0.
554      unsigned ValNo = interval.getNextValue(0, 0);
555      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
556
557      // Value#0 is now defined by the 2-addr instruction.
558      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
559
560      // Add the new live interval which replaces the range for the input copy.
561      LiveRange LR(DefIndex, RedefIndex, ValNo);
562      DOUT << " replace range with " << LR;
563      interval.addRange(LR);
564
565      // If this redefinition is dead, we need to add a dummy unit live
566      // range covering the def slot.
567      if (lv_->RegisterDefIsDead(mi, interval.reg))
568        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
569
570      DOUT << "RESULT: ";
571      interval.print(DOUT, mri_);
572
573    } else {
574      // Otherwise, this must be because of phi elimination.  If this is the
575      // first redefinition of the vreg that we have seen, go back and change
576      // the live range in the PHI block to be a different value number.
577      if (interval.containsOneValue()) {
578        assert(vi.Kills.size() == 1 &&
579               "PHI elimination vreg should have one kill, the PHI itself!");
580
581        // Remove the old range that we now know has an incorrect number.
582        MachineInstr *Killer = vi.Kills[0];
583        unsigned Start = getMBBStartIdx(Killer->getParent());
584        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
585        DOUT << "Removing [" << Start << "," << End << "] from: ";
586        interval.print(DOUT, mri_); DOUT << "\n";
587        interval.removeRange(Start, End);
588        DOUT << "RESULT: "; interval.print(DOUT, mri_);
589
590        // Replace the interval with one of a NEW value number.  Note that this
591        // value number isn't actually defined by an instruction, weird huh? :)
592        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
593        DOUT << " replace range with " << LR;
594        interval.addRange(LR);
595        DOUT << "RESULT: "; interval.print(DOUT, mri_);
596      }
597
598      // In the case of PHI elimination, each variable definition is only
599      // live until the end of the block.  We've already taken care of the
600      // rest of the live range.
601      unsigned defIndex = getDefIndex(MIIdx);
602
603      unsigned ValNum;
604      unsigned SrcReg, DstReg;
605      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
606        ValNum = interval.getNextValue(~0U, 0);
607      else
608        ValNum = interval.getNextValue(defIndex, SrcReg);
609
610      LiveRange LR(defIndex,
611                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
612      interval.addRange(LR);
613      DOUT << " +" << LR;
614    }
615  }
616
617  DOUT << '\n';
618}
619
620void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
621                                              MachineBasicBlock::iterator mi,
622                                              unsigned MIIdx,
623                                              LiveInterval &interval,
624                                              unsigned SrcReg) {
625  // A physical register cannot be live across basic block, so its
626  // lifetime must end somewhere in its defining basic block.
627  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
628
629  unsigned baseIndex = MIIdx;
630  unsigned start = getDefIndex(baseIndex);
631  unsigned end = start;
632
633  // If it is not used after definition, it is considered dead at
634  // the instruction defining it. Hence its interval is:
635  // [defSlot(def), defSlot(def)+1)
636  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
637    DOUT << " dead";
638    end = getDefIndex(start) + 1;
639    goto exit;
640  }
641
642  // If it is not dead on definition, it must be killed by a
643  // subsequent instruction. Hence its interval is:
644  // [defSlot(def), useSlot(kill)+1)
645  while (++mi != MBB->end()) {
646    baseIndex += InstrSlots::NUM;
647    if (lv_->KillsRegister(mi, interval.reg)) {
648      DOUT << " killed";
649      end = getUseIndex(baseIndex) + 1;
650      goto exit;
651    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
652      // Another instruction redefines the register before it is ever read.
653      // Then the register is essentially dead at the instruction that defines
654      // it. Hence its interval is:
655      // [defSlot(def), defSlot(def)+1)
656      DOUT << " dead";
657      end = getDefIndex(start) + 1;
658      goto exit;
659    }
660  }
661
662  // The only case we should have a dead physreg here without a killing or
663  // instruction where we know it's dead is if it is live-in to the function
664  // and never used.
665  assert(!SrcReg && "physreg was not killed in defining block!");
666  end = getDefIndex(start) + 1;  // It's dead.
667
668exit:
669  assert(start < end && "did not find end of interval?");
670
671  LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
672                                                 SrcReg));
673  interval.addRange(LR);
674  DOUT << " +" << LR << '\n';
675}
676
677void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
678                                      MachineBasicBlock::iterator MI,
679                                      unsigned MIIdx,
680                                      unsigned reg) {
681  if (MRegisterInfo::isVirtualRegister(reg))
682    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
683  else if (allocatableRegs_[reg]) {
684    unsigned SrcReg, DstReg;
685    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
686      SrcReg = 0;
687    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
688    for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
689      handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
690  }
691}
692
693/// computeIntervals - computes the live intervals for virtual
694/// registers. for some ordering of the machine instructions [1,N] a
695/// live interval is an interval [i, j) where 1 <= i <= j < N for
696/// which a variable is live
697void LiveIntervals::computeIntervals() {
698  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
699       << "********** Function: "
700       << ((Value*)mf_->getFunction())->getName() << '\n';
701  bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
702
703  // Track the index of the current machine instr.
704  unsigned MIIndex = 0;
705  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
706       MBBI != E; ++MBBI) {
707    MachineBasicBlock *MBB = MBBI;
708    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
709
710    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
711    if (IgnoreFirstInstr) {
712      ++MI;
713      IgnoreFirstInstr = false;
714      MIIndex += InstrSlots::NUM;
715    }
716
717    for (; MI != miEnd; ++MI) {
718      DOUT << MIIndex << "\t" << *MI;
719
720      // Handle defs.
721      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
722        MachineOperand &MO = MI->getOperand(i);
723        // handle register defs - build intervals
724        if (MO.isRegister() && MO.getReg() && MO.isDef())
725          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
726      }
727
728      MIIndex += InstrSlots::NUM;
729    }
730  }
731}
732
733/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
734/// being the source and IntB being the dest, thus this defines a value number
735/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
736/// see if we can merge these two pieces of B into a single value number,
737/// eliminating a copy.  For example:
738///
739///  A3 = B0
740///    ...
741///  B1 = A3      <- this copy
742///
743/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
744/// value number to be replaced with B0 (which simplifies the B liveinterval).
745///
746/// This returns true if an interval was modified.
747///
748bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
749                                         MachineInstr *CopyMI) {
750  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
751
752  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
753  // the example above.
754  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
755  unsigned BValNo = BLR->ValId;
756
757  // Get the location that B is defined at.  Two options: either this value has
758  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
759  // can't process it.
760  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
761  if (BValNoDefIdx == ~0U) return false;
762  assert(BValNoDefIdx == CopyIdx &&
763         "Copy doesn't define the value?");
764
765  // AValNo is the value number in A that defines the copy, A0 in the example.
766  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
767  unsigned AValNo = AValLR->ValId;
768
769  // If AValNo is defined as a copy from IntB, we can potentially process this.
770
771  // Get the instruction that defines this value number.
772  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
773  if (!SrcReg) return false;  // Not defined by a copy.
774
775  // If the value number is not defined by a copy instruction, ignore it.
776
777  // If the source register comes from an interval other than IntB, we can't
778  // handle this.
779  if (rep(SrcReg) != IntB.reg) return false;
780
781  // Get the LiveRange in IntB that this value number starts with.
782  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
783  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
784
785  // Make sure that the end of the live range is inside the same block as
786  // CopyMI.
787  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
788  if (!ValLREndInst ||
789      ValLREndInst->getParent() != CopyMI->getParent()) return false;
790
791  // Okay, we now know that ValLR ends in the same block that the CopyMI
792  // live-range starts.  If there are no intervening live ranges between them in
793  // IntB, we can merge them.
794  if (ValLR+1 != BLR) return false;
795
796  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
797
798  // We are about to delete CopyMI, so need to remove it as the 'instruction
799  // that defines this value #'.
800  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
801
802  // Okay, we can merge them.  We need to insert a new liverange:
803  // [ValLR.end, BLR.begin) of either value number, then we merge the
804  // two value numbers.
805  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
806  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
807
808  // If the IntB live range is assigned to a physical register, and if that
809  // physreg has aliases,
810  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
811    for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
812      LiveInterval &AliasLI = getInterval(*AS);
813      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
814                                 AliasLI.getNextValue(~0U, 0)));
815    }
816  }
817
818  // Okay, merge "B1" into the same value number as "B0".
819  if (BValNo != ValLR->ValId)
820    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
821  DOUT << "   result = "; IntB.print(DOUT, mri_);
822  DOUT << "\n";
823
824  // Finally, delete the copy instruction.
825  RemoveMachineInstrFromMaps(CopyMI);
826  CopyMI->eraseFromParent();
827  ++numPeep;
828  return true;
829}
830
831
832/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
833/// which are the src/dst of the copy instruction CopyMI.  This returns true
834/// if the copy was successfully coallesced away, or if it is never possible
835/// to coallesce these this copy, due to register constraints.  It returns
836/// false if it is not currently possible to coallesce this interval, but
837/// it may be possible if other things get coallesced.
838bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
839                             unsigned SrcReg, unsigned DstReg) {
840  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
841
842  // Get representative registers.
843  SrcReg = rep(SrcReg);
844  DstReg = rep(DstReg);
845
846  // If they are already joined we continue.
847  if (SrcReg == DstReg) {
848    DOUT << "\tCopy already coallesced.\n";
849    return true;  // Not coallescable.
850  }
851
852  // If they are both physical registers, we cannot join them.
853  if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
854      MRegisterInfo::isPhysicalRegister(DstReg)) {
855    DOUT << "\tCan not coallesce physregs.\n";
856    return true;  // Not coallescable.
857  }
858
859  // We only join virtual registers with allocatable physical registers.
860  if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
861    DOUT << "\tSrc reg is unallocatable physreg.\n";
862    return true;  // Not coallescable.
863  }
864  if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
865    DOUT << "\tDst reg is unallocatable physreg.\n";
866    return true;  // Not coallescable.
867  }
868
869  // If they are not of the same register class, we cannot join them.
870  if (differingRegisterClasses(SrcReg, DstReg)) {
871    DOUT << "\tSrc/Dest are different register classes.\n";
872    return true;  // Not coallescable.
873  }
874
875  LiveInterval &SrcInt = getInterval(SrcReg);
876  LiveInterval &DestInt = getInterval(DstReg);
877  assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
878         "Register mapping is horribly broken!");
879
880  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
881  DOUT << " and "; DestInt.print(DOUT, mri_);
882  DOUT << ": ";
883
884  // Okay, attempt to join these two intervals.  On failure, this returns false.
885  // Otherwise, if one of the intervals being joined is a physreg, this method
886  // always canonicalizes DestInt to be it.  The output "SrcInt" will not have
887  // been modified, so we can use this information below to update aliases.
888  if (!JoinIntervals(DestInt, SrcInt)) {
889    // Coallescing failed.
890
891    // If we can eliminate the copy without merging the live ranges, do so now.
892    if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
893      return true;
894
895    // Otherwise, we are unable to join the intervals.
896    DOUT << "Interference!\n";
897    return false;
898  }
899
900  bool Swapped = SrcReg == DestInt.reg;
901  if (Swapped)
902    std::swap(SrcReg, DstReg);
903  assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
904         "LiveInterval::join didn't work right!");
905
906  // If we're about to merge live ranges into a physical register live range,
907  // we have to update any aliased register's live ranges to indicate that they
908  // have clobbered values for this range.
909  if (MRegisterInfo::isPhysicalRegister(DstReg)) {
910    for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
911      getInterval(*AS).MergeInClobberRanges(SrcInt);
912  }
913
914  DOUT << "\n\t\tJoined.  Result = "; DestInt.print(DOUT, mri_);
915  DOUT << "\n";
916
917  // If the intervals were swapped by Join, swap them back so that the register
918  // mapping (in the r2i map) is correct.
919  if (Swapped) SrcInt.swap(DestInt);
920  r2iMap_.erase(SrcReg);
921  r2rMap_[SrcReg] = DstReg;
922
923  // Finally, delete the copy instruction.
924  RemoveMachineInstrFromMaps(CopyMI);
925  CopyMI->eraseFromParent();
926  ++numPeep;
927  ++numJoins;
928  return true;
929}
930
931/// ComputeUltimateVN - Assuming we are going to join two live intervals,
932/// compute what the resultant value numbers for each value in the input two
933/// ranges will be.  This is complicated by copies between the two which can
934/// and will commonly cause multiple value numbers to be merged into one.
935///
936/// VN is the value number that we're trying to resolve.  InstDefiningValue
937/// keeps track of the new InstDefiningValue assignment for the result
938/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
939/// whether a value in this or other is a copy from the opposite set.
940/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
941/// already been assigned.
942///
943/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
944/// contains the value number the copy is from.
945///
946static unsigned ComputeUltimateVN(unsigned VN,
947                                  SmallVector<std::pair<unsigned,
948                                                unsigned>, 16> &ValueNumberInfo,
949                                  SmallVector<int, 16> &ThisFromOther,
950                                  SmallVector<int, 16> &OtherFromThis,
951                                  SmallVector<int, 16> &ThisValNoAssignments,
952                                  SmallVector<int, 16> &OtherValNoAssignments,
953                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
954  // If the VN has already been computed, just return it.
955  if (ThisValNoAssignments[VN] >= 0)
956    return ThisValNoAssignments[VN];
957//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
958
959  // If this val is not a copy from the other val, then it must be a new value
960  // number in the destination.
961  int OtherValNo = ThisFromOther[VN];
962  if (OtherValNo == -1) {
963    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
964    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
965  }
966
967  // Otherwise, this *is* a copy from the RHS.  If the other side has already
968  // been computed, return it.
969  if (OtherValNoAssignments[OtherValNo] >= 0)
970    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
971
972  // Mark this value number as currently being computed, then ask what the
973  // ultimate value # of the other value is.
974  ThisValNoAssignments[VN] = -2;
975  unsigned UltimateVN =
976    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
977                      OtherFromThis, ThisFromOther,
978                      OtherValNoAssignments, ThisValNoAssignments,
979                      OtherLI, ThisLI);
980  return ThisValNoAssignments[VN] = UltimateVN;
981}
982
983static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
984  return std::find(V.begin(), V.end(), Val) != V.end();
985}
986
987/// SimpleJoin - Attempt to joint the specified interval into this one. The
988/// caller of this method must guarantee that the RHS only contains a single
989/// value number and that the RHS is not defined by a copy from this
990/// interval.  This returns false if the intervals are not joinable, or it
991/// joins them and returns true.
992bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
993  assert(RHS.containsOneValue());
994
995  // Some number (potentially more than one) value numbers in the current
996  // interval may be defined as copies from the RHS.  Scan the overlapping
997  // portions of the LHS and RHS, keeping track of this and looking for
998  // overlapping live ranges that are NOT defined as copies.  If these exist, we
999  // cannot coallesce.
1000
1001  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1002  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1003
1004  if (LHSIt->start < RHSIt->start) {
1005    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1006    if (LHSIt != LHS.begin()) --LHSIt;
1007  } else if (RHSIt->start < LHSIt->start) {
1008    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1009    if (RHSIt != RHS.begin()) --RHSIt;
1010  }
1011
1012  SmallVector<unsigned, 8> EliminatedLHSVals;
1013
1014  while (1) {
1015    // Determine if these live intervals overlap.
1016    bool Overlaps = false;
1017    if (LHSIt->start <= RHSIt->start)
1018      Overlaps = LHSIt->end > RHSIt->start;
1019    else
1020      Overlaps = RHSIt->end > LHSIt->start;
1021
1022    // If the live intervals overlap, there are two interesting cases: if the
1023    // LHS interval is defined by a copy from the RHS, it's ok and we record
1024    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1025    // coallesce these live ranges and we bail out.
1026    if (Overlaps) {
1027      // If we haven't already recorded that this value # is safe, check it.
1028      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1029        // Copy from the RHS?
1030        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1031        if (rep(SrcReg) != RHS.reg)
1032          return false;    // Nope, bail out.
1033
1034        EliminatedLHSVals.push_back(LHSIt->ValId);
1035      }
1036
1037      // We know this entire LHS live range is okay, so skip it now.
1038      if (++LHSIt == LHSEnd) break;
1039      continue;
1040    }
1041
1042    if (LHSIt->end < RHSIt->end) {
1043      if (++LHSIt == LHSEnd) break;
1044    } else {
1045      // One interesting case to check here.  It's possible that we have
1046      // something like "X3 = Y" which defines a new value number in the LHS,
1047      // and is the last use of this liverange of the RHS.  In this case, we
1048      // want to notice this copy (so that it gets coallesced away) even though
1049      // the live ranges don't actually overlap.
1050      if (LHSIt->start == RHSIt->end) {
1051        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1052          // We already know that this value number is going to be merged in
1053          // if coallescing succeeds.  Just skip the liverange.
1054          if (++LHSIt == LHSEnd) break;
1055        } else {
1056          // Otherwise, if this is a copy from the RHS, mark it as being merged
1057          // in.
1058          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1059            EliminatedLHSVals.push_back(LHSIt->ValId);
1060
1061            // We know this entire LHS live range is okay, so skip it now.
1062            if (++LHSIt == LHSEnd) break;
1063          }
1064        }
1065      }
1066
1067      if (++RHSIt == RHSEnd) break;
1068    }
1069  }
1070
1071  // If we got here, we know that the coallescing will be successful and that
1072  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1073  // the most common case is that EliminatedLHSVals has a single number, we
1074  // optimize for it: if there is more than one value, we merge them all into
1075  // the lowest numbered one, then handle the interval as if we were merging
1076  // with one value number.
1077  unsigned LHSValNo;
1078  if (EliminatedLHSVals.size() > 1) {
1079    // Loop through all the equal value numbers merging them into the smallest
1080    // one.
1081    unsigned Smallest = EliminatedLHSVals[0];
1082    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1083      if (EliminatedLHSVals[i] < Smallest) {
1084        // Merge the current notion of the smallest into the smaller one.
1085        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1086        Smallest = EliminatedLHSVals[i];
1087      } else {
1088        // Merge into the smallest.
1089        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1090      }
1091    }
1092    LHSValNo = Smallest;
1093  } else {
1094    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1095    LHSValNo = EliminatedLHSVals[0];
1096  }
1097
1098  // Okay, now that there is a single LHS value number that we're merging the
1099  // RHS into, update the value number info for the LHS to indicate that the
1100  // value number is defined where the RHS value number was.
1101  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1102
1103  // Okay, the final step is to loop over the RHS live intervals, adding them to
1104  // the LHS.
1105  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1106  LHS.weight += RHS.weight;
1107
1108  return true;
1109}
1110
1111/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1112/// returns false.  Otherwise, if one of the intervals being joined is a
1113/// physreg, this method always canonicalizes LHS to be it.  The output
1114/// "RHS" will not have been modified, so we can use this information
1115/// below to update aliases.
1116bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1117  // Compute the final value assignment, assuming that the live ranges can be
1118  // coallesced.
1119  SmallVector<int, 16> LHSValNoAssignments;
1120  SmallVector<int, 16> RHSValNoAssignments;
1121  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1122
1123  // Compute ultimate value numbers for the LHS and RHS values.
1124  if (RHS.containsOneValue()) {
1125    // Copies from a liveinterval with a single value are simple to handle and
1126    // very common, handle the special case here.  This is important, because
1127    // often RHS is small and LHS is large (e.g. a physreg).
1128
1129    // Find out if the RHS is defined as a copy from some value in the LHS.
1130    int RHSValID = -1;
1131    std::pair<unsigned,unsigned> RHSValNoInfo;
1132    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1133    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1134      // If RHS is not defined as a copy from the LHS, we can use simpler and
1135      // faster checks to see if the live ranges are coallescable.  This joiner
1136      // can't swap the LHS/RHS intervals though.
1137      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1138        return SimpleJoin(LHS, RHS);
1139      } else {
1140        RHSValNoInfo = RHS.getValNumInfo(0);
1141      }
1142    } else {
1143      // It was defined as a copy from the LHS, find out what value # it is.
1144      unsigned ValInst = RHS.getInstForValNum(0);
1145      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1146      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1147    }
1148
1149    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1150    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1151    ValueNumberInfo.resize(LHS.getNumValNums());
1152
1153    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1154    // should now get updated.
1155    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1156      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1157        if (rep(LHSSrcReg) != RHS.reg) {
1158          // If this is not a copy from the RHS, its value number will be
1159          // unmodified by the coallescing.
1160          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1161          LHSValNoAssignments[VN] = VN;
1162        } else if (RHSValID == -1) {
1163          // Otherwise, it is a copy from the RHS, and we don't already have a
1164          // value# for it.  Keep the current value number, but remember it.
1165          LHSValNoAssignments[VN] = RHSValID = VN;
1166          ValueNumberInfo[VN] = RHSValNoInfo;
1167        } else {
1168          // Otherwise, use the specified value #.
1169          LHSValNoAssignments[VN] = RHSValID;
1170          if (VN != (unsigned)RHSValID)
1171            ValueNumberInfo[VN].first = ~1U;
1172          else
1173            ValueNumberInfo[VN] = RHSValNoInfo;
1174        }
1175      } else {
1176        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1177        LHSValNoAssignments[VN] = VN;
1178      }
1179    }
1180
1181    assert(RHSValID != -1 && "Didn't find value #?");
1182    RHSValNoAssignments[0] = RHSValID;
1183
1184  } else {
1185    // Loop over the value numbers of the LHS, seeing if any are defined from
1186    // the RHS.
1187    SmallVector<int, 16> LHSValsDefinedFromRHS;
1188    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1189    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1190      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1191      if (ValSrcReg == 0)  // Src not defined by a copy?
1192        continue;
1193
1194      // DstReg is known to be a register in the LHS interval.  If the src is
1195      // from the RHS interval, we can use its value #.
1196      if (rep(ValSrcReg) != RHS.reg)
1197        continue;
1198
1199      // Figure out the value # from the RHS.
1200      unsigned ValInst = LHS.getInstForValNum(VN);
1201      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1202    }
1203
1204    // Loop over the value numbers of the RHS, seeing if any are defined from
1205    // the LHS.
1206    SmallVector<int, 16> RHSValsDefinedFromLHS;
1207    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1208    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1209      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1210      if (ValSrcReg == 0)  // Src not defined by a copy?
1211        continue;
1212
1213      // DstReg is known to be a register in the RHS interval.  If the src is
1214      // from the LHS interval, we can use its value #.
1215      if (rep(ValSrcReg) != LHS.reg)
1216        continue;
1217
1218      // Figure out the value # from the LHS.
1219      unsigned ValInst = RHS.getInstForValNum(VN);
1220      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1221    }
1222
1223    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1224    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1225    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1226
1227    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1228      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1229        continue;
1230      ComputeUltimateVN(VN, ValueNumberInfo,
1231                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1232                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1233    }
1234    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1235      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1236        continue;
1237      // If this value number isn't a copy from the LHS, it's a new number.
1238      if (RHSValsDefinedFromLHS[VN] == -1) {
1239        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1240        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1241        continue;
1242      }
1243
1244      ComputeUltimateVN(VN, ValueNumberInfo,
1245                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1246                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1247    }
1248  }
1249
1250  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1251  // interval lists to see if these intervals are coallescable.
1252  LiveInterval::const_iterator I = LHS.begin();
1253  LiveInterval::const_iterator IE = LHS.end();
1254  LiveInterval::const_iterator J = RHS.begin();
1255  LiveInterval::const_iterator JE = RHS.end();
1256
1257  // Skip ahead until the first place of potential sharing.
1258  if (I->start < J->start) {
1259    I = std::upper_bound(I, IE, J->start);
1260    if (I != LHS.begin()) --I;
1261  } else if (J->start < I->start) {
1262    J = std::upper_bound(J, JE, I->start);
1263    if (J != RHS.begin()) --J;
1264  }
1265
1266  while (1) {
1267    // Determine if these two live ranges overlap.
1268    bool Overlaps;
1269    if (I->start < J->start) {
1270      Overlaps = I->end > J->start;
1271    } else {
1272      Overlaps = J->end > I->start;
1273    }
1274
1275    // If so, check value # info to determine if they are really different.
1276    if (Overlaps) {
1277      // If the live range overlap will map to the same value number in the
1278      // result liverange, we can still coallesce them.  If not, we can't.
1279      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1280        return false;
1281    }
1282
1283    if (I->end < J->end) {
1284      ++I;
1285      if (I == IE) break;
1286    } else {
1287      ++J;
1288      if (J == JE) break;
1289    }
1290  }
1291
1292  // If we get here, we know that we can coallesce the live ranges.  Ask the
1293  // intervals to coallesce themselves now.
1294  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1295           ValueNumberInfo);
1296  return true;
1297}
1298
1299
1300namespace {
1301  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1302  // depth of the basic block (the unsigned), and then on the MBB number.
1303  struct DepthMBBCompare {
1304    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1305    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1306      if (LHS.first > RHS.first) return true;   // Deeper loops first
1307      return LHS.first == RHS.first &&
1308        LHS.second->getNumber() < RHS.second->getNumber();
1309    }
1310  };
1311}
1312
1313
1314void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1315                                       std::vector<CopyRec> &TryAgain) {
1316  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1317
1318  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1319       MII != E;) {
1320    MachineInstr *Inst = MII++;
1321
1322    // If this isn't a copy, we can't join intervals.
1323    unsigned SrcReg, DstReg;
1324    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1325
1326    if (!JoinCopy(Inst, SrcReg, DstReg))
1327      TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
1328  }
1329}
1330
1331
1332void LiveIntervals::joinIntervals() {
1333  DOUT << "********** JOINING INTERVALS ***********\n";
1334
1335  std::vector<CopyRec> TryAgainList;
1336
1337  const LoopInfo &LI = getAnalysis<LoopInfo>();
1338  if (LI.begin() == LI.end()) {
1339    // If there are no loops in the function, join intervals in function order.
1340    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1341         I != E; ++I)
1342      CopyCoallesceInMBB(I, TryAgainList);
1343  } else {
1344    // Otherwise, join intervals in inner loops before other intervals.
1345    // Unfortunately we can't just iterate over loop hierarchy here because
1346    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1347    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1348    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1349         I != E; ++I)
1350      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1351
1352    // Sort by loop depth.
1353    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1354
1355    // Finally, join intervals in loop nest order.
1356    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1357      CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
1358  }
1359
1360  // Joining intervals can allow other intervals to be joined.  Iteratively join
1361  // until we make no progress.
1362  bool ProgressMade = true;
1363  while (ProgressMade) {
1364    ProgressMade = false;
1365
1366    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1367      CopyRec &TheCopy = TryAgainList[i];
1368      if (TheCopy.MI &&
1369          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1370        TheCopy.MI = 0;   // Mark this one as done.
1371        ProgressMade = true;
1372      }
1373    }
1374  }
1375
1376  DOUT << "*** Register mapping ***\n";
1377  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1378    if (r2rMap_[i]) {
1379      DOUT << "  reg " << i << " -> ";
1380      DEBUG(printRegName(r2rMap_[i]));
1381      DOUT << "\n";
1382    }
1383}
1384
1385/// Return true if the two specified registers belong to different register
1386/// classes.  The registers may be either phys or virt regs.
1387bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1388                                             unsigned RegB) const {
1389
1390  // Get the register classes for the first reg.
1391  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1392    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1393           "Shouldn't consider two physregs!");
1394    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1395  }
1396
1397  // Compare against the regclass for the second reg.
1398  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1399  if (MRegisterInfo::isVirtualRegister(RegB))
1400    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1401  else
1402    return !RegClass->contains(RegB);
1403}
1404
1405LiveInterval LiveIntervals::createInterval(unsigned reg) {
1406  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1407                       HUGE_VALF : 0.0F;
1408  return LiveInterval(reg, Weight);
1409}
1410