LiveIntervalAnalysis.cpp revision c4118452bcdae305088e151719abb2a3530caede
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/AliasAnalysis.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineDominators.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/MachineRegisterInfo.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/Target/TargetRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "llvm/Support/Debug.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include "llvm/ADT/DenseSet.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include "LiveRangeCalc.h"
37#include <algorithm>
38#include <limits>
39#include <cmath>
40using namespace llvm;
41
42STATISTIC(numIntervals , "Number of original intervals");
43
44char LiveIntervals::ID = 0;
45INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
46                "Live Interval Analysis", false, false)
47INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
48INITIALIZE_PASS_DEPENDENCY(LiveVariables)
49INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
50INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
51INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
52                "Live Interval Analysis", false, false)
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.setPreservesCFG();
56  AU.addRequired<AliasAnalysis>();
57  AU.addPreserved<AliasAnalysis>();
58  AU.addRequired<LiveVariables>();
59  AU.addPreserved<LiveVariables>();
60  AU.addPreservedID(MachineLoopInfoID);
61  AU.addRequiredTransitiveID(MachineDominatorsID);
62  AU.addPreservedID(MachineDominatorsID);
63  AU.addPreserved<SlotIndexes>();
64  AU.addRequiredTransitive<SlotIndexes>();
65  MachineFunctionPass::getAnalysisUsage(AU);
66}
67
68LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
69  DomTree(0), LRCalc(0) {
70  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
71}
72
73LiveIntervals::~LiveIntervals() {
74  delete LRCalc;
75}
76
77void LiveIntervals::releaseMemory() {
78  // Free the live intervals themselves.
79  for (DenseMap<unsigned, LiveInterval*>::iterator I = R2IMap.begin(),
80       E = R2IMap.end(); I != E; ++I)
81    delete I->second;
82
83  R2IMap.clear();
84  RegMaskSlots.clear();
85  RegMaskBits.clear();
86  RegMaskBlocks.clear();
87
88  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
89    delete RegUnitIntervals[i];
90  RegUnitIntervals.clear();
91
92  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
93  VNInfoAllocator.Reset();
94}
95
96/// runOnMachineFunction - Register allocate the whole function
97///
98bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
99  MF = &fn;
100  MRI = &MF->getRegInfo();
101  TM = &fn.getTarget();
102  TRI = TM->getRegisterInfo();
103  TII = TM->getInstrInfo();
104  AA = &getAnalysis<AliasAnalysis>();
105  LV = &getAnalysis<LiveVariables>();
106  Indexes = &getAnalysis<SlotIndexes>();
107  DomTree = &getAnalysis<MachineDominatorTree>();
108  if (!LRCalc)
109    LRCalc = new LiveRangeCalc();
110  AllocatableRegs = TRI->getAllocatableSet(fn);
111  ReservedRegs = TRI->getReservedRegs(fn);
112
113  computeIntervals();
114
115  numIntervals += getNumIntervals();
116
117  computeLiveInRegUnits();
118
119  DEBUG(dump());
120  return true;
121}
122
123/// print - Implement the dump method.
124void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
125  OS << "********** INTERVALS **********\n";
126
127  // Dump the physregs.
128  for (unsigned Reg = 1, RegE = TRI->getNumRegs(); Reg != RegE; ++Reg)
129    if (const LiveInterval *LI = R2IMap.lookup(Reg))
130      OS << PrintReg(Reg, TRI) << '\t' << *LI << '\n';
131
132  // Dump the regunits.
133  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
134    if (LiveInterval *LI = RegUnitIntervals[i])
135      OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
136
137  // Dump the virtregs.
138  for (unsigned Reg = 0, RegE = MRI->getNumVirtRegs(); Reg != RegE; ++Reg)
139    if (const LiveInterval *LI =
140        R2IMap.lookup(TargetRegisterInfo::index2VirtReg(Reg)))
141      OS << PrintReg(LI->reg) << '\t' << *LI << '\n';
142
143  printInstrs(OS);
144}
145
146void LiveIntervals::printInstrs(raw_ostream &OS) const {
147  OS << "********** MACHINEINSTRS **********\n";
148  MF->print(OS, Indexes);
149}
150
151void LiveIntervals::dumpInstrs() const {
152  printInstrs(dbgs());
153}
154
155static
156bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
157  unsigned Reg = MI.getOperand(MOIdx).getReg();
158  for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
159    const MachineOperand &MO = MI.getOperand(i);
160    if (!MO.isReg())
161      continue;
162    if (MO.getReg() == Reg && MO.isDef()) {
163      assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
164             MI.getOperand(MOIdx).getSubReg() &&
165             (MO.getSubReg() || MO.isImplicit()));
166      return true;
167    }
168  }
169  return false;
170}
171
172/// isPartialRedef - Return true if the specified def at the specific index is
173/// partially re-defining the specified live interval. A common case of this is
174/// a definition of the sub-register.
175bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
176                                   LiveInterval &interval) {
177  if (!MO.getSubReg() || MO.isEarlyClobber())
178    return false;
179
180  SlotIndex RedefIndex = MIIdx.getRegSlot();
181  const LiveRange *OldLR =
182    interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
183  MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
184  if (DefMI != 0) {
185    return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
186  }
187  return false;
188}
189
190void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
191                                             MachineBasicBlock::iterator mi,
192                                             SlotIndex MIIdx,
193                                             MachineOperand& MO,
194                                             unsigned MOIdx,
195                                             LiveInterval &interval) {
196  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
197
198  // Virtual registers may be defined multiple times (due to phi
199  // elimination and 2-addr elimination).  Much of what we do only has to be
200  // done once for the vreg.  We use an empty interval to detect the first
201  // time we see a vreg.
202  LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
203  if (interval.empty()) {
204    // Get the Idx of the defining instructions.
205    SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
206
207    // Make sure the first definition is not a partial redefinition.
208    assert(!MO.readsReg() && "First def cannot also read virtual register "
209           "missing <undef> flag?");
210
211    VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
212    assert(ValNo->id == 0 && "First value in interval is not 0?");
213
214    // Loop over all of the blocks that the vreg is defined in.  There are
215    // two cases we have to handle here.  The most common case is a vreg
216    // whose lifetime is contained within a basic block.  In this case there
217    // will be a single kill, in MBB, which comes after the definition.
218    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
219      // FIXME: what about dead vars?
220      SlotIndex killIdx;
221      if (vi.Kills[0] != mi)
222        killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
223      else
224        killIdx = defIndex.getDeadSlot();
225
226      // If the kill happens after the definition, we have an intra-block
227      // live range.
228      if (killIdx > defIndex) {
229        assert(vi.AliveBlocks.empty() &&
230               "Shouldn't be alive across any blocks!");
231        LiveRange LR(defIndex, killIdx, ValNo);
232        interval.addRange(LR);
233        DEBUG(dbgs() << " +" << LR << "\n");
234        return;
235      }
236    }
237
238    // The other case we handle is when a virtual register lives to the end
239    // of the defining block, potentially live across some blocks, then is
240    // live into some number of blocks, but gets killed.  Start by adding a
241    // range that goes from this definition to the end of the defining block.
242    LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
243    DEBUG(dbgs() << " +" << NewLR);
244    interval.addRange(NewLR);
245
246    bool PHIJoin = LV->isPHIJoin(interval.reg);
247
248    if (PHIJoin) {
249      // A phi join register is killed at the end of the MBB and revived as a
250      // new valno in the killing blocks.
251      assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
252      DEBUG(dbgs() << " phi-join");
253      ValNo->setHasPHIKill(true);
254    } else {
255      // Iterate over all of the blocks that the variable is completely
256      // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
257      // live interval.
258      for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
259               E = vi.AliveBlocks.end(); I != E; ++I) {
260        MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
261        LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
262                     ValNo);
263        interval.addRange(LR);
264        DEBUG(dbgs() << " +" << LR);
265      }
266    }
267
268    // Finally, this virtual register is live from the start of any killing
269    // block to the 'use' slot of the killing instruction.
270    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
271      MachineInstr *Kill = vi.Kills[i];
272      SlotIndex Start = getMBBStartIdx(Kill->getParent());
273      SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
274
275      // Create interval with one of a NEW value number.  Note that this value
276      // number isn't actually defined by an instruction, weird huh? :)
277      if (PHIJoin) {
278        assert(getInstructionFromIndex(Start) == 0 &&
279               "PHI def index points at actual instruction.");
280        ValNo = interval.getNextValue(Start, VNInfoAllocator);
281        ValNo->setIsPHIDef(true);
282      }
283      LiveRange LR(Start, killIdx, ValNo);
284      interval.addRange(LR);
285      DEBUG(dbgs() << " +" << LR);
286    }
287
288  } else {
289    if (MultipleDefsBySameMI(*mi, MOIdx))
290      // Multiple defs of the same virtual register by the same instruction.
291      // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
292      // This is likely due to elimination of REG_SEQUENCE instructions. Return
293      // here since there is nothing to do.
294      return;
295
296    // If this is the second time we see a virtual register definition, it
297    // must be due to phi elimination or two addr elimination.  If this is
298    // the result of two address elimination, then the vreg is one of the
299    // def-and-use register operand.
300
301    // It may also be partial redef like this:
302    // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
303    // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
304    bool PartReDef = isPartialRedef(MIIdx, MO, interval);
305    if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
306      // If this is a two-address definition, then we have already processed
307      // the live range.  The only problem is that we didn't realize there
308      // are actually two values in the live interval.  Because of this we
309      // need to take the LiveRegion that defines this register and split it
310      // into two values.
311      SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
312
313      const LiveRange *OldLR =
314        interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
315      VNInfo *OldValNo = OldLR->valno;
316      SlotIndex DefIndex = OldValNo->def.getRegSlot();
317
318      // Delete the previous value, which should be short and continuous,
319      // because the 2-addr copy must be in the same MBB as the redef.
320      interval.removeRange(DefIndex, RedefIndex);
321
322      // The new value number (#1) is defined by the instruction we claimed
323      // defined value #0.
324      VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
325
326      // Value#0 is now defined by the 2-addr instruction.
327      OldValNo->def = RedefIndex;
328
329      // Add the new live interval which replaces the range for the input copy.
330      LiveRange LR(DefIndex, RedefIndex, ValNo);
331      DEBUG(dbgs() << " replace range with " << LR);
332      interval.addRange(LR);
333
334      // If this redefinition is dead, we need to add a dummy unit live
335      // range covering the def slot.
336      if (MO.isDead())
337        interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
338                                    OldValNo));
339
340      DEBUG(dbgs() << " RESULT: " << interval);
341    } else if (LV->isPHIJoin(interval.reg)) {
342      // In the case of PHI elimination, each variable definition is only
343      // live until the end of the block.  We've already taken care of the
344      // rest of the live range.
345
346      SlotIndex defIndex = MIIdx.getRegSlot();
347      if (MO.isEarlyClobber())
348        defIndex = MIIdx.getRegSlot(true);
349
350      VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
351
352      SlotIndex killIndex = getMBBEndIdx(mbb);
353      LiveRange LR(defIndex, killIndex, ValNo);
354      interval.addRange(LR);
355      ValNo->setHasPHIKill(true);
356      DEBUG(dbgs() << " phi-join +" << LR);
357    } else {
358      llvm_unreachable("Multiply defined register");
359    }
360  }
361
362  DEBUG(dbgs() << '\n');
363}
364
365static bool isRegLiveIntoSuccessor(const MachineBasicBlock *MBB, unsigned Reg) {
366  for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
367                                              SE = MBB->succ_end();
368       SI != SE; ++SI) {
369    const MachineBasicBlock* succ = *SI;
370    if (succ->isLiveIn(Reg))
371      return true;
372  }
373  return false;
374}
375
376void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
377                                              MachineBasicBlock::iterator mi,
378                                              SlotIndex MIIdx,
379                                              MachineOperand& MO,
380                                              LiveInterval &interval) {
381  DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
382
383  SlotIndex baseIndex = MIIdx;
384  SlotIndex start = baseIndex.getRegSlot(MO.isEarlyClobber());
385  SlotIndex end = start;
386
387  // If it is not used after definition, it is considered dead at
388  // the instruction defining it. Hence its interval is:
389  // [defSlot(def), defSlot(def)+1)
390  // For earlyclobbers, the defSlot was pushed back one; the extra
391  // advance below compensates.
392  if (MO.isDead()) {
393    DEBUG(dbgs() << " dead");
394    end = start.getDeadSlot();
395    goto exit;
396  }
397
398  // If it is not dead on definition, it must be killed by a
399  // subsequent instruction. Hence its interval is:
400  // [defSlot(def), useSlot(kill)+1)
401  baseIndex = baseIndex.getNextIndex();
402  while (++mi != MBB->end()) {
403
404    if (mi->isDebugValue())
405      continue;
406    if (getInstructionFromIndex(baseIndex) == 0)
407      baseIndex = Indexes->getNextNonNullIndex(baseIndex);
408
409    if (mi->killsRegister(interval.reg, TRI)) {
410      DEBUG(dbgs() << " killed");
411      end = baseIndex.getRegSlot();
412      goto exit;
413    } else {
414      int DefIdx = mi->findRegisterDefOperandIdx(interval.reg,false,false,TRI);
415      if (DefIdx != -1) {
416        if (mi->isRegTiedToUseOperand(DefIdx)) {
417          // Two-address instruction.
418          end = baseIndex.getRegSlot(mi->getOperand(DefIdx).isEarlyClobber());
419        } else {
420          // Another instruction redefines the register before it is ever read.
421          // Then the register is essentially dead at the instruction that
422          // defines it. Hence its interval is:
423          // [defSlot(def), defSlot(def)+1)
424          DEBUG(dbgs() << " dead");
425          end = start.getDeadSlot();
426        }
427        goto exit;
428      }
429    }
430
431    baseIndex = baseIndex.getNextIndex();
432  }
433
434  // If we get here the register *should* be live out.
435  assert(!isAllocatable(interval.reg) && "Physregs shouldn't be live out!");
436
437  // FIXME: We need saner rules for reserved regs.
438  if (isReserved(interval.reg)) {
439    end = start.getDeadSlot();
440  } else {
441    // Unreserved, unallocable registers like EFLAGS can be live across basic
442    // block boundaries.
443    assert(isRegLiveIntoSuccessor(MBB, interval.reg) &&
444           "Unreserved reg not live-out?");
445    end = getMBBEndIdx(MBB);
446  }
447exit:
448  assert(start < end && "did not find end of interval?");
449
450  // Already exists? Extend old live interval.
451  VNInfo *ValNo = interval.getVNInfoAt(start);
452  bool Extend = ValNo != 0;
453  if (!Extend)
454    ValNo = interval.getNextValue(start, VNInfoAllocator);
455  LiveRange LR(start, end, ValNo);
456  interval.addRange(LR);
457  DEBUG(dbgs() << " +" << LR << '\n');
458}
459
460void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
461                                      MachineBasicBlock::iterator MI,
462                                      SlotIndex MIIdx,
463                                      MachineOperand& MO,
464                                      unsigned MOIdx) {
465  if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
466    handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
467                             getOrCreateInterval(MO.getReg()));
468  else
469    handlePhysicalRegisterDef(MBB, MI, MIIdx, MO,
470                              getOrCreateInterval(MO.getReg()));
471}
472
473void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
474                                         SlotIndex MIIdx,
475                                         LiveInterval &interval) {
476  assert(TargetRegisterInfo::isPhysicalRegister(interval.reg) &&
477         "Only physical registers can be live in.");
478  assert((!isAllocatable(interval.reg) || MBB->getParent()->begin() ||
479          MBB->isLandingPad()) &&
480          "Allocatable live-ins only valid for entry blocks and landing pads.");
481
482  DEBUG(dbgs() << "\t\tlivein register: " << PrintReg(interval.reg, TRI));
483
484  // Look for kills, if it reaches a def before it's killed, then it shouldn't
485  // be considered a livein.
486  MachineBasicBlock::iterator mi = MBB->begin();
487  MachineBasicBlock::iterator E = MBB->end();
488  // Skip over DBG_VALUE at the start of the MBB.
489  if (mi != E && mi->isDebugValue()) {
490    while (++mi != E && mi->isDebugValue())
491      ;
492    if (mi == E)
493      // MBB is empty except for DBG_VALUE's.
494      return;
495  }
496
497  SlotIndex baseIndex = MIIdx;
498  SlotIndex start = baseIndex;
499  if (getInstructionFromIndex(baseIndex) == 0)
500    baseIndex = Indexes->getNextNonNullIndex(baseIndex);
501
502  SlotIndex end = baseIndex;
503  bool SeenDefUse = false;
504
505  while (mi != E) {
506    if (mi->killsRegister(interval.reg, TRI)) {
507      DEBUG(dbgs() << " killed");
508      end = baseIndex.getRegSlot();
509      SeenDefUse = true;
510      break;
511    } else if (mi->modifiesRegister(interval.reg, TRI)) {
512      // Another instruction redefines the register before it is ever read.
513      // Then the register is essentially dead at the instruction that defines
514      // it. Hence its interval is:
515      // [defSlot(def), defSlot(def)+1)
516      DEBUG(dbgs() << " dead");
517      end = start.getDeadSlot();
518      SeenDefUse = true;
519      break;
520    }
521
522    while (++mi != E && mi->isDebugValue())
523      // Skip over DBG_VALUE.
524      ;
525    if (mi != E)
526      baseIndex = Indexes->getNextNonNullIndex(baseIndex);
527  }
528
529  // Live-in register might not be used at all.
530  if (!SeenDefUse) {
531    if (isAllocatable(interval.reg) ||
532        !isRegLiveIntoSuccessor(MBB, interval.reg)) {
533      // Allocatable registers are never live through.
534      // Non-allocatable registers that aren't live into any successors also
535      // aren't live through.
536      DEBUG(dbgs() << " dead");
537      return;
538    } else {
539      // If we get here the register is non-allocatable and live into some
540      // successor. We'll conservatively assume it's live-through.
541      DEBUG(dbgs() << " live through");
542      end = getMBBEndIdx(MBB);
543    }
544  }
545
546  SlotIndex defIdx = getMBBStartIdx(MBB);
547  assert(getInstructionFromIndex(defIdx) == 0 &&
548         "PHI def index points at actual instruction.");
549  VNInfo *vni = interval.getNextValue(defIdx, VNInfoAllocator);
550  vni->setIsPHIDef(true);
551  LiveRange LR(start, end, vni);
552
553  interval.addRange(LR);
554  DEBUG(dbgs() << " +" << LR << '\n');
555}
556
557/// computeIntervals - computes the live intervals for virtual
558/// registers. for some ordering of the machine instructions [1,N] a
559/// live interval is an interval [i, j) where 1 <= i <= j < N for
560/// which a variable is live
561void LiveIntervals::computeIntervals() {
562  DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
563               << "********** Function: "
564               << ((Value*)MF->getFunction())->getName() << '\n');
565
566  RegMaskBlocks.resize(MF->getNumBlockIDs());
567
568  SmallVector<unsigned, 8> UndefUses;
569  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
570       MBBI != E; ++MBBI) {
571    MachineBasicBlock *MBB = MBBI;
572    RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
573
574    if (MBB->empty())
575      continue;
576
577    // Track the index of the current machine instr.
578    SlotIndex MIIndex = getMBBStartIdx(MBB);
579    DEBUG(dbgs() << "BB#" << MBB->getNumber()
580          << ":\t\t# derived from " << MBB->getName() << "\n");
581
582    // Create intervals for live-ins to this BB first.
583    for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
584           LE = MBB->livein_end(); LI != LE; ++LI) {
585      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
586    }
587
588    // Skip over empty initial indices.
589    if (getInstructionFromIndex(MIIndex) == 0)
590      MIIndex = Indexes->getNextNonNullIndex(MIIndex);
591
592    for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
593         MI != miEnd; ++MI) {
594      DEBUG(dbgs() << MIIndex << "\t" << *MI);
595      if (MI->isDebugValue())
596        continue;
597      assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
598             "Lost SlotIndex synchronization");
599
600      // Handle defs.
601      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
602        MachineOperand &MO = MI->getOperand(i);
603
604        // Collect register masks.
605        if (MO.isRegMask()) {
606          RegMaskSlots.push_back(MIIndex.getRegSlot());
607          RegMaskBits.push_back(MO.getRegMask());
608          continue;
609        }
610
611        if (!MO.isReg() || !MO.getReg())
612          continue;
613
614        // handle register defs - build intervals
615        if (MO.isDef())
616          handleRegisterDef(MBB, MI, MIIndex, MO, i);
617        else if (MO.isUndef())
618          UndefUses.push_back(MO.getReg());
619      }
620
621      // Move to the next instr slot.
622      MIIndex = Indexes->getNextNonNullIndex(MIIndex);
623    }
624
625    // Compute the number of register mask instructions in this block.
626    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
627    RMB.second = RegMaskSlots.size() - RMB.first;;
628  }
629
630  // Create empty intervals for registers defined by implicit_def's (except
631  // for those implicit_def that define values which are liveout of their
632  // blocks.
633  for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
634    unsigned UndefReg = UndefUses[i];
635    (void)getOrCreateInterval(UndefReg);
636  }
637}
638
639LiveInterval* LiveIntervals::createInterval(unsigned reg) {
640  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
641  return new LiveInterval(reg, Weight);
642}
643
644
645//===----------------------------------------------------------------------===//
646//                           Register Unit Liveness
647//===----------------------------------------------------------------------===//
648//
649// Fixed interference typically comes from ABI boundaries: Function arguments
650// and return values are passed in fixed registers, and so are exception
651// pointers entering landing pads. Certain instructions require values to be
652// present in specific registers. That is also represented through fixed
653// interference.
654//
655
656/// computeRegUnitInterval - Compute the live interval of a register unit, based
657/// on the uses and defs of aliasing registers.  The interval should be empty,
658/// or contain only dead phi-defs from ABI blocks.
659void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
660  unsigned Unit = LI->reg;
661
662  assert(LRCalc && "LRCalc not initialized.");
663  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
664
665  // The physregs aliasing Unit are the roots and their super-registers.
666  // Create all values as dead defs before extending to uses. Note that roots
667  // may share super-registers. That's OK because createDeadDefs() is
668  // idempotent. It is very rare for a register unit to have multiple roots, so
669  // uniquing super-registers is probably not worthwhile.
670  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
671    unsigned Root = *Roots;
672    if (!MRI->reg_empty(Root))
673      LRCalc->createDeadDefs(LI, Root);
674    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
675      if (!MRI->reg_empty(*Supers))
676        LRCalc->createDeadDefs(LI, *Supers);
677    }
678  }
679
680  // Now extend LI to reach all uses.
681  // Ignore uses of reserved registers. We only track defs of those.
682  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
683    unsigned Root = *Roots;
684    if (!isReserved(Root) && !MRI->reg_empty(Root))
685      LRCalc->extendToUses(LI, Root);
686    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
687      unsigned Reg = *Supers;
688      if (!isReserved(Reg) && !MRI->reg_empty(Reg))
689        LRCalc->extendToUses(LI, Reg);
690    }
691  }
692}
693
694
695/// computeLiveInRegUnits - Precompute the live ranges of any register units
696/// that are live-in to an ABI block somewhere. Register values can appear
697/// without a corresponding def when entering the entry block or a landing pad.
698///
699void LiveIntervals::computeLiveInRegUnits() {
700  RegUnitIntervals.resize(TRI->getNumRegUnits());
701  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
702
703  // Keep track of the intervals allocated.
704  SmallVector<LiveInterval*, 8> NewIntvs;
705
706  // Check all basic blocks for live-ins.
707  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
708       MFI != MFE; ++MFI) {
709    const MachineBasicBlock *MBB = MFI;
710
711    // We only care about ABI blocks: Entry + landing pads.
712    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
713      continue;
714
715    // Create phi-defs at Begin for all live-in registers.
716    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
717    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
718    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
719         LIE = MBB->livein_end(); LII != LIE; ++LII) {
720      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
721        unsigned Unit = *Units;
722        LiveInterval *Intv = RegUnitIntervals[Unit];
723        if (!Intv) {
724          Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
725          NewIntvs.push_back(Intv);
726        }
727        VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
728        (void)VNI;
729        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
730      }
731    }
732    DEBUG(dbgs() << '\n');
733  }
734  DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
735
736  // Compute the 'normal' part of the intervals.
737  for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
738    computeRegUnitInterval(NewIntvs[i]);
739}
740
741
742/// shrinkToUses - After removing some uses of a register, shrink its live
743/// range to just the remaining uses. This method does not compute reaching
744/// defs for new uses, and it doesn't remove dead defs.
745bool LiveIntervals::shrinkToUses(LiveInterval *li,
746                                 SmallVectorImpl<MachineInstr*> *dead) {
747  DEBUG(dbgs() << "Shrink: " << *li << '\n');
748  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
749         && "Can only shrink virtual registers");
750  // Find all the values used, including PHI kills.
751  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
752
753  // Blocks that have already been added to WorkList as live-out.
754  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
755
756  // Visit all instructions reading li->reg.
757  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
758       MachineInstr *UseMI = I.skipInstruction();) {
759    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
760      continue;
761    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
762    LiveRangeQuery LRQ(*li, Idx);
763    VNInfo *VNI = LRQ.valueIn();
764    if (!VNI) {
765      // This shouldn't happen: readsVirtualRegister returns true, but there is
766      // no live value. It is likely caused by a target getting <undef> flags
767      // wrong.
768      DEBUG(dbgs() << Idx << '\t' << *UseMI
769                   << "Warning: Instr claims to read non-existent value in "
770                    << *li << '\n');
771      continue;
772    }
773    // Special case: An early-clobber tied operand reads and writes the
774    // register one slot early.
775    if (VNInfo *DefVNI = LRQ.valueDefined())
776      Idx = DefVNI->def;
777
778    WorkList.push_back(std::make_pair(Idx, VNI));
779  }
780
781  // Create a new live interval with only minimal live segments per def.
782  LiveInterval NewLI(li->reg, 0);
783  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
784       I != E; ++I) {
785    VNInfo *VNI = *I;
786    if (VNI->isUnused())
787      continue;
788    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
789  }
790
791  // Keep track of the PHIs that are in use.
792  SmallPtrSet<VNInfo*, 8> UsedPHIs;
793
794  // Extend intervals to reach all uses in WorkList.
795  while (!WorkList.empty()) {
796    SlotIndex Idx = WorkList.back().first;
797    VNInfo *VNI = WorkList.back().second;
798    WorkList.pop_back();
799    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
800    SlotIndex BlockStart = getMBBStartIdx(MBB);
801
802    // Extend the live range for VNI to be live at Idx.
803    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
804      (void)ExtVNI;
805      assert(ExtVNI == VNI && "Unexpected existing value number");
806      // Is this a PHIDef we haven't seen before?
807      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
808        continue;
809      // The PHI is live, make sure the predecessors are live-out.
810      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
811           PE = MBB->pred_end(); PI != PE; ++PI) {
812        if (!LiveOut.insert(*PI))
813          continue;
814        SlotIndex Stop = getMBBEndIdx(*PI);
815        // A predecessor is not required to have a live-out value for a PHI.
816        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
817          WorkList.push_back(std::make_pair(Stop, PVNI));
818      }
819      continue;
820    }
821
822    // VNI is live-in to MBB.
823    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
824    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
825
826    // Make sure VNI is live-out from the predecessors.
827    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
828         PE = MBB->pred_end(); PI != PE; ++PI) {
829      if (!LiveOut.insert(*PI))
830        continue;
831      SlotIndex Stop = getMBBEndIdx(*PI);
832      assert(li->getVNInfoBefore(Stop) == VNI &&
833             "Wrong value out of predecessor");
834      WorkList.push_back(std::make_pair(Stop, VNI));
835    }
836  }
837
838  // Handle dead values.
839  bool CanSeparate = false;
840  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
841       I != E; ++I) {
842    VNInfo *VNI = *I;
843    if (VNI->isUnused())
844      continue;
845    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
846    assert(LII != NewLI.end() && "Missing live range for PHI");
847    if (LII->end != VNI->def.getDeadSlot())
848      continue;
849    if (VNI->isPHIDef()) {
850      // This is a dead PHI. Remove it.
851      VNI->setIsUnused(true);
852      NewLI.removeRange(*LII);
853      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
854      CanSeparate = true;
855    } else {
856      // This is a dead def. Make sure the instruction knows.
857      MachineInstr *MI = getInstructionFromIndex(VNI->def);
858      assert(MI && "No instruction defining live value");
859      MI->addRegisterDead(li->reg, TRI);
860      if (dead && MI->allDefsAreDead()) {
861        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
862        dead->push_back(MI);
863      }
864    }
865  }
866
867  // Move the trimmed ranges back.
868  li->ranges.swap(NewLI.ranges);
869  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
870  return CanSeparate;
871}
872
873
874//===----------------------------------------------------------------------===//
875// Register allocator hooks.
876//
877
878void LiveIntervals::addKillFlags() {
879  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
880    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
881    if (MRI->reg_nodbg_empty(Reg))
882      continue;
883    LiveInterval *LI = &getInterval(Reg);
884
885    // Every instruction that kills Reg corresponds to a live range end point.
886    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
887         ++RI) {
888      // A block index indicates an MBB edge.
889      if (RI->end.isBlock())
890        continue;
891      MachineInstr *MI = getInstructionFromIndex(RI->end);
892      if (!MI)
893        continue;
894      MI->addRegisterKilled(Reg, NULL);
895    }
896  }
897}
898
899MachineBasicBlock*
900LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
901  // A local live range must be fully contained inside the block, meaning it is
902  // defined and killed at instructions, not at block boundaries. It is not
903  // live in or or out of any block.
904  //
905  // It is technically possible to have a PHI-defined live range identical to a
906  // single block, but we are going to return false in that case.
907
908  SlotIndex Start = LI.beginIndex();
909  if (Start.isBlock())
910    return NULL;
911
912  SlotIndex Stop = LI.endIndex();
913  if (Stop.isBlock())
914    return NULL;
915
916  // getMBBFromIndex doesn't need to search the MBB table when both indexes
917  // belong to proper instructions.
918  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
919  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
920  return MBB1 == MBB2 ? MBB1 : NULL;
921}
922
923float
924LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
925  // Limit the loop depth ridiculousness.
926  if (loopDepth > 200)
927    loopDepth = 200;
928
929  // The loop depth is used to roughly estimate the number of times the
930  // instruction is executed. Something like 10^d is simple, but will quickly
931  // overflow a float. This expression behaves like 10^d for small d, but is
932  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
933  // headroom before overflow.
934  // By the way, powf() might be unavailable here. For consistency,
935  // We may take pow(double,double).
936  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
937
938  return (isDef + isUse) * lc;
939}
940
941LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
942                                                  MachineInstr* startInst) {
943  LiveInterval& Interval = getOrCreateInterval(reg);
944  VNInfo* VN = Interval.getNextValue(
945    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
946    getVNInfoAllocator());
947  VN->setHasPHIKill(true);
948  LiveRange LR(
949     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
950     getMBBEndIdx(startInst->getParent()), VN);
951  Interval.addRange(LR);
952
953  return LR;
954}
955
956
957//===----------------------------------------------------------------------===//
958//                          Register mask functions
959//===----------------------------------------------------------------------===//
960
961bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
962                                             BitVector &UsableRegs) {
963  if (LI.empty())
964    return false;
965  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
966
967  // Use a smaller arrays for local live ranges.
968  ArrayRef<SlotIndex> Slots;
969  ArrayRef<const uint32_t*> Bits;
970  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
971    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
972    Bits = getRegMaskBitsInBlock(MBB->getNumber());
973  } else {
974    Slots = getRegMaskSlots();
975    Bits = getRegMaskBits();
976  }
977
978  // We are going to enumerate all the register mask slots contained in LI.
979  // Start with a binary search of RegMaskSlots to find a starting point.
980  ArrayRef<SlotIndex>::iterator SlotI =
981    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
982  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
983
984  // No slots in range, LI begins after the last call.
985  if (SlotI == SlotE)
986    return false;
987
988  bool Found = false;
989  for (;;) {
990    assert(*SlotI >= LiveI->start);
991    // Loop over all slots overlapping this segment.
992    while (*SlotI < LiveI->end) {
993      // *SlotI overlaps LI. Collect mask bits.
994      if (!Found) {
995        // This is the first overlap. Initialize UsableRegs to all ones.
996        UsableRegs.clear();
997        UsableRegs.resize(TRI->getNumRegs(), true);
998        Found = true;
999      }
1000      // Remove usable registers clobbered by this mask.
1001      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
1002      if (++SlotI == SlotE)
1003        return Found;
1004    }
1005    // *SlotI is beyond the current LI segment.
1006    LiveI = LI.advanceTo(LiveI, *SlotI);
1007    if (LiveI == LiveE)
1008      return Found;
1009    // Advance SlotI until it overlaps.
1010    while (*SlotI < LiveI->start)
1011      if (++SlotI == SlotE)
1012        return Found;
1013  }
1014}
1015
1016//===----------------------------------------------------------------------===//
1017//                         IntervalUpdate class.
1018//===----------------------------------------------------------------------===//
1019
1020// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
1021class LiveIntervals::HMEditor {
1022private:
1023  LiveIntervals& LIS;
1024  const MachineRegisterInfo& MRI;
1025  const TargetRegisterInfo& TRI;
1026  SlotIndex NewIdx;
1027
1028  typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
1029  typedef DenseSet<IntRangePair> RangeSet;
1030
1031  struct RegRanges {
1032    LiveRange* Use;
1033    LiveRange* EC;
1034    LiveRange* Dead;
1035    LiveRange* Def;
1036    RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
1037  };
1038  typedef DenseMap<unsigned, RegRanges> BundleRanges;
1039
1040public:
1041  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
1042           const TargetRegisterInfo& TRI, SlotIndex NewIdx)
1043    : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
1044
1045  // Update intervals for all operands of MI from OldIdx to NewIdx.
1046  // This assumes that MI used to be at OldIdx, and now resides at
1047  // NewIdx.
1048  void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
1049    assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
1050
1051    // Collect the operands.
1052    RangeSet Entering, Internal, Exiting;
1053    bool hasRegMaskOp = false;
1054    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1055
1056    // To keep the LiveRanges valid within an interval, move the ranges closest
1057    // to the destination first. This prevents ranges from overlapping, to that
1058    // APIs like removeRange still work.
1059    if (NewIdx < OldIdx) {
1060      moveAllEnteringFrom(OldIdx, Entering);
1061      moveAllInternalFrom(OldIdx, Internal);
1062      moveAllExitingFrom(OldIdx, Exiting);
1063    }
1064    else {
1065      moveAllExitingFrom(OldIdx, Exiting);
1066      moveAllInternalFrom(OldIdx, Internal);
1067      moveAllEnteringFrom(OldIdx, Entering);
1068    }
1069
1070    if (hasRegMaskOp)
1071      updateRegMaskSlots(OldIdx);
1072
1073#ifndef NDEBUG
1074    LIValidator validator;
1075    validator = std::for_each(Entering.begin(), Entering.end(), validator);
1076    validator = std::for_each(Internal.begin(), Internal.end(), validator);
1077    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1078    assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
1079#endif
1080
1081  }
1082
1083  // Update intervals for all operands of MI to refer to BundleStart's
1084  // SlotIndex.
1085  void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
1086    if (MI == BundleStart)
1087      return; // Bundling instr with itself - nothing to do.
1088
1089    SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
1090    assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
1091           "SlotIndex <-> Instruction mapping broken for MI");
1092
1093    // Collect all ranges already in the bundle.
1094    MachineBasicBlock::instr_iterator BII(BundleStart);
1095    RangeSet Entering, Internal, Exiting;
1096    bool hasRegMaskOp = false;
1097    collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1098    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1099    for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
1100      if (&*BII == MI)
1101        continue;
1102      collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
1103      assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1104    }
1105
1106    BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
1107
1108    Entering.clear();
1109    Internal.clear();
1110    Exiting.clear();
1111    collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
1112    assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
1113
1114    DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
1115    DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
1116    DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
1117
1118    moveAllEnteringFromInto(OldIdx, Entering, BR);
1119    moveAllInternalFromInto(OldIdx, Internal, BR);
1120    moveAllExitingFromInto(OldIdx, Exiting, BR);
1121
1122
1123#ifndef NDEBUG
1124    LIValidator validator;
1125    validator = std::for_each(Entering.begin(), Entering.end(), validator);
1126    validator = std::for_each(Internal.begin(), Internal.end(), validator);
1127    validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
1128    assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
1129#endif
1130  }
1131
1132private:
1133
1134#ifndef NDEBUG
1135  class LIValidator {
1136  private:
1137    DenseSet<const LiveInterval*> Checked, Bogus;
1138  public:
1139    void operator()(const IntRangePair& P) {
1140      const LiveInterval* LI = P.first;
1141      if (Checked.count(LI))
1142        return;
1143      Checked.insert(LI);
1144      if (LI->empty())
1145        return;
1146      SlotIndex LastEnd = LI->begin()->start;
1147      for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
1148           LRI != LRE; ++LRI) {
1149        const LiveRange& LR = *LRI;
1150        if (LastEnd > LR.start || LR.start >= LR.end)
1151          Bogus.insert(LI);
1152        LastEnd = LR.end;
1153      }
1154    }
1155
1156    bool rangesOk() const {
1157      return Bogus.empty();
1158    }
1159  };
1160#endif
1161
1162  // Collect IntRangePairs for all operands of MI that may need fixing.
1163  // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
1164  // maps).
1165  void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
1166                     RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
1167    hasRegMaskOp = false;
1168    for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1169                                    MOE = MI->operands_end();
1170         MOI != MOE; ++MOI) {
1171      const MachineOperand& MO = *MOI;
1172
1173      if (MO.isRegMask()) {
1174        hasRegMaskOp = true;
1175        continue;
1176      }
1177
1178      if (!MO.isReg() || MO.getReg() == 0)
1179        continue;
1180
1181      unsigned Reg = MO.getReg();
1182
1183      // TODO: Currently we're skipping uses that are reserved or have no
1184      // interval, but we're not updating their kills. This should be
1185      // fixed.
1186      if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
1187        continue;
1188
1189      // Collect ranges for register units. These live ranges are computed on
1190      // demand, so just skip any that haven't been computed yet.
1191      if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.trackingRegUnits())
1192        for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
1193          if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
1194            collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
1195
1196      // Collect ranges for individual registers.
1197      if (LIS.hasInterval(Reg))
1198        collectRanges(MO, &LIS.getInterval(Reg),
1199                      Entering, Internal, Exiting, OldIdx);
1200    }
1201  }
1202
1203  void collectRanges(const MachineOperand &MO, LiveInterval *LI,
1204                     RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting,
1205                     SlotIndex OldIdx) {
1206    if (MO.readsReg()) {
1207      LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
1208      if (LR != 0)
1209        Entering.insert(std::make_pair(LI, LR));
1210    }
1211    if (MO.isDef()) {
1212      LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
1213      assert(LR != 0 && "No live range for def?");
1214      if (LR->end > OldIdx.getDeadSlot())
1215        Exiting.insert(std::make_pair(LI, LR));
1216      else
1217        Internal.insert(std::make_pair(LI, LR));
1218    }
1219  }
1220
1221  BundleRanges createBundleRanges(RangeSet& Entering,
1222                                  RangeSet& Internal,
1223                                  RangeSet& Exiting) {
1224    BundleRanges BR;
1225
1226    for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1227         EI != EE; ++EI) {
1228      LiveInterval* LI = EI->first;
1229      LiveRange* LR = EI->second;
1230      BR[LI->reg].Use = LR;
1231    }
1232
1233    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1234         II != IE; ++II) {
1235      LiveInterval* LI = II->first;
1236      LiveRange* LR = II->second;
1237      if (LR->end.isDead()) {
1238        BR[LI->reg].Dead = LR;
1239      } else {
1240        BR[LI->reg].EC = LR;
1241      }
1242    }
1243
1244    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1245         EI != EE; ++EI) {
1246      LiveInterval* LI = EI->first;
1247      LiveRange* LR = EI->second;
1248      BR[LI->reg].Def = LR;
1249    }
1250
1251    return BR;
1252  }
1253
1254  void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
1255    MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
1256    if (!OldKillMI->killsRegister(reg))
1257      return; // Bail out if we don't have kill flags on the old register.
1258    MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
1259    assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
1260    assert(!NewKillMI->killsRegister(reg) &&
1261           "New kill instr is already a kill.");
1262    OldKillMI->clearRegisterKills(reg, &TRI);
1263    NewKillMI->addRegisterKilled(reg, &TRI);
1264  }
1265
1266  void updateRegMaskSlots(SlotIndex OldIdx) {
1267    SmallVectorImpl<SlotIndex>::iterator RI =
1268      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
1269                       OldIdx);
1270    assert(*RI == OldIdx && "No RegMask at OldIdx.");
1271    *RI = NewIdx;
1272    assert(*prior(RI) < *RI && *RI < *next(RI) &&
1273           "RegSlots out of order. Did you move one call across another?");
1274  }
1275
1276  // Return the last use of reg between NewIdx and OldIdx.
1277  SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
1278    SlotIndex LastUse = NewIdx;
1279    for (MachineRegisterInfo::use_nodbg_iterator
1280           UI = MRI.use_nodbg_begin(Reg),
1281           UE = MRI.use_nodbg_end();
1282         UI != UE; UI.skipInstruction()) {
1283      const MachineInstr* MI = &*UI;
1284      SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1285      if (InstSlot > LastUse && InstSlot < OldIdx)
1286        LastUse = InstSlot;
1287    }
1288    return LastUse;
1289  }
1290
1291  void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
1292    LiveInterval* LI = P.first;
1293    LiveRange* LR = P.second;
1294    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1295    if (LiveThrough)
1296      return;
1297    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1298    if (LastUse != NewIdx)
1299      moveKillFlags(LI->reg, NewIdx, LastUse);
1300    LR->end = LastUse.getRegSlot();
1301  }
1302
1303  void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
1304    LiveInterval* LI = P.first;
1305    LiveRange* LR = P.second;
1306    // Extend the LiveRange if NewIdx is past the end.
1307    if (NewIdx > LR->end) {
1308      // Move kill flags if OldIdx was not originally the end
1309      // (otherwise LR->end points to an invalid slot).
1310      if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
1311        assert(LR->end > OldIdx && "LiveRange does not cover original slot");
1312        moveKillFlags(LI->reg, LR->end, NewIdx);
1313      }
1314      LR->end = NewIdx.getRegSlot();
1315    }
1316  }
1317
1318  void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
1319    bool GoingUp = NewIdx < OldIdx;
1320
1321    if (GoingUp) {
1322      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1323           EI != EE; ++EI)
1324        moveEnteringUpFrom(OldIdx, *EI);
1325    } else {
1326      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1327           EI != EE; ++EI)
1328        moveEnteringDownFrom(OldIdx, *EI);
1329    }
1330  }
1331
1332  void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
1333    LiveInterval* LI = P.first;
1334    LiveRange* LR = P.second;
1335    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1336           LR->end <= OldIdx.getDeadSlot() &&
1337           "Range should be internal to OldIdx.");
1338    LiveRange Tmp(*LR);
1339    Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1340    Tmp.valno->def = Tmp.start;
1341    Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
1342    LI->removeRange(*LR);
1343    LI->addRange(Tmp);
1344  }
1345
1346  void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
1347    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1348         II != IE; ++II)
1349      moveInternalFrom(OldIdx, *II);
1350  }
1351
1352  void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
1353    LiveRange* LR = P.second;
1354    assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
1355           "Range should start in OldIdx.");
1356    assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
1357    SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
1358    LR->start = NewStart;
1359    LR->valno->def = NewStart;
1360  }
1361
1362  void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
1363    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1364         EI != EE; ++EI)
1365      moveExitingFrom(OldIdx, *EI);
1366  }
1367
1368  void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
1369                              BundleRanges& BR) {
1370    LiveInterval* LI = P.first;
1371    LiveRange* LR = P.second;
1372    bool LiveThrough = LR->end > OldIdx.getRegSlot();
1373    if (LiveThrough) {
1374      assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
1375             "Def in bundle should be def range.");
1376      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1377             "If bundle has use for this reg it should be LR.");
1378      BR[LI->reg].Use = LR;
1379      return;
1380    }
1381
1382    SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
1383    moveKillFlags(LI->reg, OldIdx, LastUse);
1384
1385    if (LR->start < NewIdx) {
1386      // Becoming a new entering range.
1387      assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
1388             "Bundle shouldn't be re-defining reg mid-range.");
1389      assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
1390             "Bundle shouldn't have different use range for same reg.");
1391      LR->end = LastUse.getRegSlot();
1392      BR[LI->reg].Use = LR;
1393    } else {
1394      // Becoming a new Dead-def.
1395      assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
1396             "Live range starting at unexpected slot.");
1397      assert(BR[LI->reg].Def == LR && "Reg should have def range.");
1398      assert(BR[LI->reg].Dead == 0 &&
1399               "Can't have def and dead def of same reg in a bundle.");
1400      LR->end = LastUse.getDeadSlot();
1401      BR[LI->reg].Dead = BR[LI->reg].Def;
1402      BR[LI->reg].Def = 0;
1403    }
1404  }
1405
1406  void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
1407                                BundleRanges& BR) {
1408    LiveInterval* LI = P.first;
1409    LiveRange* LR = P.second;
1410    if (NewIdx > LR->end) {
1411      // Range extended to bundle. Add to bundle uses.
1412      // Note: Currently adds kill flags to bundle start.
1413      assert(BR[LI->reg].Use == 0 &&
1414             "Bundle already has use range for reg.");
1415      moveKillFlags(LI->reg, LR->end, NewIdx);
1416      LR->end = NewIdx.getRegSlot();
1417      BR[LI->reg].Use = LR;
1418    } else {
1419      assert(BR[LI->reg].Use != 0 &&
1420             "Bundle should already have a use range for reg.");
1421    }
1422  }
1423
1424  void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
1425                               BundleRanges& BR) {
1426    bool GoingUp = NewIdx < OldIdx;
1427
1428    if (GoingUp) {
1429      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1430           EI != EE; ++EI)
1431        moveEnteringUpFromInto(OldIdx, *EI, BR);
1432    } else {
1433      for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
1434           EI != EE; ++EI)
1435        moveEnteringDownFromInto(OldIdx, *EI, BR);
1436    }
1437  }
1438
1439  void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
1440                            BundleRanges& BR) {
1441    // TODO: Sane rules for moving ranges into bundles.
1442  }
1443
1444  void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
1445                               BundleRanges& BR) {
1446    for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
1447         II != IE; ++II)
1448      moveInternalFromInto(OldIdx, *II, BR);
1449  }
1450
1451  void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
1452                           BundleRanges& BR) {
1453    LiveInterval* LI = P.first;
1454    LiveRange* LR = P.second;
1455
1456    assert(LR->start.isRegister() &&
1457           "Don't know how to merge exiting ECs into bundles yet.");
1458
1459    if (LR->end > NewIdx.getDeadSlot()) {
1460      // This range is becoming an exiting range on the bundle.
1461      // If there was an old dead-def of this reg, delete it.
1462      if (BR[LI->reg].Dead != 0) {
1463        LI->removeRange(*BR[LI->reg].Dead);
1464        BR[LI->reg].Dead = 0;
1465      }
1466      assert(BR[LI->reg].Def == 0 &&
1467             "Can't have two defs for the same variable exiting a bundle.");
1468      LR->start = NewIdx.getRegSlot();
1469      LR->valno->def = LR->start;
1470      BR[LI->reg].Def = LR;
1471    } else {
1472      // This range is becoming internal to the bundle.
1473      assert(LR->end == NewIdx.getRegSlot() &&
1474             "Can't bundle def whose kill is before the bundle");
1475      if (BR[LI->reg].Dead || BR[LI->reg].Def) {
1476        // Already have a def for this. Just delete range.
1477        LI->removeRange(*LR);
1478      } else {
1479        // Make range dead, record.
1480        LR->end = NewIdx.getDeadSlot();
1481        BR[LI->reg].Dead = LR;
1482        assert(BR[LI->reg].Use == LR &&
1483               "Range becoming dead should currently be use.");
1484      }
1485      // In both cases the range is no longer a use on the bundle.
1486      BR[LI->reg].Use = 0;
1487    }
1488  }
1489
1490  void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
1491                              BundleRanges& BR) {
1492    for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
1493         EI != EE; ++EI)
1494      moveExitingFromInto(OldIdx, *EI, BR);
1495  }
1496
1497};
1498
1499void LiveIntervals::handleMove(MachineInstr* MI) {
1500  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1501  Indexes->removeMachineInstrFromMaps(MI);
1502  SlotIndex NewIndex = MI->isInsideBundle() ?
1503                        Indexes->getInstructionIndex(MI) :
1504                        Indexes->insertMachineInstrInMaps(MI);
1505  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1506         OldIndex < getMBBEndIdx(MI->getParent()) &&
1507         "Cannot handle moves across basic block boundaries.");
1508  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1509
1510  HMEditor HME(*this, *MRI, *TRI, NewIndex);
1511  HME.moveAllRangesFrom(MI, OldIndex);
1512}
1513
1514void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1515                                         MachineInstr* BundleStart) {
1516  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1517  HMEditor HME(*this, *MRI, *TRI, NewIndex);
1518  HME.moveAllRangesInto(MI, BundleStart);
1519}
1520