LiveIntervalAnalysis.cpp revision c718288f4939258a51ec5ae0c5be7b1a05eb6898
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <cmath>
38using namespace llvm;
39
40STATISTIC(numIntervals, "Number of original intervals");
41STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
42STATISTIC(numJoins    , "Number of interval joins performed");
43STATISTIC(numPeep     , "Number of identity moves eliminated after coalescing");
44STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
45STATISTIC(numAborts   , "Number of times interval joining aborted");
46
47const int LiveIntervals::ID = 0;
48namespace {
49  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
50
51  static cl::opt<bool>
52  EnableJoining("join-liveintervals",
53                cl::desc("Coallesce copies (default=true)"),
54                cl::init(true));
55}
56
57void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
58  AU.addRequired<LiveVariables>();
59  AU.addPreservedID(PHIEliminationID);
60  AU.addRequiredID(PHIEliminationID);
61  AU.addRequiredID(TwoAddressInstructionPassID);
62  AU.addRequired<LoopInfo>();
63  MachineFunctionPass::getAnalysisUsage(AU);
64}
65
66void LiveIntervals::releaseMemory() {
67  mi2iMap_.clear();
68  i2miMap_.clear();
69  r2iMap_.clear();
70  r2rMap_.clear();
71  JoinedLIs.clear();
72}
73
74
75static bool isZeroLengthInterval(LiveInterval *li) {
76  for (LiveInterval::Ranges::const_iterator
77         i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
78    if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
79      return false;
80  return true;
81}
82
83
84/// runOnMachineFunction - Register allocate the whole function
85///
86bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
87  mf_ = &fn;
88  tm_ = &fn.getTarget();
89  mri_ = tm_->getRegisterInfo();
90  tii_ = tm_->getInstrInfo();
91  lv_ = &getAnalysis<LiveVariables>();
92  r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
93  allocatableRegs_ = mri_->getAllocatableSet(fn);
94  for (MRegisterInfo::regclass_iterator I = mri_->regclass_begin(),
95         E = mri_->regclass_end(); I != E; ++I)
96    allocatableRCRegs_.insert(std::make_pair(*I,mri_->getAllocatableSet(fn, *I)));
97
98  // Number MachineInstrs and MachineBasicBlocks.
99  // Initialize MBB indexes to a sentinal.
100  MBB2IdxMap.resize(mf_->getNumBlockIDs(), ~0U);
101
102  unsigned MIIndex = 0;
103  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
104       MBB != E; ++MBB) {
105    // Set the MBB2IdxMap entry for this MBB.
106    MBB2IdxMap[MBB->getNumber()] = MIIndex;
107
108    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
109         I != E; ++I) {
110      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
111      assert(inserted && "multiple MachineInstr -> index mappings");
112      i2miMap_.push_back(I);
113      MIIndex += InstrSlots::NUM;
114    }
115  }
116
117  computeIntervals();
118
119  numIntervals += getNumIntervals();
120
121  DOUT << "********** INTERVALS **********\n";
122  for (iterator I = begin(), E = end(); I != E; ++I) {
123    I->second.print(DOUT, mri_);
124    DOUT << "\n";
125  }
126
127  // Join (coallesce) intervals if requested.
128  if (EnableJoining) {
129    joinIntervals();
130    DOUT << "********** INTERVALS POST JOINING **********\n";
131    for (iterator I = begin(), E = end(); I != E; ++I) {
132      I->second.print(DOUT, mri_);
133      DOUT << "\n";
134    }
135  }
136
137  numIntervalsAfter += getNumIntervals();
138
139  // perform a final pass over the instructions and compute spill
140  // weights, coalesce virtual registers and remove identity moves.
141  const LoopInfo &loopInfo = getAnalysis<LoopInfo>();
142
143  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
144       mbbi != mbbe; ++mbbi) {
145    MachineBasicBlock* mbb = mbbi;
146    unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
147
148    for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
149         mii != mie; ) {
150      // if the move will be an identity move delete it
151      unsigned srcReg, dstReg, RegRep;
152      if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
153          (RegRep = rep(srcReg)) == rep(dstReg)) {
154        // remove from def list
155        LiveInterval &RegInt = getOrCreateInterval(RegRep);
156        MachineOperand *MO = mii->findRegisterDefOperand(dstReg);
157        // If def of this move instruction is dead, remove its live range from
158        // the dstination register's live interval.
159        if (MO->isDead()) {
160          unsigned MoveIdx = getDefIndex(getInstructionIndex(mii));
161          LiveInterval::iterator MLR = RegInt.FindLiveRangeContaining(MoveIdx);
162          RegInt.removeRange(MLR->start, MoveIdx+1);
163          if (RegInt.empty())
164            removeInterval(RegRep);
165        }
166        RemoveMachineInstrFromMaps(mii);
167        mii = mbbi->erase(mii);
168        ++numPeep;
169      } else {
170        SmallSet<unsigned, 4> UniqueUses;
171        for (unsigned i = 0, e = mii->getNumOperands(); i != e; ++i) {
172          const MachineOperand &mop = mii->getOperand(i);
173          if (mop.isRegister() && mop.getReg() &&
174              MRegisterInfo::isVirtualRegister(mop.getReg())) {
175            // replace register with representative register
176            unsigned reg = rep(mop.getReg());
177            mii->getOperand(i).setReg(reg);
178
179            // Multiple uses of reg by the same instruction. It should not
180            // contribute to spill weight again.
181            if (UniqueUses.count(reg) != 0)
182              continue;
183            LiveInterval &RegInt = getInterval(reg);
184            float w = (mop.isUse()+mop.isDef()) * powf(10.0F, (float)loopDepth);
185            // If the definition instruction is re-materializable, its spill
186            // weight is half of what it would have been normally unless it's
187            // a load from fixed stack slot.
188            int Dummy;
189            if (RegInt.remat && !tii_->isLoadFromStackSlot(RegInt.remat, Dummy))
190              w /= 2;
191            RegInt.weight += w;
192            UniqueUses.insert(reg);
193          }
194        }
195        ++mii;
196      }
197    }
198  }
199
200  for (iterator I = begin(), E = end(); I != E; ++I) {
201    LiveInterval &LI = I->second;
202    if (MRegisterInfo::isVirtualRegister(LI.reg)) {
203      // If the live interval length is essentially zero, i.e. in every live
204      // range the use follows def immediately, it doesn't make sense to spill
205      // it and hope it will be easier to allocate for this li.
206      if (isZeroLengthInterval(&LI))
207        LI.weight = HUGE_VALF;
208
209      // Slightly prefer live interval that has been assigned a preferred reg.
210      if (LI.preference)
211        LI.weight *= 1.01F;
212
213      // Divide the weight of the interval by its size.  This encourages
214      // spilling of intervals that are large and have few uses, and
215      // discourages spilling of small intervals with many uses.
216      LI.weight /= LI.getSize();
217    }
218  }
219
220  DEBUG(dump());
221  return true;
222}
223
224/// print - Implement the dump method.
225void LiveIntervals::print(std::ostream &O, const Module* ) const {
226  O << "********** INTERVALS **********\n";
227  for (const_iterator I = begin(), E = end(); I != E; ++I) {
228    I->second.print(DOUT, mri_);
229    DOUT << "\n";
230  }
231
232  O << "********** MACHINEINSTRS **********\n";
233  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
234       mbbi != mbbe; ++mbbi) {
235    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
236    for (MachineBasicBlock::iterator mii = mbbi->begin(),
237           mie = mbbi->end(); mii != mie; ++mii) {
238      O << getInstructionIndex(mii) << '\t' << *mii;
239    }
240  }
241}
242
243/// CreateNewLiveInterval - Create a new live interval with the given live
244/// ranges. The new live interval will have an infinite spill weight.
245LiveInterval&
246LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
247                                     const std::vector<LiveRange> &LRs) {
248  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
249
250  // Create a new virtual register for the spill interval.
251  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
252
253  // Replace the old virtual registers in the machine operands with the shiny
254  // new one.
255  for (std::vector<LiveRange>::const_iterator
256         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
257    unsigned Index = getBaseIndex(I->start);
258    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
259
260    for (; Index != End; Index += InstrSlots::NUM) {
261      // Skip deleted instructions
262      while (Index != End && !getInstructionFromIndex(Index))
263        Index += InstrSlots::NUM;
264
265      if (Index == End) break;
266
267      MachineInstr *MI = getInstructionFromIndex(Index);
268
269      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
270        MachineOperand &MOp = MI->getOperand(J);
271        if (MOp.isRegister() && rep(MOp.getReg()) == LI->reg)
272          MOp.setReg(NewVReg);
273      }
274    }
275  }
276
277  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
278
279  // The spill weight is now infinity as it cannot be spilled again
280  NewLI.weight = float(HUGE_VAL);
281
282  for (std::vector<LiveRange>::const_iterator
283         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
284    DOUT << "  Adding live range " << *I << " to new interval\n";
285    NewLI.addRange(*I);
286  }
287
288  DOUT << "Created new live interval " << NewLI << "\n";
289  return NewLI;
290}
291
292std::vector<LiveInterval*> LiveIntervals::
293addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
294  // since this is called after the analysis is done we don't know if
295  // LiveVariables is available
296  lv_ = getAnalysisToUpdate<LiveVariables>();
297
298  std::vector<LiveInterval*> added;
299
300  assert(li.weight != HUGE_VALF &&
301         "attempt to spill already spilled interval!");
302
303  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
304  li.print(DOUT, mri_);
305  DOUT << '\n';
306
307  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
308
309  for (LiveInterval::Ranges::const_iterator
310         i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
311    unsigned index = getBaseIndex(i->start);
312    unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
313    for (; index != end; index += InstrSlots::NUM) {
314      // skip deleted instructions
315      while (index != end && !getInstructionFromIndex(index))
316        index += InstrSlots::NUM;
317      if (index == end) break;
318
319      MachineInstr *MI = getInstructionFromIndex(index);
320
321    RestartInstruction:
322      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
323        MachineOperand& mop = MI->getOperand(i);
324        if (mop.isRegister() && mop.getReg() == li.reg) {
325          MachineInstr *fmi = li.remat ? NULL
326            : mri_->foldMemoryOperand(MI, i, slot);
327          if (fmi) {
328            // Attempt to fold the memory reference into the instruction.  If we
329            // can do this, we don't need to insert spill code.
330            if (lv_)
331              lv_->instructionChanged(MI, fmi);
332            MachineBasicBlock &MBB = *MI->getParent();
333            vrm.virtFolded(li.reg, MI, i, fmi);
334            mi2iMap_.erase(MI);
335            i2miMap_[index/InstrSlots::NUM] = fmi;
336            mi2iMap_[fmi] = index;
337            MI = MBB.insert(MBB.erase(MI), fmi);
338            ++numFolded;
339            // Folding the load/store can completely change the instruction in
340            // unpredictable ways, rescan it from the beginning.
341            goto RestartInstruction;
342          } else {
343            // Create a new virtual register for the spill interval.
344            unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
345
346            // Scan all of the operands of this instruction rewriting operands
347            // to use NewVReg instead of li.reg as appropriate.  We do this for
348            // two reasons:
349            //
350            //   1. If the instr reads the same spilled vreg multiple times, we
351            //      want to reuse the NewVReg.
352            //   2. If the instr is a two-addr instruction, we are required to
353            //      keep the src/dst regs pinned.
354            //
355            // Keep track of whether we replace a use and/or def so that we can
356            // create the spill interval with the appropriate range.
357            mop.setReg(NewVReg);
358
359            bool HasUse = mop.isUse();
360            bool HasDef = mop.isDef();
361            for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
362              if (MI->getOperand(j).isReg() &&
363                  MI->getOperand(j).getReg() == li.reg) {
364                MI->getOperand(j).setReg(NewVReg);
365                HasUse |= MI->getOperand(j).isUse();
366                HasDef |= MI->getOperand(j).isDef();
367              }
368            }
369
370            // create a new register for this spill
371            vrm.grow();
372            if (li.remat)
373              vrm.setVirtIsReMaterialized(NewVReg, li.remat);
374            vrm.assignVirt2StackSlot(NewVReg, slot);
375            LiveInterval &nI = getOrCreateInterval(NewVReg);
376            nI.remat = li.remat;
377            assert(nI.empty());
378
379            // the spill weight is now infinity as it
380            // cannot be spilled again
381            nI.weight = HUGE_VALF;
382
383            if (HasUse) {
384              LiveRange LR(getLoadIndex(index), getUseIndex(index),
385                           nI.getNextValue(~0U, 0));
386              DOUT << " +" << LR;
387              nI.addRange(LR);
388            }
389            if (HasDef) {
390              LiveRange LR(getDefIndex(index), getStoreIndex(index),
391                           nI.getNextValue(~0U, 0));
392              DOUT << " +" << LR;
393              nI.addRange(LR);
394            }
395
396            added.push_back(&nI);
397
398            // update live variables if it is available
399            if (lv_)
400              lv_->addVirtualRegisterKilled(NewVReg, MI);
401
402            DOUT << "\t\t\t\tadded new interval: ";
403            nI.print(DOUT, mri_);
404            DOUT << '\n';
405          }
406        }
407      }
408    }
409  }
410
411  return added;
412}
413
414void LiveIntervals::printRegName(unsigned reg) const {
415  if (MRegisterInfo::isPhysicalRegister(reg))
416    cerr << mri_->getName(reg);
417  else
418    cerr << "%reg" << reg;
419}
420
421/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
422/// two addr elimination.
423static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
424                                const TargetInstrInfo *TII) {
425  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
426    MachineOperand &MO1 = MI->getOperand(i);
427    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
428      for (unsigned j = i+1; j < e; ++j) {
429        MachineOperand &MO2 = MI->getOperand(j);
430        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
431            MI->getInstrDescriptor()->
432            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
433          return true;
434      }
435    }
436  }
437  return false;
438}
439
440void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
441                                             MachineBasicBlock::iterator mi,
442                                             unsigned MIIdx,
443                                             LiveInterval &interval) {
444  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
445  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
446
447  // Virtual registers may be defined multiple times (due to phi
448  // elimination and 2-addr elimination).  Much of what we do only has to be
449  // done once for the vreg.  We use an empty interval to detect the first
450  // time we see a vreg.
451  if (interval.empty()) {
452    // Remember if the definition can be rematerialized. All load's from fixed
453    // stack slots are re-materializable.
454    int FrameIdx = 0;
455    if (vi.DefInst &&
456        (tii_->isReMaterializable(vi.DefInst->getOpcode()) ||
457         (tii_->isLoadFromStackSlot(vi.DefInst, FrameIdx) &&
458          mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))))
459      interval.remat = vi.DefInst;
460
461    // Get the Idx of the defining instructions.
462    unsigned defIndex = getDefIndex(MIIdx);
463
464    unsigned ValNum;
465    unsigned SrcReg, DstReg;
466    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
467      ValNum = interval.getNextValue(~0U, 0);
468    else
469      ValNum = interval.getNextValue(defIndex, SrcReg);
470
471    assert(ValNum == 0 && "First value in interval is not 0?");
472    ValNum = 0;  // Clue in the optimizer.
473
474    // Loop over all of the blocks that the vreg is defined in.  There are
475    // two cases we have to handle here.  The most common case is a vreg
476    // whose lifetime is contained within a basic block.  In this case there
477    // will be a single kill, in MBB, which comes after the definition.
478    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
479      // FIXME: what about dead vars?
480      unsigned killIdx;
481      if (vi.Kills[0] != mi)
482        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
483      else
484        killIdx = defIndex+1;
485
486      // If the kill happens after the definition, we have an intra-block
487      // live range.
488      if (killIdx > defIndex) {
489        assert(vi.AliveBlocks.none() &&
490               "Shouldn't be alive across any blocks!");
491        LiveRange LR(defIndex, killIdx, ValNum);
492        interval.addRange(LR);
493        DOUT << " +" << LR << "\n";
494        return;
495      }
496    }
497
498    // The other case we handle is when a virtual register lives to the end
499    // of the defining block, potentially live across some blocks, then is
500    // live into some number of blocks, but gets killed.  Start by adding a
501    // range that goes from this definition to the end of the defining block.
502    LiveRange NewLR(defIndex,
503                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
504                    ValNum);
505    DOUT << " +" << NewLR;
506    interval.addRange(NewLR);
507
508    // Iterate over all of the blocks that the variable is completely
509    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
510    // live interval.
511    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
512      if (vi.AliveBlocks[i]) {
513        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
514        if (!MBB->empty()) {
515          LiveRange LR(getMBBStartIdx(i),
516                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
517                       ValNum);
518          interval.addRange(LR);
519          DOUT << " +" << LR;
520        }
521      }
522    }
523
524    // Finally, this virtual register is live from the start of any killing
525    // block to the 'use' slot of the killing instruction.
526    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
527      MachineInstr *Kill = vi.Kills[i];
528      LiveRange LR(getMBBStartIdx(Kill->getParent()),
529                   getUseIndex(getInstructionIndex(Kill))+1,
530                   ValNum);
531      interval.addRange(LR);
532      DOUT << " +" << LR;
533    }
534
535  } else {
536    // Can no longer safely assume definition is rematerializable.
537    interval.remat = NULL;
538
539    // If this is the second time we see a virtual register definition, it
540    // must be due to phi elimination or two addr elimination.  If this is
541    // the result of two address elimination, then the vreg is one of the
542    // def-and-use register operand.
543    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
544      // If this is a two-address definition, then we have already processed
545      // the live range.  The only problem is that we didn't realize there
546      // are actually two values in the live interval.  Because of this we
547      // need to take the LiveRegion that defines this register and split it
548      // into two values.
549      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
550      unsigned RedefIndex = getDefIndex(MIIdx);
551
552      // Delete the initial value, which should be short and continuous,
553      // because the 2-addr copy must be in the same MBB as the redef.
554      interval.removeRange(DefIndex, RedefIndex);
555
556      // Two-address vregs should always only be redefined once.  This means
557      // that at this point, there should be exactly one value number in it.
558      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
559
560      // The new value number (#1) is defined by the instruction we claimed
561      // defined value #0.
562      unsigned ValNo = interval.getNextValue(0, 0);
563      interval.setValueNumberInfo(1, interval.getValNumInfo(0));
564
565      // Value#0 is now defined by the 2-addr instruction.
566      interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
567
568      // Add the new live interval which replaces the range for the input copy.
569      LiveRange LR(DefIndex, RedefIndex, ValNo);
570      DOUT << " replace range with " << LR;
571      interval.addRange(LR);
572
573      // If this redefinition is dead, we need to add a dummy unit live
574      // range covering the def slot.
575      if (lv_->RegisterDefIsDead(mi, interval.reg))
576        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
577
578      DOUT << " RESULT: ";
579      interval.print(DOUT, mri_);
580
581    } else {
582      // Otherwise, this must be because of phi elimination.  If this is the
583      // first redefinition of the vreg that we have seen, go back and change
584      // the live range in the PHI block to be a different value number.
585      if (interval.containsOneValue()) {
586        assert(vi.Kills.size() == 1 &&
587               "PHI elimination vreg should have one kill, the PHI itself!");
588
589        // Remove the old range that we now know has an incorrect number.
590        MachineInstr *Killer = vi.Kills[0];
591        unsigned Start = getMBBStartIdx(Killer->getParent());
592        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
593        DOUT << " Removing [" << Start << "," << End << "] from: ";
594        interval.print(DOUT, mri_); DOUT << "\n";
595        interval.removeRange(Start, End);
596        DOUT << " RESULT: "; interval.print(DOUT, mri_);
597
598        // Replace the interval with one of a NEW value number.  Note that this
599        // value number isn't actually defined by an instruction, weird huh? :)
600        LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
601        DOUT << " replace range with " << LR;
602        interval.addRange(LR);
603        DOUT << " RESULT: "; interval.print(DOUT, mri_);
604      }
605
606      // In the case of PHI elimination, each variable definition is only
607      // live until the end of the block.  We've already taken care of the
608      // rest of the live range.
609      unsigned defIndex = getDefIndex(MIIdx);
610
611      unsigned ValNum;
612      unsigned SrcReg, DstReg;
613      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
614        ValNum = interval.getNextValue(~0U, 0);
615      else
616        ValNum = interval.getNextValue(defIndex, SrcReg);
617
618      LiveRange LR(defIndex,
619                   getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
620      interval.addRange(LR);
621      DOUT << " +" << LR;
622    }
623  }
624
625  DOUT << '\n';
626}
627
628void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
629                                              MachineBasicBlock::iterator mi,
630                                              unsigned MIIdx,
631                                              LiveInterval &interval,
632                                              unsigned SrcReg) {
633  // A physical register cannot be live across basic block, so its
634  // lifetime must end somewhere in its defining basic block.
635  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
636
637  unsigned baseIndex = MIIdx;
638  unsigned start = getDefIndex(baseIndex);
639  unsigned end = start;
640
641  // If it is not used after definition, it is considered dead at
642  // the instruction defining it. Hence its interval is:
643  // [defSlot(def), defSlot(def)+1)
644  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
645    DOUT << " dead";
646    end = getDefIndex(start) + 1;
647    goto exit;
648  }
649
650  // If it is not dead on definition, it must be killed by a
651  // subsequent instruction. Hence its interval is:
652  // [defSlot(def), useSlot(kill)+1)
653  while (++mi != MBB->end()) {
654    baseIndex += InstrSlots::NUM;
655    if (lv_->KillsRegister(mi, interval.reg)) {
656      DOUT << " killed";
657      end = getUseIndex(baseIndex) + 1;
658      goto exit;
659    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
660      // Another instruction redefines the register before it is ever read.
661      // Then the register is essentially dead at the instruction that defines
662      // it. Hence its interval is:
663      // [defSlot(def), defSlot(def)+1)
664      DOUT << " dead";
665      end = getDefIndex(start) + 1;
666      goto exit;
667    }
668  }
669
670  // The only case we should have a dead physreg here without a killing or
671  // instruction where we know it's dead is if it is live-in to the function
672  // and never used.
673  assert(!SrcReg && "physreg was not killed in defining block!");
674  end = getDefIndex(start) + 1;  // It's dead.
675
676exit:
677  assert(start < end && "did not find end of interval?");
678
679  // Already exists? Extend old live interval.
680  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
681  unsigned Id = (OldLR != interval.end())
682    ? OldLR->ValId
683    : interval.getNextValue(SrcReg != 0 ? start : ~0U, SrcReg);
684  LiveRange LR(start, end, Id);
685  interval.addRange(LR);
686  DOUT << " +" << LR << '\n';
687}
688
689void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
690                                      MachineBasicBlock::iterator MI,
691                                      unsigned MIIdx,
692                                      unsigned reg) {
693  if (MRegisterInfo::isVirtualRegister(reg))
694    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
695  else if (allocatableRegs_[reg]) {
696    unsigned SrcReg, DstReg;
697    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
698      SrcReg = 0;
699    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
700    // Def of a register also defines its sub-registers.
701    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
702      // Avoid processing some defs more than once.
703      if (!MI->findRegisterDefOperand(*AS))
704        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
705  }
706}
707
708void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
709                                         unsigned MIIdx,
710                                         LiveInterval &interval, bool isAlias) {
711  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
712
713  // Look for kills, if it reaches a def before it's killed, then it shouldn't
714  // be considered a livein.
715  MachineBasicBlock::iterator mi = MBB->begin();
716  unsigned baseIndex = MIIdx;
717  unsigned start = baseIndex;
718  unsigned end = start;
719  while (mi != MBB->end()) {
720    if (lv_->KillsRegister(mi, interval.reg)) {
721      DOUT << " killed";
722      end = getUseIndex(baseIndex) + 1;
723      goto exit;
724    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
725      // Another instruction redefines the register before it is ever read.
726      // Then the register is essentially dead at the instruction that defines
727      // it. Hence its interval is:
728      // [defSlot(def), defSlot(def)+1)
729      DOUT << " dead";
730      end = getDefIndex(start) + 1;
731      goto exit;
732    }
733
734    baseIndex += InstrSlots::NUM;
735    ++mi;
736  }
737
738exit:
739  // Alias of a live-in register might not be used at all.
740  if (isAlias && end == 0) {
741    DOUT << " dead";
742    end = getDefIndex(start) + 1;
743  }
744
745  assert(start < end && "did not find end of interval?");
746
747  LiveRange LR(start, end, interval.getNextValue(~0U, 0));
748  DOUT << " +" << LR << '\n';
749  interval.addRange(LR);
750}
751
752/// computeIntervals - computes the live intervals for virtual
753/// registers. for some ordering of the machine instructions [1,N] a
754/// live interval is an interval [i, j) where 1 <= i <= j < N for
755/// which a variable is live
756void LiveIntervals::computeIntervals() {
757  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
758       << "********** Function: "
759       << ((Value*)mf_->getFunction())->getName() << '\n';
760  // Track the index of the current machine instr.
761  unsigned MIIndex = 0;
762  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
763       MBBI != E; ++MBBI) {
764    MachineBasicBlock *MBB = MBBI;
765    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
766
767    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
768
769    if (MBB->livein_begin() != MBB->livein_end()) {
770      // Create intervals for live-ins to this BB first.
771      for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
772             LE = MBB->livein_end(); LI != LE; ++LI) {
773        handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
774        // Multiple live-ins can alias the same register.
775        for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
776          if (!hasInterval(*AS))
777            handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS), true);
778      }
779    }
780
781    for (; MI != miEnd; ++MI) {
782      DOUT << MIIndex << "\t" << *MI;
783
784      // Handle defs.
785      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
786        MachineOperand &MO = MI->getOperand(i);
787        // handle register defs - build intervals
788        if (MO.isRegister() && MO.getReg() && MO.isDef())
789          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
790      }
791
792      MIIndex += InstrSlots::NUM;
793    }
794  }
795}
796
797/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
798/// being the source and IntB being the dest, thus this defines a value number
799/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
800/// see if we can merge these two pieces of B into a single value number,
801/// eliminating a copy.  For example:
802///
803///  A3 = B0
804///    ...
805///  B1 = A3      <- this copy
806///
807/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
808/// value number to be replaced with B0 (which simplifies the B liveinterval).
809///
810/// This returns true if an interval was modified.
811///
812bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
813                                         MachineInstr *CopyMI) {
814  unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
815
816  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
817  // the example above.
818  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
819  unsigned BValNo = BLR->ValId;
820
821  // Get the location that B is defined at.  Two options: either this value has
822  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
823  // can't process it.
824  unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
825  if (BValNoDefIdx == ~0U) return false;
826  assert(BValNoDefIdx == CopyIdx &&
827         "Copy doesn't define the value?");
828
829  // AValNo is the value number in A that defines the copy, A0 in the example.
830  LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
831  unsigned AValNo = AValLR->ValId;
832
833  // If AValNo is defined as a copy from IntB, we can potentially process this.
834
835  // Get the instruction that defines this value number.
836  unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
837  if (!SrcReg) return false;  // Not defined by a copy.
838
839  // If the value number is not defined by a copy instruction, ignore it.
840
841  // If the source register comes from an interval other than IntB, we can't
842  // handle this.
843  if (rep(SrcReg) != IntB.reg) return false;
844
845  // Get the LiveRange in IntB that this value number starts with.
846  unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
847  LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
848
849  // Make sure that the end of the live range is inside the same block as
850  // CopyMI.
851  MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
852  if (!ValLREndInst ||
853      ValLREndInst->getParent() != CopyMI->getParent()) return false;
854
855  // Okay, we now know that ValLR ends in the same block that the CopyMI
856  // live-range starts.  If there are no intervening live ranges between them in
857  // IntB, we can merge them.
858  if (ValLR+1 != BLR) return false;
859
860  DOUT << "\nExtending: "; IntB.print(DOUT, mri_);
861
862  // We are about to delete CopyMI, so need to remove it as the 'instruction
863  // that defines this value #'.
864  IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
865
866  // Okay, we can merge them.  We need to insert a new liverange:
867  // [ValLR.end, BLR.begin) of either value number, then we merge the
868  // two value numbers.
869  unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
870  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
871
872  // If the IntB live range is assigned to a physical register, and if that
873  // physreg has aliases,
874  if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
875    // Update the liveintervals of sub-registers.
876    for (const unsigned *AS = mri_->getSubRegisters(IntB.reg); *AS; ++AS) {
877      LiveInterval &AliasLI = getInterval(*AS);
878      AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
879                                 AliasLI.getNextValue(~0U, 0)));
880    }
881  }
882
883  // Okay, merge "B1" into the same value number as "B0".
884  if (BValNo != ValLR->ValId)
885    IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
886  DOUT << "   result = "; IntB.print(DOUT, mri_);
887  DOUT << "\n";
888
889  // If the source instruction was killing the source register before the
890  // merge, unset the isKill marker given the live range has been extended.
891  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
892  if (UIdx != -1)
893    ValLREndInst->getOperand(UIdx).unsetIsKill();
894
895  // Finally, delete the copy instruction.
896  RemoveMachineInstrFromMaps(CopyMI);
897  CopyMI->eraseFromParent();
898  ++numPeep;
899  return true;
900}
901
902
903/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
904/// which are the src/dst of the copy instruction CopyMI.  This returns true
905/// if the copy was successfully coallesced away, or if it is never possible
906/// to coallesce this copy, due to register constraints.  It returns
907/// false if it is not currently possible to coallesce this interval, but
908/// it may be possible if other things get coallesced.
909bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
910                             unsigned SrcReg, unsigned DstReg, bool PhysOnly) {
911  DOUT << getInstructionIndex(CopyMI) << '\t' << *CopyMI;
912
913  // Get representative registers.
914  unsigned repSrcReg = rep(SrcReg);
915  unsigned repDstReg = rep(DstReg);
916
917  // If they are already joined we continue.
918  if (repSrcReg == repDstReg) {
919    DOUT << "\tCopy already coallesced.\n";
920    return true;  // Not coallescable.
921  }
922
923  bool SrcIsPhys = MRegisterInfo::isPhysicalRegister(repSrcReg);
924  bool DstIsPhys = MRegisterInfo::isPhysicalRegister(repDstReg);
925  if (PhysOnly && !SrcIsPhys && !DstIsPhys)
926    // Only joining physical registers with virtual registers in this round.
927    return true;
928
929  // If they are both physical registers, we cannot join them.
930  if (SrcIsPhys && DstIsPhys) {
931    DOUT << "\tCan not coallesce physregs.\n";
932    return true;  // Not coallescable.
933  }
934
935  // We only join virtual registers with allocatable physical registers.
936  if (SrcIsPhys && !allocatableRegs_[repSrcReg]) {
937    DOUT << "\tSrc reg is unallocatable physreg.\n";
938    return true;  // Not coallescable.
939  }
940  if (DstIsPhys && !allocatableRegs_[repDstReg]) {
941    DOUT << "\tDst reg is unallocatable physreg.\n";
942    return true;  // Not coallescable.
943  }
944
945  // If they are not of the same register class, we cannot join them.
946  if (differingRegisterClasses(repSrcReg, repDstReg)) {
947    DOUT << "\tSrc/Dest are different register classes.\n";
948    return true;  // Not coallescable.
949  }
950
951  LiveInterval &SrcInt = getInterval(repSrcReg);
952  LiveInterval &DstInt = getInterval(repDstReg);
953  assert(SrcInt.reg == repSrcReg && DstInt.reg == repDstReg &&
954         "Register mapping is horribly broken!");
955
956  DOUT << "\t\tInspecting "; SrcInt.print(DOUT, mri_);
957  DOUT << " and "; DstInt.print(DOUT, mri_);
958  DOUT << ": ";
959
960  // Check if it is necessary to propagate "isDead" property before intervals
961  // are joined.
962  MachineOperand *mopd = CopyMI->findRegisterDefOperand(DstReg);
963  bool isDead = mopd->isDead();
964  bool isShorten = false;
965  unsigned SrcStart = 0, RemoveStart = 0;
966  unsigned SrcEnd = 0, RemoveEnd = 0;
967  if (isDead) {
968    unsigned CopyIdx = getInstructionIndex(CopyMI);
969    LiveInterval::iterator SrcLR =
970      SrcInt.FindLiveRangeContaining(getUseIndex(CopyIdx));
971    RemoveStart = SrcStart = SrcLR->start;
972    RemoveEnd   = SrcEnd   = SrcLR->end;
973    // The instruction which defines the src is only truly dead if there are
974    // no intermediate uses and there isn't a use beyond the copy.
975    // FIXME: find the last use, mark is kill and shorten the live range.
976    if (SrcEnd > getDefIndex(CopyIdx)) {
977      isDead = false;
978    } else {
979      MachineOperand *MOU;
980      MachineInstr *LastUse= lastRegisterUse(repSrcReg, SrcStart, CopyIdx, MOU);
981      if (LastUse) {
982        // Shorten the liveinterval to the end of last use.
983        MOU->setIsKill();
984        isDead = false;
985        isShorten = true;
986        RemoveStart = getDefIndex(getInstructionIndex(LastUse));
987        RemoveEnd   = SrcEnd;
988      } else {
989        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
990        if (SrcMI) {
991          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
992          if (mops)
993            // A dead def should have a single cycle interval.
994            ++RemoveStart;
995        }
996      }
997    }
998  }
999
1000  // We need to be careful about coalescing a source physical register with a
1001  // virtual register. Once the coalescing is done, it cannot be broken and
1002  // these are not spillable! If the destination interval uses are far away,
1003  // think twice about coalescing them!
1004  if (!mopd->isDead() && (SrcIsPhys || DstIsPhys)) {
1005    LiveInterval &JoinVInt = SrcIsPhys ? DstInt : SrcInt;
1006    unsigned JoinVReg = SrcIsPhys ? repDstReg : repSrcReg;
1007    unsigned JoinPReg = SrcIsPhys ? repSrcReg : repDstReg;
1008    const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(JoinVReg);
1009    unsigned Threshold = allocatableRCRegs_[RC].count();
1010
1011    // If the virtual register live interval is long has it has low use desity,
1012    // do not join them, instead mark the physical register as its allocation
1013    // preference.
1014    unsigned Length = JoinVInt.getSize() / InstrSlots::NUM;
1015    LiveVariables::VarInfo &vi = lv_->getVarInfo(JoinVReg);
1016    if (Length > Threshold &&
1017        (((float)vi.NumUses / Length) < (1.0 / Threshold))) {
1018      JoinVInt.preference = JoinPReg;
1019      ++numAborts;
1020      DOUT << "\tMay tie down a physical register, abort!\n";
1021      return false;
1022    }
1023  }
1024
1025  // Okay, attempt to join these two intervals.  On failure, this returns false.
1026  // Otherwise, if one of the intervals being joined is a physreg, this method
1027  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
1028  // been modified, so we can use this information below to update aliases.
1029  if (JoinIntervals(DstInt, SrcInt)) {
1030    if (isDead) {
1031      // Result of the copy is dead. Propagate this property.
1032      if (SrcStart == 0) {
1033        assert(MRegisterInfo::isPhysicalRegister(repSrcReg) &&
1034               "Live-in must be a physical register!");
1035        // Live-in to the function but dead. Remove it from entry live-in set.
1036        // JoinIntervals may end up swapping the two intervals.
1037        mf_->begin()->removeLiveIn(repSrcReg);
1038      } else {
1039        MachineInstr *SrcMI = getInstructionFromIndex(SrcStart);
1040        if (SrcMI) {
1041          MachineOperand *mops = findDefOperand(SrcMI, repSrcReg);
1042          if (mops)
1043            mops->setIsDead();
1044        }
1045      }
1046    }
1047
1048    if (isShorten || isDead) {
1049      // Shorten the live interval.
1050      LiveInterval &LiveInInt = (repSrcReg == DstInt.reg) ? DstInt : SrcInt;
1051      LiveInInt.removeRange(RemoveStart, RemoveEnd);
1052    }
1053  } else {
1054    // Coallescing failed.
1055
1056    // If we can eliminate the copy without merging the live ranges, do so now.
1057    if (AdjustCopiesBackFrom(SrcInt, DstInt, CopyMI))
1058      return true;
1059
1060    // Otherwise, we are unable to join the intervals.
1061    DOUT << "Interference!\n";
1062    return false;
1063  }
1064
1065  bool Swapped = repSrcReg == DstInt.reg;
1066  if (Swapped)
1067    std::swap(repSrcReg, repDstReg);
1068  assert(MRegisterInfo::isVirtualRegister(repSrcReg) &&
1069         "LiveInterval::join didn't work right!");
1070
1071  // If we're about to merge live ranges into a physical register live range,
1072  // we have to update any aliased register's live ranges to indicate that they
1073  // have clobbered values for this range.
1074  if (MRegisterInfo::isPhysicalRegister(repDstReg)) {
1075    // Update the liveintervals of sub-registers.
1076    for (const unsigned *AS = mri_->getSubRegisters(repDstReg); *AS; ++AS)
1077        getInterval(*AS).MergeInClobberRanges(SrcInt);
1078  } else {
1079    // Merge use info if the destination is a virtual register.
1080    LiveVariables::VarInfo& dVI = lv_->getVarInfo(repDstReg);
1081    LiveVariables::VarInfo& sVI = lv_->getVarInfo(repSrcReg);
1082    dVI.NumUses += sVI.NumUses;
1083  }
1084
1085  DOUT << "\n\t\tJoined.  Result = "; DstInt.print(DOUT, mri_);
1086  DOUT << "\n";
1087
1088  // Remember these liveintervals have been joined.
1089  JoinedLIs.set(repSrcReg - MRegisterInfo::FirstVirtualRegister);
1090  if (MRegisterInfo::isVirtualRegister(repDstReg))
1091    JoinedLIs.set(repDstReg - MRegisterInfo::FirstVirtualRegister);
1092
1093  // If the intervals were swapped by Join, swap them back so that the register
1094  // mapping (in the r2i map) is correct.
1095  if (Swapped) SrcInt.swap(DstInt);
1096  removeInterval(repSrcReg);
1097  r2rMap_[repSrcReg] = repDstReg;
1098
1099  // Finally, delete the copy instruction.
1100  RemoveMachineInstrFromMaps(CopyMI);
1101  CopyMI->eraseFromParent();
1102  ++numPeep;
1103  ++numJoins;
1104  return true;
1105}
1106
1107/// ComputeUltimateVN - Assuming we are going to join two live intervals,
1108/// compute what the resultant value numbers for each value in the input two
1109/// ranges will be.  This is complicated by copies between the two which can
1110/// and will commonly cause multiple value numbers to be merged into one.
1111///
1112/// VN is the value number that we're trying to resolve.  InstDefiningValue
1113/// keeps track of the new InstDefiningValue assignment for the result
1114/// LiveInterval.  ThisFromOther/OtherFromThis are sets that keep track of
1115/// whether a value in this or other is a copy from the opposite set.
1116/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
1117/// already been assigned.
1118///
1119/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
1120/// contains the value number the copy is from.
1121///
1122static unsigned ComputeUltimateVN(unsigned VN,
1123                                  SmallVector<std::pair<unsigned,
1124                                                unsigned>, 16> &ValueNumberInfo,
1125                                  SmallVector<int, 16> &ThisFromOther,
1126                                  SmallVector<int, 16> &OtherFromThis,
1127                                  SmallVector<int, 16> &ThisValNoAssignments,
1128                                  SmallVector<int, 16> &OtherValNoAssignments,
1129                                  LiveInterval &ThisLI, LiveInterval &OtherLI) {
1130  // If the VN has already been computed, just return it.
1131  if (ThisValNoAssignments[VN] >= 0)
1132    return ThisValNoAssignments[VN];
1133//  assert(ThisValNoAssignments[VN] != -2 && "Cyclic case?");
1134
1135  // If this val is not a copy from the other val, then it must be a new value
1136  // number in the destination.
1137  int OtherValNo = ThisFromOther[VN];
1138  if (OtherValNo == -1) {
1139    ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
1140    return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
1141  }
1142
1143  // Otherwise, this *is* a copy from the RHS.  If the other side has already
1144  // been computed, return it.
1145  if (OtherValNoAssignments[OtherValNo] >= 0)
1146    return ThisValNoAssignments[VN] = OtherValNoAssignments[OtherValNo];
1147
1148  // Mark this value number as currently being computed, then ask what the
1149  // ultimate value # of the other value is.
1150  ThisValNoAssignments[VN] = -2;
1151  unsigned UltimateVN =
1152    ComputeUltimateVN(OtherValNo, ValueNumberInfo,
1153                      OtherFromThis, ThisFromOther,
1154                      OtherValNoAssignments, ThisValNoAssignments,
1155                      OtherLI, ThisLI);
1156  return ThisValNoAssignments[VN] = UltimateVN;
1157}
1158
1159static bool InVector(unsigned Val, const SmallVector<unsigned, 8> &V) {
1160  return std::find(V.begin(), V.end(), Val) != V.end();
1161}
1162
1163/// SimpleJoin - Attempt to joint the specified interval into this one. The
1164/// caller of this method must guarantee that the RHS only contains a single
1165/// value number and that the RHS is not defined by a copy from this
1166/// interval.  This returns false if the intervals are not joinable, or it
1167/// joins them and returns true.
1168bool LiveIntervals::SimpleJoin(LiveInterval &LHS, LiveInterval &RHS) {
1169  assert(RHS.containsOneValue());
1170
1171  // Some number (potentially more than one) value numbers in the current
1172  // interval may be defined as copies from the RHS.  Scan the overlapping
1173  // portions of the LHS and RHS, keeping track of this and looking for
1174  // overlapping live ranges that are NOT defined as copies.  If these exist, we
1175  // cannot coallesce.
1176
1177  LiveInterval::iterator LHSIt = LHS.begin(), LHSEnd = LHS.end();
1178  LiveInterval::iterator RHSIt = RHS.begin(), RHSEnd = RHS.end();
1179
1180  if (LHSIt->start < RHSIt->start) {
1181    LHSIt = std::upper_bound(LHSIt, LHSEnd, RHSIt->start);
1182    if (LHSIt != LHS.begin()) --LHSIt;
1183  } else if (RHSIt->start < LHSIt->start) {
1184    RHSIt = std::upper_bound(RHSIt, RHSEnd, LHSIt->start);
1185    if (RHSIt != RHS.begin()) --RHSIt;
1186  }
1187
1188  SmallVector<unsigned, 8> EliminatedLHSVals;
1189
1190  while (1) {
1191    // Determine if these live intervals overlap.
1192    bool Overlaps = false;
1193    if (LHSIt->start <= RHSIt->start)
1194      Overlaps = LHSIt->end > RHSIt->start;
1195    else
1196      Overlaps = RHSIt->end > LHSIt->start;
1197
1198    // If the live intervals overlap, there are two interesting cases: if the
1199    // LHS interval is defined by a copy from the RHS, it's ok and we record
1200    // that the LHS value # is the same as the RHS.  If it's not, then we cannot
1201    // coallesce these live ranges and we bail out.
1202    if (Overlaps) {
1203      // If we haven't already recorded that this value # is safe, check it.
1204      if (!InVector(LHSIt->ValId, EliminatedLHSVals)) {
1205        // Copy from the RHS?
1206        unsigned SrcReg = LHS.getSrcRegForValNum(LHSIt->ValId);
1207        if (rep(SrcReg) != RHS.reg)
1208          return false;    // Nope, bail out.
1209
1210        EliminatedLHSVals.push_back(LHSIt->ValId);
1211      }
1212
1213      // We know this entire LHS live range is okay, so skip it now.
1214      if (++LHSIt == LHSEnd) break;
1215      continue;
1216    }
1217
1218    if (LHSIt->end < RHSIt->end) {
1219      if (++LHSIt == LHSEnd) break;
1220    } else {
1221      // One interesting case to check here.  It's possible that we have
1222      // something like "X3 = Y" which defines a new value number in the LHS,
1223      // and is the last use of this liverange of the RHS.  In this case, we
1224      // want to notice this copy (so that it gets coallesced away) even though
1225      // the live ranges don't actually overlap.
1226      if (LHSIt->start == RHSIt->end) {
1227        if (InVector(LHSIt->ValId, EliminatedLHSVals)) {
1228          // We already know that this value number is going to be merged in
1229          // if coallescing succeeds.  Just skip the liverange.
1230          if (++LHSIt == LHSEnd) break;
1231        } else {
1232          // Otherwise, if this is a copy from the RHS, mark it as being merged
1233          // in.
1234          if (rep(LHS.getSrcRegForValNum(LHSIt->ValId)) == RHS.reg) {
1235            EliminatedLHSVals.push_back(LHSIt->ValId);
1236
1237            // We know this entire LHS live range is okay, so skip it now.
1238            if (++LHSIt == LHSEnd) break;
1239          }
1240        }
1241      }
1242
1243      if (++RHSIt == RHSEnd) break;
1244    }
1245  }
1246
1247  // If we got here, we know that the coallescing will be successful and that
1248  // the value numbers in EliminatedLHSVals will all be merged together.  Since
1249  // the most common case is that EliminatedLHSVals has a single number, we
1250  // optimize for it: if there is more than one value, we merge them all into
1251  // the lowest numbered one, then handle the interval as if we were merging
1252  // with one value number.
1253  unsigned LHSValNo;
1254  if (EliminatedLHSVals.size() > 1) {
1255    // Loop through all the equal value numbers merging them into the smallest
1256    // one.
1257    unsigned Smallest = EliminatedLHSVals[0];
1258    for (unsigned i = 1, e = EliminatedLHSVals.size(); i != e; ++i) {
1259      if (EliminatedLHSVals[i] < Smallest) {
1260        // Merge the current notion of the smallest into the smaller one.
1261        LHS.MergeValueNumberInto(Smallest, EliminatedLHSVals[i]);
1262        Smallest = EliminatedLHSVals[i];
1263      } else {
1264        // Merge into the smallest.
1265        LHS.MergeValueNumberInto(EliminatedLHSVals[i], Smallest);
1266      }
1267    }
1268    LHSValNo = Smallest;
1269  } else {
1270    assert(!EliminatedLHSVals.empty() && "No copies from the RHS?");
1271    LHSValNo = EliminatedLHSVals[0];
1272  }
1273
1274  // Okay, now that there is a single LHS value number that we're merging the
1275  // RHS into, update the value number info for the LHS to indicate that the
1276  // value number is defined where the RHS value number was.
1277  LHS.setValueNumberInfo(LHSValNo, RHS.getValNumInfo(0));
1278
1279  // Okay, the final step is to loop over the RHS live intervals, adding them to
1280  // the LHS.
1281  LHS.MergeRangesInAsValue(RHS, LHSValNo);
1282  LHS.weight += RHS.weight;
1283  if (RHS.preference && !LHS.preference)
1284    LHS.preference = RHS.preference;
1285
1286  return true;
1287}
1288
1289/// JoinIntervals - Attempt to join these two intervals.  On failure, this
1290/// returns false.  Otherwise, if one of the intervals being joined is a
1291/// physreg, this method always canonicalizes LHS to be it.  The output
1292/// "RHS" will not have been modified, so we can use this information
1293/// below to update aliases.
1294bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
1295  // Compute the final value assignment, assuming that the live ranges can be
1296  // coallesced.
1297  SmallVector<int, 16> LHSValNoAssignments;
1298  SmallVector<int, 16> RHSValNoAssignments;
1299  SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
1300
1301  // If a live interval is a physical register, conservatively check if any
1302  // of its sub-registers is overlapping the live interval of the virtual
1303  // register. If so, do not coalesce.
1304  if (MRegisterInfo::isPhysicalRegister(LHS.reg) &&
1305      *mri_->getSubRegisters(LHS.reg)) {
1306    for (const unsigned* SR = mri_->getSubRegisters(LHS.reg); *SR; ++SR)
1307      if (hasInterval(*SR) && RHS.overlaps(getInterval(*SR))) {
1308        DOUT << "Interfere with sub-register ";
1309        DEBUG(getInterval(*SR).print(DOUT, mri_));
1310        return false;
1311      }
1312  } else if (MRegisterInfo::isPhysicalRegister(RHS.reg) &&
1313             *mri_->getSubRegisters(RHS.reg)) {
1314    for (const unsigned* SR = mri_->getSubRegisters(RHS.reg); *SR; ++SR)
1315      if (hasInterval(*SR) && LHS.overlaps(getInterval(*SR))) {
1316        DOUT << "Interfere with sub-register ";
1317        DEBUG(getInterval(*SR).print(DOUT, mri_));
1318        return false;
1319      }
1320  }
1321
1322  // Compute ultimate value numbers for the LHS and RHS values.
1323  if (RHS.containsOneValue()) {
1324    // Copies from a liveinterval with a single value are simple to handle and
1325    // very common, handle the special case here.  This is important, because
1326    // often RHS is small and LHS is large (e.g. a physreg).
1327
1328    // Find out if the RHS is defined as a copy from some value in the LHS.
1329    int RHSValID = -1;
1330    std::pair<unsigned,unsigned> RHSValNoInfo;
1331    unsigned RHSSrcReg = RHS.getSrcRegForValNum(0);
1332    if ((RHSSrcReg == 0 || rep(RHSSrcReg) != LHS.reg)) {
1333      // If RHS is not defined as a copy from the LHS, we can use simpler and
1334      // faster checks to see if the live ranges are coallescable.  This joiner
1335      // can't swap the LHS/RHS intervals though.
1336      if (!MRegisterInfo::isPhysicalRegister(RHS.reg)) {
1337        return SimpleJoin(LHS, RHS);
1338      } else {
1339        RHSValNoInfo = RHS.getValNumInfo(0);
1340      }
1341    } else {
1342      // It was defined as a copy from the LHS, find out what value # it is.
1343      unsigned ValInst = RHS.getInstForValNum(0);
1344      RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1345      RHSValNoInfo = LHS.getValNumInfo(RHSValID);
1346    }
1347
1348    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1349    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1350    ValueNumberInfo.resize(LHS.getNumValNums());
1351
1352    // Okay, *all* of the values in LHS that are defined as a copy from RHS
1353    // should now get updated.
1354    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1355      if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
1356        if (rep(LHSSrcReg) != RHS.reg) {
1357          // If this is not a copy from the RHS, its value number will be
1358          // unmodified by the coallescing.
1359          ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1360          LHSValNoAssignments[VN] = VN;
1361        } else if (RHSValID == -1) {
1362          // Otherwise, it is a copy from the RHS, and we don't already have a
1363          // value# for it.  Keep the current value number, but remember it.
1364          LHSValNoAssignments[VN] = RHSValID = VN;
1365          ValueNumberInfo[VN] = RHSValNoInfo;
1366        } else {
1367          // Otherwise, use the specified value #.
1368          LHSValNoAssignments[VN] = RHSValID;
1369          if (VN != (unsigned)RHSValID)
1370            ValueNumberInfo[VN].first = ~1U;
1371          else
1372            ValueNumberInfo[VN] = RHSValNoInfo;
1373        }
1374      } else {
1375        ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
1376        LHSValNoAssignments[VN] = VN;
1377      }
1378    }
1379
1380    assert(RHSValID != -1 && "Didn't find value #?");
1381    RHSValNoAssignments[0] = RHSValID;
1382
1383  } else {
1384    // Loop over the value numbers of the LHS, seeing if any are defined from
1385    // the RHS.
1386    SmallVector<int, 16> LHSValsDefinedFromRHS;
1387    LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
1388    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1389      unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
1390      if (ValSrcReg == 0)  // Src not defined by a copy?
1391        continue;
1392
1393      // DstReg is known to be a register in the LHS interval.  If the src is
1394      // from the RHS interval, we can use its value #.
1395      if (rep(ValSrcReg) != RHS.reg)
1396        continue;
1397
1398      // Figure out the value # from the RHS.
1399      unsigned ValInst = LHS.getInstForValNum(VN);
1400      LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
1401    }
1402
1403    // Loop over the value numbers of the RHS, seeing if any are defined from
1404    // the LHS.
1405    SmallVector<int, 16> RHSValsDefinedFromLHS;
1406    RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
1407    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1408      unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
1409      if (ValSrcReg == 0)  // Src not defined by a copy?
1410        continue;
1411
1412      // DstReg is known to be a register in the RHS interval.  If the src is
1413      // from the LHS interval, we can use its value #.
1414      if (rep(ValSrcReg) != LHS.reg)
1415        continue;
1416
1417      // Figure out the value # from the LHS.
1418      unsigned ValInst = RHS.getInstForValNum(VN);
1419      RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
1420    }
1421
1422    LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
1423    RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
1424    ValueNumberInfo.reserve(LHS.getNumValNums() + RHS.getNumValNums());
1425
1426    for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
1427      if (LHSValNoAssignments[VN] >= 0 || LHS.getInstForValNum(VN) == ~2U)
1428        continue;
1429      ComputeUltimateVN(VN, ValueNumberInfo,
1430                        LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
1431                        LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
1432    }
1433    for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
1434      if (RHSValNoAssignments[VN] >= 0 || RHS.getInstForValNum(VN) == ~2U)
1435        continue;
1436      // If this value number isn't a copy from the LHS, it's a new number.
1437      if (RHSValsDefinedFromLHS[VN] == -1) {
1438        ValueNumberInfo.push_back(RHS.getValNumInfo(VN));
1439        RHSValNoAssignments[VN] = ValueNumberInfo.size()-1;
1440        continue;
1441      }
1442
1443      ComputeUltimateVN(VN, ValueNumberInfo,
1444                        RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
1445                        RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
1446    }
1447  }
1448
1449  // Armed with the mappings of LHS/RHS values to ultimate values, walk the
1450  // interval lists to see if these intervals are coallescable.
1451  LiveInterval::const_iterator I = LHS.begin();
1452  LiveInterval::const_iterator IE = LHS.end();
1453  LiveInterval::const_iterator J = RHS.begin();
1454  LiveInterval::const_iterator JE = RHS.end();
1455
1456  // Skip ahead until the first place of potential sharing.
1457  if (I->start < J->start) {
1458    I = std::upper_bound(I, IE, J->start);
1459    if (I != LHS.begin()) --I;
1460  } else if (J->start < I->start) {
1461    J = std::upper_bound(J, JE, I->start);
1462    if (J != RHS.begin()) --J;
1463  }
1464
1465  while (1) {
1466    // Determine if these two live ranges overlap.
1467    bool Overlaps;
1468    if (I->start < J->start) {
1469      Overlaps = I->end > J->start;
1470    } else {
1471      Overlaps = J->end > I->start;
1472    }
1473
1474    // If so, check value # info to determine if they are really different.
1475    if (Overlaps) {
1476      // If the live range overlap will map to the same value number in the
1477      // result liverange, we can still coallesce them.  If not, we can't.
1478      if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
1479        return false;
1480    }
1481
1482    if (I->end < J->end) {
1483      ++I;
1484      if (I == IE) break;
1485    } else {
1486      ++J;
1487      if (J == JE) break;
1488    }
1489  }
1490
1491  // If we get here, we know that we can coallesce the live ranges.  Ask the
1492  // intervals to coallesce themselves now.
1493  LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
1494           ValueNumberInfo);
1495  return true;
1496}
1497
1498
1499namespace {
1500  // DepthMBBCompare - Comparison predicate that sort first based on the loop
1501  // depth of the basic block (the unsigned), and then on the MBB number.
1502  struct DepthMBBCompare {
1503    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
1504    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
1505      if (LHS.first > RHS.first) return true;   // Deeper loops first
1506      return LHS.first == RHS.first &&
1507        LHS.second->getNumber() < RHS.second->getNumber();
1508    }
1509  };
1510}
1511
1512
1513void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
1514                                std::vector<CopyRec> *TryAgain, bool PhysOnly) {
1515  DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
1516
1517  for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
1518       MII != E;) {
1519    MachineInstr *Inst = MII++;
1520
1521    // If this isn't a copy, we can't join intervals.
1522    unsigned SrcReg, DstReg;
1523    if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
1524
1525    if (TryAgain && !JoinCopy(Inst, SrcReg, DstReg, PhysOnly))
1526      TryAgain->push_back(getCopyRec(Inst, SrcReg, DstReg));
1527  }
1528}
1529
1530
1531void LiveIntervals::joinIntervals() {
1532  DOUT << "********** JOINING INTERVALS ***********\n";
1533
1534  JoinedLIs.resize(getNumIntervals());
1535  JoinedLIs.reset();
1536
1537  std::vector<CopyRec> TryAgainList;
1538  const LoopInfo &LI = getAnalysis<LoopInfo>();
1539  if (LI.begin() == LI.end()) {
1540    // If there are no loops in the function, join intervals in function order.
1541    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
1542         I != E; ++I)
1543      CopyCoallesceInMBB(I, &TryAgainList);
1544  } else {
1545    // Otherwise, join intervals in inner loops before other intervals.
1546    // Unfortunately we can't just iterate over loop hierarchy here because
1547    // there may be more MBB's than BB's.  Collect MBB's for sorting.
1548
1549    // Join intervals in the function prolog first. We want to join physical
1550    // registers with virtual registers before the intervals got too long.
1551    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
1552    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end(); I != E;++I)
1553      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
1554
1555    // Sort by loop depth.
1556    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
1557
1558    // Finally, join intervals in loop nest order.
1559    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1560      CopyCoallesceInMBB(MBBs[i].second, NULL, true);
1561    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
1562      CopyCoallesceInMBB(MBBs[i].second, &TryAgainList, false);
1563  }
1564
1565  // Joining intervals can allow other intervals to be joined.  Iteratively join
1566  // until we make no progress.
1567  bool ProgressMade = true;
1568  while (ProgressMade) {
1569    ProgressMade = false;
1570
1571    for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
1572      CopyRec &TheCopy = TryAgainList[i];
1573      if (TheCopy.MI &&
1574          JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
1575        TheCopy.MI = 0;   // Mark this one as done.
1576        ProgressMade = true;
1577      }
1578    }
1579  }
1580
1581  // Some live range has been lengthened due to colaescing, eliminate the
1582  // unnecessary kills.
1583  int RegNum = JoinedLIs.find_first();
1584  while (RegNum != -1) {
1585    unsigned Reg = RegNum + MRegisterInfo::FirstVirtualRegister;
1586    unsigned repReg = rep(Reg);
1587    LiveInterval &LI = getInterval(repReg);
1588    LiveVariables::VarInfo& svi = lv_->getVarInfo(Reg);
1589    for (unsigned i = 0, e = svi.Kills.size(); i != e; ++i) {
1590      MachineInstr *Kill = svi.Kills[i];
1591      // Suppose vr1 = op vr2, x
1592      // and vr1 and vr2 are coalesced. vr2 should still be marked kill
1593      // unless it is a two-address operand.
1594      if (isRemoved(Kill) || hasRegisterDef(Kill, repReg))
1595        continue;
1596      if (LI.liveAt(getInstructionIndex(Kill) + InstrSlots::NUM))
1597        unsetRegisterKill(Kill, repReg);
1598    }
1599    RegNum = JoinedLIs.find_next(RegNum);
1600  }
1601
1602  DOUT << "*** Register mapping ***\n";
1603  for (int i = 0, e = r2rMap_.size(); i != e; ++i)
1604    if (r2rMap_[i]) {
1605      DOUT << "  reg " << i << " -> ";
1606      DEBUG(printRegName(r2rMap_[i]));
1607      DOUT << "\n";
1608    }
1609}
1610
1611/// Return true if the two specified registers belong to different register
1612/// classes.  The registers may be either phys or virt regs.
1613bool LiveIntervals::differingRegisterClasses(unsigned RegA,
1614                                             unsigned RegB) const {
1615
1616  // Get the register classes for the first reg.
1617  if (MRegisterInfo::isPhysicalRegister(RegA)) {
1618    assert(MRegisterInfo::isVirtualRegister(RegB) &&
1619           "Shouldn't consider two physregs!");
1620    return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
1621  }
1622
1623  // Compare against the regclass for the second reg.
1624  const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
1625  if (MRegisterInfo::isVirtualRegister(RegB))
1626    return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
1627  else
1628    return !RegClass->contains(RegB);
1629}
1630
1631/// lastRegisterUse - Returns the last use of the specific register between
1632/// cycles Start and End. It also returns the use operand by reference. It
1633/// returns NULL if there are no uses.
1634MachineInstr *
1635LiveIntervals::lastRegisterUse(unsigned Reg, unsigned Start, unsigned End,
1636                               MachineOperand *&MOU) {
1637  int e = (End-1) / InstrSlots::NUM * InstrSlots::NUM;
1638  int s = Start;
1639  while (e >= s) {
1640    // Skip deleted instructions
1641    MachineInstr *MI = getInstructionFromIndex(e);
1642    while ((e - InstrSlots::NUM) >= s && !MI) {
1643      e -= InstrSlots::NUM;
1644      MI = getInstructionFromIndex(e);
1645    }
1646    if (e < s || MI == NULL)
1647      return NULL;
1648
1649    for (unsigned i = 0, NumOps = MI->getNumOperands(); i != NumOps; ++i) {
1650      MachineOperand &MO = MI->getOperand(i);
1651      if (MO.isReg() && MO.isUse() && MO.getReg() &&
1652          mri_->regsOverlap(rep(MO.getReg()), Reg)) {
1653        MOU = &MO;
1654        return MI;
1655      }
1656    }
1657
1658    e -= InstrSlots::NUM;
1659  }
1660
1661  return NULL;
1662}
1663
1664
1665/// findDefOperand - Returns the MachineOperand that is a def of the specific
1666/// register. It returns NULL if the def is not found.
1667MachineOperand *LiveIntervals::findDefOperand(MachineInstr *MI, unsigned Reg) {
1668  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1669    MachineOperand &MO = MI->getOperand(i);
1670    if (MO.isReg() && MO.isDef() &&
1671        mri_->regsOverlap(rep(MO.getReg()), Reg))
1672      return &MO;
1673  }
1674  return NULL;
1675}
1676
1677/// unsetRegisterKill - Unset IsKill property of all uses of specific register
1678/// of the specific instruction.
1679void LiveIntervals::unsetRegisterKill(MachineInstr *MI, unsigned Reg) {
1680  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1681    MachineOperand &MO = MI->getOperand(i);
1682    if (MO.isReg() && MO.isUse() && MO.isKill() && MO.getReg() &&
1683        mri_->regsOverlap(rep(MO.getReg()), Reg))
1684      MO.unsetIsKill();
1685  }
1686}
1687
1688/// hasRegisterDef - True if the instruction defines the specific register.
1689///
1690bool LiveIntervals::hasRegisterDef(MachineInstr *MI, unsigned Reg) {
1691  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1692    MachineOperand &MO = MI->getOperand(i);
1693    if (MO.isReg() && MO.isDef() &&
1694        mri_->regsOverlap(rep(MO.getReg()), Reg))
1695      return true;
1696  }
1697  return false;
1698}
1699
1700LiveInterval LiveIntervals::createInterval(unsigned reg) {
1701  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
1702                       HUGE_VALF : 0.0F;
1703  return LiveInterval(reg, Weight);
1704}
1705