LiveIntervalAnalysis.cpp revision e8850f476eba1b839b24bd926bab2dfd8b452307
1//===-- LiveIntervals.cpp - Live Interval Analysis ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "LiveIntervals.h"
20#include "llvm/Value.h"
21#include "llvm/Analysis/LoopInfo.h"
22#include "llvm/CodeGen/LiveVariables.h"
23#include "llvm/CodeGen/MachineFrameInfo.h"
24#include "llvm/CodeGen/MachineInstr.h"
25#include "llvm/CodeGen/Passes.h"
26#include "llvm/CodeGen/SSARegMap.h"
27#include "llvm/Target/MRegisterInfo.h"
28#include "llvm/Target/TargetInstrInfo.h"
29#include "llvm/Target/TargetMachine.h"
30#include "Support/CommandLine.h"
31#include "Support/Debug.h"
32#include "Support/Statistic.h"
33#include "Support/STLExtras.h"
34#include "VirtRegMap.h"
35#include <cmath>
36
37using namespace llvm;
38
39namespace {
40    RegisterAnalysis<LiveIntervals> X("liveintervals",
41                                      "Live Interval Analysis");
42
43    Statistic<> numIntervals
44    ("liveintervals", "Number of original intervals");
45
46    Statistic<> numIntervalsAfter
47    ("liveintervals", "Number of intervals after coalescing");
48
49    Statistic<> numJoins
50    ("liveintervals", "Number of interval joins performed");
51
52    Statistic<> numPeep
53    ("liveintervals", "Number of identity moves eliminated after coalescing");
54
55    Statistic<> numFolded
56    ("liveintervals", "Number of loads/stores folded into instructions");
57
58    cl::opt<bool>
59    EnableJoining("join-liveintervals",
60                  cl::desc("Join compatible live intervals"),
61                  cl::init(true));
62};
63
64void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
65{
66    AU.addPreserved<LiveVariables>();
67    AU.addRequired<LiveVariables>();
68    AU.addPreservedID(PHIEliminationID);
69    AU.addRequiredID(PHIEliminationID);
70    AU.addRequiredID(TwoAddressInstructionPassID);
71    AU.addRequired<LoopInfo>();
72    MachineFunctionPass::getAnalysisUsage(AU);
73}
74
75void LiveIntervals::releaseMemory()
76{
77    mi2iMap_.clear();
78    i2miMap_.clear();
79    r2iMap_.clear();
80    r2rMap_.clear();
81    intervals_.clear();
82}
83
84
85/// runOnMachineFunction - Register allocate the whole function
86///
87bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
88    mf_ = &fn;
89    tm_ = &fn.getTarget();
90    mri_ = tm_->getRegisterInfo();
91    lv_ = &getAnalysis<LiveVariables>();
92
93    // number MachineInstrs
94    unsigned miIndex = 0;
95    for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
96         mbb != mbbEnd; ++mbb)
97        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
98             mi != miEnd; ++mi) {
99            bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
100            assert(inserted && "multiple MachineInstr -> index mappings");
101            i2miMap_.push_back(mi);
102            miIndex += InstrSlots::NUM;
103        }
104
105    computeIntervals();
106
107    numIntervals += intervals_.size();
108
109    // join intervals if requested
110    if (EnableJoining) joinIntervals();
111
112    numIntervalsAfter += intervals_.size();
113
114    // perform a final pass over the instructions and compute spill
115    // weights, coalesce virtual registers and remove identity moves
116    const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
117    const TargetInstrInfo& tii = *tm_->getInstrInfo();
118
119    for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
120         mbbi != mbbe; ++mbbi) {
121        MachineBasicBlock* mbb = mbbi;
122        unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
123
124        for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
125             mii != mie; ) {
126            // if the move will be an identity move delete it
127            unsigned srcReg, dstReg;
128            if (tii.isMoveInstr(*mii, srcReg, dstReg) &&
129                rep(srcReg) == rep(dstReg)) {
130                // remove from def list
131                LiveInterval& interval = getOrCreateInterval(rep(dstReg));
132                // remove index -> MachineInstr and
133                // MachineInstr -> index mappings
134                Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
135                if (mi2i != mi2iMap_.end()) {
136                    i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
137                    mi2iMap_.erase(mi2i);
138                }
139                mii = mbbi->erase(mii);
140                ++numPeep;
141            }
142            else {
143                for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
144                    const MachineOperand& mop = mii->getOperand(i);
145                    if (mop.isRegister() && mop.getReg() &&
146                        MRegisterInfo::isVirtualRegister(mop.getReg())) {
147                        // replace register with representative register
148                        unsigned reg = rep(mop.getReg());
149                        mii->SetMachineOperandReg(i, reg);
150
151                        Reg2IntervalMap::iterator r2iit = r2iMap_.find(reg);
152                        assert(r2iit != r2iMap_.end());
153                        r2iit->second->weight +=
154                            (mop.isUse() + mop.isDef()) * pow(10.0F, loopDepth);
155                    }
156                }
157                ++mii;
158            }
159        }
160    }
161
162    DEBUG(std::cerr << "********** INTERVALS **********\n");
163    DEBUG(std::copy(intervals_.begin(), intervals_.end(),
164                    std::ostream_iterator<LiveInterval>(std::cerr, "\n")));
165    DEBUG(std::cerr << "********** MACHINEINSTRS **********\n");
166    DEBUG(
167        for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
168             mbbi != mbbe; ++mbbi) {
169            std::cerr << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
170            for (MachineBasicBlock::iterator mii = mbbi->begin(),
171                     mie = mbbi->end(); mii != mie; ++mii) {
172                std::cerr << getInstructionIndex(mii) << '\t';
173                mii->print(std::cerr, tm_);
174            }
175        });
176
177    return true;
178}
179
180std::vector<LiveInterval*> LiveIntervals::addIntervalsForSpills(
181    const LiveInterval& li,
182    VirtRegMap& vrm,
183    int slot)
184{
185    std::vector<LiveInterval*> added;
186
187    assert(li.weight != HUGE_VAL &&
188           "attempt to spill already spilled interval!");
189
190    DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
191          << li << '\n');
192
193    const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
194
195    for (LiveInterval::Ranges::const_iterator
196              i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
197        unsigned index = getBaseIndex(i->first);
198        unsigned end = getBaseIndex(i->second-1) + InstrSlots::NUM;
199        for (; index != end; index += InstrSlots::NUM) {
200            // skip deleted instructions
201            while (index != end && !getInstructionFromIndex(index))
202                index += InstrSlots::NUM;
203            if (index == end) break;
204
205            MachineBasicBlock::iterator mi = getInstructionFromIndex(index);
206
207        for_operand:
208            for (unsigned i = 0; i != mi->getNumOperands(); ++i) {
209                MachineOperand& mop = mi->getOperand(i);
210                if (mop.isRegister() && mop.getReg() == li.reg) {
211                    if (MachineInstr* fmi =
212                        mri_->foldMemoryOperand(mi, i, slot)) {
213                        lv_->instructionChanged(mi, fmi);
214                        vrm.virtFolded(li.reg, mi, fmi);
215                        mi2iMap_.erase(mi);
216                        i2miMap_[index/InstrSlots::NUM] = fmi;
217                        mi2iMap_[fmi] = index;
218                        MachineBasicBlock& mbb = *mi->getParent();
219                        mi = mbb.insert(mbb.erase(mi), fmi);
220                        ++numFolded;
221                        goto for_operand;
222                    }
223                    else {
224                        // This is tricky. We need to add information in
225                        // the interval about the spill code so we have to
226                        // use our extra load/store slots.
227                        //
228                        // If we have a use we are going to have a load so
229                        // we start the interval from the load slot
230                        // onwards. Otherwise we start from the def slot.
231                        unsigned start = (mop.isUse() ?
232                                          getLoadIndex(index) :
233                                          getDefIndex(index));
234                        // If we have a def we are going to have a store
235                        // right after it so we end the interval after the
236                        // use of the next instruction. Otherwise we end
237                        // after the use of this instruction.
238                        unsigned end = 1 + (mop.isDef() ?
239                                            getStoreIndex(index) :
240                                            getUseIndex(index));
241
242                        // create a new register for this spill
243                        unsigned nReg =
244                            mf_->getSSARegMap()->createVirtualRegister(rc);
245                        mi->SetMachineOperandReg(i, nReg);
246                        vrm.grow();
247                        vrm.assignVirt2StackSlot(nReg, slot);
248                        LiveInterval& nI = getOrCreateInterval(nReg);
249                        assert(nI.empty());
250                        // the spill weight is now infinity as it
251                        // cannot be spilled again
252                        nI.weight = HUGE_VAL;
253                        nI.addRange(start, end);
254                        added.push_back(&nI);
255                        // update live variables
256                        lv_->addVirtualRegisterKilled(nReg, mi);
257                        DEBUG(std::cerr << "\t\t\t\tadded new interval: "
258                              << nI << '\n');
259                    }
260                }
261            }
262        }
263    }
264
265    return added;
266}
267
268void LiveIntervals::printRegName(unsigned reg) const
269{
270    if (MRegisterInfo::isPhysicalRegister(reg))
271        std::cerr << mri_->getName(reg);
272    else
273        std::cerr << "%reg" << reg;
274}
275
276void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
277                                             MachineBasicBlock::iterator mi,
278                                             LiveInterval& interval)
279{
280    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
281    LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
282
283    // Virtual registers may be defined multiple times (due to phi
284    // elimination and 2-addr elimination).  Much of what we do only has to be
285    // done once for the vreg.  We use an empty interval to detect the first
286    // time we see a vreg.
287    if (interval.empty()) {
288       // Get the Idx of the defining instructions.
289       unsigned defIndex = getDefIndex(getInstructionIndex(mi));
290
291       // Loop over all of the blocks that the vreg is defined in.  There are
292       // two cases we have to handle here.  The most common case is a vreg
293       // whose lifetime is contained within a basic block.  In this case there
294       // will be a single kill, in MBB, which comes after the definition.
295       if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
296           // FIXME: what about dead vars?
297           unsigned killIdx;
298           if (vi.Kills[0] != mi)
299               killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
300           else
301               killIdx = defIndex+1;
302
303           // If the kill happens after the definition, we have an intra-block
304           // live range.
305           if (killIdx > defIndex) {
306              assert(vi.AliveBlocks.empty() &&
307                     "Shouldn't be alive across any blocks!");
308              interval.addRange(defIndex, killIdx);
309              DEBUG(std::cerr << "\n");
310              return;
311           }
312       }
313
314       // The other case we handle is when a virtual register lives to the end
315       // of the defining block, potentially live across some blocks, then is
316       // live into some number of blocks, but gets killed.  Start by adding a
317       // range that goes from this definition to the end of the defining block.
318       interval.addRange(defIndex,
319                         getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
320
321       // Iterate over all of the blocks that the variable is completely
322       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
323       // live interval.
324       for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
325           if (vi.AliveBlocks[i]) {
326               MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
327               if (!mbb->empty()) {
328                   interval.addRange(
329                       getInstructionIndex(&mbb->front()),
330                       getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
331               }
332           }
333       }
334
335       // Finally, this virtual register is live from the start of any killing
336       // block to the 'use' slot of the killing instruction.
337       for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
338           MachineInstr *Kill = vi.Kills[i];
339           interval.addRange(getInstructionIndex(Kill->getParent()->begin()),
340                             getUseIndex(getInstructionIndex(Kill))+1);
341       }
342
343    } else {
344       // If this is the second time we see a virtual register definition, it
345       // must be due to phi elimination or two addr elimination.  If this is
346       // the result of two address elimination, then the vreg is the first
347       // operand, and is a def-and-use.
348       if (mi->getOperand(0).isRegister() &&
349           mi->getOperand(0).getReg() == interval.reg &&
350           mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
351         // If this is a two-address definition, just ignore it.
352       } else {
353         // Otherwise, this must be because of phi elimination.  In this case,
354         // the defined value will be live until the end of the basic block it
355         // is defined in.
356         unsigned defIndex = getDefIndex(getInstructionIndex(mi));
357         interval.addRange(defIndex,
358                           getInstructionIndex(&mbb->back()) + InstrSlots::NUM);
359       }
360    }
361
362    DEBUG(std::cerr << '\n');
363}
364
365void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock* mbb,
366                                              MachineBasicBlock::iterator mi,
367                                              LiveInterval& interval)
368{
369    // A physical register cannot be live across basic block, so its
370    // lifetime must end somewhere in its defining basic block.
371    DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
372    typedef LiveVariables::killed_iterator KillIter;
373
374    MachineBasicBlock::iterator e = mbb->end();
375    unsigned baseIndex = getInstructionIndex(mi);
376    unsigned start = getDefIndex(baseIndex);
377    unsigned end = start;
378
379    // If it is not used after definition, it is considered dead at
380    // the instruction defining it. Hence its interval is:
381    // [defSlot(def), defSlot(def)+1)
382    for (KillIter ki = lv_->dead_begin(mi), ke = lv_->dead_end(mi);
383         ki != ke; ++ki) {
384        if (interval.reg == ki->second) {
385            DEBUG(std::cerr << " dead");
386            end = getDefIndex(start) + 1;
387            goto exit;
388        }
389    }
390
391    // If it is not dead on definition, it must be killed by a
392    // subsequent instruction. Hence its interval is:
393    // [defSlot(def), useSlot(kill)+1)
394    do {
395        ++mi;
396        baseIndex += InstrSlots::NUM;
397        for (KillIter ki = lv_->killed_begin(mi), ke = lv_->killed_end(mi);
398             ki != ke; ++ki) {
399            if (interval.reg == ki->second) {
400                DEBUG(std::cerr << " killed");
401                end = getUseIndex(baseIndex) + 1;
402                goto exit;
403            }
404        }
405    } while (mi != e);
406
407exit:
408    assert(start < end && "did not find end of interval?");
409    interval.addRange(start, end);
410    DEBUG(std::cerr << '\n');
411}
412
413void LiveIntervals::handleRegisterDef(MachineBasicBlock* mbb,
414                                      MachineBasicBlock::iterator mi,
415                                      unsigned reg)
416{
417    if (MRegisterInfo::isPhysicalRegister(reg)) {
418        if (lv_->getAllocatablePhysicalRegisters()[reg]) {
419            handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(reg));
420            for (const unsigned* as = mri_->getAliasSet(reg); *as; ++as)
421                handlePhysicalRegisterDef(mbb, mi, getOrCreateInterval(*as));
422        }
423    }
424    else
425        handleVirtualRegisterDef(mbb, mi, getOrCreateInterval(reg));
426}
427
428unsigned LiveIntervals::getInstructionIndex(MachineInstr* instr) const
429{
430    Mi2IndexMap::const_iterator it = mi2iMap_.find(instr);
431    return (it == mi2iMap_.end() ?
432            std::numeric_limits<unsigned>::max() :
433            it->second);
434}
435
436MachineInstr* LiveIntervals::getInstructionFromIndex(unsigned index) const
437{
438    index /= InstrSlots::NUM; // convert index to vector index
439    assert(index < i2miMap_.size() &&
440           "index does not correspond to an instruction");
441    return i2miMap_[index];
442}
443
444/// computeIntervals - computes the live intervals for virtual
445/// registers. for some ordering of the machine instructions [1,N] a
446/// live interval is an interval [i, j) where 1 <= i <= j < N for
447/// which a variable is live
448void LiveIntervals::computeIntervals()
449{
450    DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
451    DEBUG(std::cerr << "********** Function: "
452          << ((Value*)mf_->getFunction())->getName() << '\n');
453
454    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
455         I != E; ++I) {
456        MachineBasicBlock* mbb = I;
457        DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
458
459        for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
460             mi != miEnd; ++mi) {
461            const TargetInstrDescriptor& tid =
462                tm_->getInstrInfo()->get(mi->getOpcode());
463            DEBUG(std::cerr << getInstructionIndex(mi) << "\t";
464                  mi->print(std::cerr, tm_));
465
466            // handle implicit defs
467            for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
468                handleRegisterDef(mbb, mi, *id);
469
470            // handle explicit defs
471            for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
472                MachineOperand& mop = mi->getOperand(i);
473                // handle register defs - build intervals
474                if (mop.isRegister() && mop.getReg() && mop.isDef())
475                    handleRegisterDef(mbb, mi, mop.getReg());
476            }
477        }
478    }
479}
480
481unsigned LiveIntervals::rep(unsigned reg)
482{
483    Reg2RegMap::iterator it = r2rMap_.find(reg);
484    if (it != r2rMap_.end())
485        return it->second = rep(it->second);
486    return reg;
487}
488
489void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
490    DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
491    const TargetInstrInfo& tii = *tm_->getInstrInfo();
492
493    for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
494         mi != mie; ++mi) {
495        const TargetInstrDescriptor& tid = tii.get(mi->getOpcode());
496        DEBUG(std::cerr << getInstructionIndex(mi) << '\t';
497              mi->print(std::cerr, tm_););
498
499        // we only join virtual registers with allocatable
500        // physical registers since we do not have liveness information
501        // on not allocatable physical registers
502        unsigned regA, regB;
503        if (tii.isMoveInstr(*mi, regA, regB) &&
504            (MRegisterInfo::isVirtualRegister(regA) ||
505             lv_->getAllocatablePhysicalRegisters()[regA]) &&
506            (MRegisterInfo::isVirtualRegister(regB) ||
507             lv_->getAllocatablePhysicalRegisters()[regB])) {
508
509            // get representative registers
510            regA = rep(regA);
511            regB = rep(regB);
512
513            // if they are already joined we continue
514            if (regA == regB)
515                continue;
516
517            Reg2IntervalMap::iterator r2iA = r2iMap_.find(regA);
518            assert(r2iA != r2iMap_.end() &&
519                   "Found unknown vreg in 'isMoveInstr' instruction");
520            Reg2IntervalMap::iterator r2iB = r2iMap_.find(regB);
521            assert(r2iB != r2iMap_.end() &&
522                   "Found unknown vreg in 'isMoveInstr' instruction");
523
524            Intervals::iterator intA = r2iA->second;
525            Intervals::iterator intB = r2iB->second;
526
527            // both A and B are virtual registers
528            if (MRegisterInfo::isVirtualRegister(intA->reg) &&
529                MRegisterInfo::isVirtualRegister(intB->reg)) {
530
531                const TargetRegisterClass *rcA, *rcB;
532                rcA = mf_->getSSARegMap()->getRegClass(intA->reg);
533                rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
534                // if they are not of the same register class we continue
535                if (rcA != rcB)
536                    continue;
537
538                // if their intervals do not overlap we join them
539                if (!intB->overlaps(*intA)) {
540                    intA->join(*intB);
541                    r2iB->second = r2iA->second;
542                    r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
543                    intervals_.erase(intB);
544                }
545            } else if (MRegisterInfo::isPhysicalRegister(intA->reg) ^
546                       MRegisterInfo::isPhysicalRegister(intB->reg)) {
547                if (MRegisterInfo::isPhysicalRegister(intB->reg)) {
548                    std::swap(regA, regB);
549                    std::swap(intA, intB);
550                    std::swap(r2iA, r2iB);
551                }
552
553                assert(MRegisterInfo::isPhysicalRegister(intA->reg) &&
554                       MRegisterInfo::isVirtualRegister(intB->reg) &&
555                       "A must be physical and B must be virtual");
556
557                const TargetRegisterClass *rcA, *rcB;
558                rcA = mri_->getRegClass(intA->reg);
559                rcB = mf_->getSSARegMap()->getRegClass(intB->reg);
560                // if they are not of the same register class we continue
561                if (rcA != rcB)
562                    continue;
563
564                if (!intA->overlaps(*intB) &&
565                    !overlapsAliases(*intA, *intB)) {
566                    intA->join(*intB);
567                    r2iB->second = r2iA->second;
568                    r2rMap_.insert(std::make_pair(intB->reg, intA->reg));
569                    intervals_.erase(intB);
570                }
571            }
572        }
573    }
574}
575
576namespace {
577  // DepthMBBCompare - Comparison predicate that sort first based on the loop
578  // depth of the basic block (the unsigned), and then on the MBB number.
579  struct DepthMBBCompare {
580    typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
581    bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
582      if (LHS.first > RHS.first) return true;   // Deeper loops first
583      return LHS.first == RHS.first &&
584             LHS.second->getNumber() < RHS.second->getNumber();
585    }
586  };
587}
588
589void LiveIntervals::joinIntervals() {
590  DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
591
592  const LoopInfo &LI = getAnalysis<LoopInfo>();
593  if (LI.begin() == LI.end()) {
594    // If there are no loops in the function, join intervals in function order.
595    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
596         I != E; ++I)
597      joinIntervalsInMachineBB(I);
598  } else {
599    // Otherwise, join intervals in inner loops before other intervals.
600    // Unfortunately we can't just iterate over loop hierarchy here because
601    // there may be more MBB's than BB's.  Collect MBB's for sorting.
602    std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
603    for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
604         I != E; ++I)
605      MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
606
607    // Sort by loop depth.
608    std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
609
610    // Finally, join intervals in loop nest order.
611    for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
612      joinIntervalsInMachineBB(MBBs[i].second);
613  }
614}
615
616bool LiveIntervals::overlapsAliases(const LiveInterval& lhs,
617                                    const LiveInterval& rhs) const
618{
619    assert(MRegisterInfo::isPhysicalRegister(lhs.reg) &&
620           "first interval must describe a physical register");
621
622    for (const unsigned* as = mri_->getAliasSet(lhs.reg); *as; ++as) {
623        Reg2IntervalMap::const_iterator r2i = r2iMap_.find(*as);
624        assert(r2i != r2iMap_.end() && "alias does not have interval?");
625        if (rhs.overlaps(*r2i->second))
626            return true;
627    }
628
629    return false;
630}
631
632LiveInterval& LiveIntervals::getOrCreateInterval(unsigned reg)
633{
634    Reg2IntervalMap::iterator r2iit = r2iMap_.lower_bound(reg);
635    if (r2iit == r2iMap_.end() || r2iit->first != reg) {
636        intervals_.push_back(LiveInterval(reg));
637        r2iit = r2iMap_.insert(r2iit, std::make_pair(reg, --intervals_.end()));
638    }
639
640    return *r2iit->second;
641}
642
643LiveInterval::LiveInterval(unsigned r)
644    : reg(r),
645      weight((MRegisterInfo::isPhysicalRegister(r) ?  HUGE_VAL : 0.0F))
646{
647}
648
649bool LiveInterval::spilled() const
650{
651    return (weight == HUGE_VAL &&
652            MRegisterInfo::isVirtualRegister(reg));
653}
654
655// An example for liveAt():
656//
657// this = [1,4), liveAt(0) will return false. The instruction defining
658// this spans slots [0,3]. The interval belongs to an spilled
659// definition of the variable it represents. This is because slot 1 is
660// used (def slot) and spans up to slot 3 (store slot).
661//
662bool LiveInterval::liveAt(unsigned index) const
663{
664    Range dummy(index, index+1);
665    Ranges::const_iterator r = std::upper_bound(ranges.begin(),
666                                                ranges.end(),
667                                                dummy);
668    if (r == ranges.begin())
669        return false;
670
671    --r;
672    return index >= r->first && index < r->second;
673}
674
675// An example for overlaps():
676//
677// 0: A = ...
678// 4: B = ...
679// 8: C = A + B ;; last use of A
680//
681// The live intervals should look like:
682//
683// A = [3, 11)
684// B = [7, x)
685// C = [11, y)
686//
687// A->overlaps(C) should return false since we want to be able to join
688// A and C.
689bool LiveInterval::overlaps(const LiveInterval& other) const
690{
691    Ranges::const_iterator i = ranges.begin();
692    Ranges::const_iterator ie = ranges.end();
693    Ranges::const_iterator j = other.ranges.begin();
694    Ranges::const_iterator je = other.ranges.end();
695    if (i->first < j->first) {
696        i = std::upper_bound(i, ie, *j);
697        if (i != ranges.begin()) --i;
698    }
699    else if (j->first < i->first) {
700        j = std::upper_bound(j, je, *i);
701        if (j != other.ranges.begin()) --j;
702    }
703
704    while (i != ie && j != je) {
705        if (i->first == j->first) {
706            return true;
707        }
708        else {
709            if (i->first > j->first) {
710                swap(i, j);
711                swap(ie, je);
712            }
713            assert(i->first < j->first);
714
715            if (i->second > j->first) {
716                return true;
717            }
718            else {
719                ++i;
720            }
721        }
722    }
723
724    return false;
725}
726
727void LiveInterval::addRange(unsigned start, unsigned end)
728{
729    assert(start < end && "Invalid range to add!");
730    DEBUG(std::cerr << " +[" << start << ',' << end << ")");
731    //assert(start < end && "invalid range?");
732    Range range = std::make_pair(start, end);
733    Ranges::iterator it =
734        ranges.insert(std::upper_bound(ranges.begin(), ranges.end(), range),
735                      range);
736
737    it = mergeRangesForward(it);
738    it = mergeRangesBackward(it);
739}
740
741void LiveInterval::join(const LiveInterval& other)
742{
743    DEBUG(std::cerr << "\t\tjoining " << *this << " with " << other);
744    Ranges::iterator cur = ranges.begin();
745
746    for (Ranges::const_iterator i = other.ranges.begin(),
747             e = other.ranges.end(); i != e; ++i) {
748        cur = ranges.insert(std::upper_bound(cur, ranges.end(), *i), *i);
749        cur = mergeRangesForward(cur);
750        cur = mergeRangesBackward(cur);
751    }
752    weight += other.weight;
753    ++numJoins;
754    DEBUG(std::cerr << ".  Result = " << *this << "\n");
755}
756
757LiveInterval::Ranges::iterator LiveInterval::
758mergeRangesForward(Ranges::iterator it)
759{
760    Ranges::iterator n;
761    while ((n = next(it)) != ranges.end()) {
762        if (n->first > it->second)
763            break;
764        it->second = std::max(it->second, n->second);
765        n = ranges.erase(n);
766    }
767    return it;
768}
769
770LiveInterval::Ranges::iterator LiveInterval::
771mergeRangesBackward(Ranges::iterator it)
772{
773    while (it != ranges.begin()) {
774        Ranges::iterator p = prior(it);
775        if (it->first > p->second)
776            break;
777
778        it->first = std::min(it->first, p->first);
779        it->second = std::max(it->second, p->second);
780        it = ranges.erase(p);
781    }
782
783    return it;
784}
785
786std::ostream& llvm::operator<<(std::ostream& os, const LiveInterval& li)
787{
788    os << "%reg" << li.reg << ',' << li.weight;
789    if (li.empty())
790        return os << "EMPTY";
791
792    os << " = ";
793    for (LiveInterval::Ranges::const_iterator
794             i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
795        os << "[" << i->first << "," << i->second << ")";
796    }
797    return os;
798}
799