LiveIntervalAnalysis.cpp revision f0b2535344e8c9e2912da78010918a44c5a18cab
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "regalloc"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "LiveRangeCalc.h"
21#include "llvm/ADT/DenseSet.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Analysis/AliasAnalysis.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineInstr.h"
27#include "llvm/CodeGen/MachineRegisterInfo.h"
28#include "llvm/CodeGen/Passes.h"
29#include "llvm/CodeGen/VirtRegMap.h"
30#include "llvm/IR/Value.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetInstrInfo.h"
36#include "llvm/Target/TargetMachine.h"
37#include "llvm/Target/TargetRegisterInfo.h"
38#include <algorithm>
39#include <cmath>
40#include <limits>
41using namespace llvm;
42
43char LiveIntervals::ID = 0;
44char &llvm::LiveIntervalsID = LiveIntervals::ID;
45INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
46                "Live Interval Analysis", false, false)
47INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
48INITIALIZE_PASS_DEPENDENCY(LiveVariables)
49INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
50INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
51INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
52                "Live Interval Analysis", false, false)
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.setPreservesCFG();
56  AU.addRequired<AliasAnalysis>();
57  AU.addPreserved<AliasAnalysis>();
58  // LiveVariables isn't really required by this analysis, it is only required
59  // here to make sure it is live during TwoAddressInstructionPass and
60  // PHIElimination. This is temporary.
61  AU.addRequired<LiveVariables>();
62  AU.addPreserved<LiveVariables>();
63  AU.addPreservedID(MachineLoopInfoID);
64  AU.addRequiredTransitiveID(MachineDominatorsID);
65  AU.addPreservedID(MachineDominatorsID);
66  AU.addPreserved<SlotIndexes>();
67  AU.addRequiredTransitive<SlotIndexes>();
68  MachineFunctionPass::getAnalysisUsage(AU);
69}
70
71LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
72  DomTree(0), LRCalc(0) {
73  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
74}
75
76LiveIntervals::~LiveIntervals() {
77  delete LRCalc;
78}
79
80void LiveIntervals::releaseMemory() {
81  // Free the live intervals themselves.
82  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
83    delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
84  VirtRegIntervals.clear();
85  RegMaskSlots.clear();
86  RegMaskBits.clear();
87  RegMaskBlocks.clear();
88
89  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
90    delete RegUnitIntervals[i];
91  RegUnitIntervals.clear();
92
93  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
94  VNInfoAllocator.Reset();
95}
96
97/// runOnMachineFunction - Register allocate the whole function
98///
99bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
100  MF = &fn;
101  MRI = &MF->getRegInfo();
102  TM = &fn.getTarget();
103  TRI = TM->getRegisterInfo();
104  TII = TM->getInstrInfo();
105  AA = &getAnalysis<AliasAnalysis>();
106  Indexes = &getAnalysis<SlotIndexes>();
107  DomTree = &getAnalysis<MachineDominatorTree>();
108  if (!LRCalc)
109    LRCalc = new LiveRangeCalc();
110
111  // Allocate space for all virtual registers.
112  VirtRegIntervals.resize(MRI->getNumVirtRegs());
113
114  computeVirtRegs();
115  computeRegMasks();
116  computeLiveInRegUnits();
117
118  DEBUG(dump());
119  return true;
120}
121
122/// print - Implement the dump method.
123void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
124  OS << "********** INTERVALS **********\n";
125
126  // Dump the regunits.
127  for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
128    if (LiveInterval *LI = RegUnitIntervals[i])
129      OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
130
131  // Dump the virtregs.
132  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
133    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
134    if (hasInterval(Reg))
135      OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
136  }
137
138  OS << "RegMasks:";
139  for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
140    OS << ' ' << RegMaskSlots[i];
141  OS << '\n';
142
143  printInstrs(OS);
144}
145
146void LiveIntervals::printInstrs(raw_ostream &OS) const {
147  OS << "********** MACHINEINSTRS **********\n";
148  MF->print(OS, Indexes);
149}
150
151#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
152void LiveIntervals::dumpInstrs() const {
153  printInstrs(dbgs());
154}
155#endif
156
157LiveInterval* LiveIntervals::createInterval(unsigned reg) {
158  float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
159  return new LiveInterval(reg, Weight);
160}
161
162
163/// computeVirtRegInterval - Compute the live interval of a virtual register,
164/// based on defs and uses.
165void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
166  assert(LRCalc && "LRCalc not initialized.");
167  assert(LI->empty() && "Should only compute empty intervals.");
168  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
169  LRCalc->createDeadDefs(LI);
170  LRCalc->extendToUses(LI);
171}
172
173void LiveIntervals::computeVirtRegs() {
174  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
175    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
176    if (MRI->reg_nodbg_empty(Reg))
177      continue;
178    LiveInterval *LI = createInterval(Reg);
179    VirtRegIntervals[Reg] = LI;
180    computeVirtRegInterval(LI);
181  }
182}
183
184void LiveIntervals::computeRegMasks() {
185  RegMaskBlocks.resize(MF->getNumBlockIDs());
186
187  // Find all instructions with regmask operands.
188  for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
189       MBBI != E; ++MBBI) {
190    MachineBasicBlock *MBB = MBBI;
191    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
192    RMB.first = RegMaskSlots.size();
193    for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
194         MI != ME; ++MI)
195      for (MIOperands MO(MI); MO.isValid(); ++MO) {
196        if (!MO->isRegMask())
197          continue;
198          RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
199          RegMaskBits.push_back(MO->getRegMask());
200      }
201    // Compute the number of register mask instructions in this block.
202    RMB.second = RegMaskSlots.size() - RMB.first;
203  }
204}
205
206//===----------------------------------------------------------------------===//
207//                           Register Unit Liveness
208//===----------------------------------------------------------------------===//
209//
210// Fixed interference typically comes from ABI boundaries: Function arguments
211// and return values are passed in fixed registers, and so are exception
212// pointers entering landing pads. Certain instructions require values to be
213// present in specific registers. That is also represented through fixed
214// interference.
215//
216
217/// computeRegUnitInterval - Compute the live interval of a register unit, based
218/// on the uses and defs of aliasing registers.  The interval should be empty,
219/// or contain only dead phi-defs from ABI blocks.
220void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
221  unsigned Unit = LI->reg;
222
223  assert(LRCalc && "LRCalc not initialized.");
224  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
225
226  // The physregs aliasing Unit are the roots and their super-registers.
227  // Create all values as dead defs before extending to uses. Note that roots
228  // may share super-registers. That's OK because createDeadDefs() is
229  // idempotent. It is very rare for a register unit to have multiple roots, so
230  // uniquing super-registers is probably not worthwhile.
231  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
232    unsigned Root = *Roots;
233    if (!MRI->reg_empty(Root))
234      LRCalc->createDeadDefs(LI, Root);
235    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
236      if (!MRI->reg_empty(*Supers))
237        LRCalc->createDeadDefs(LI, *Supers);
238    }
239  }
240
241  // Now extend LI to reach all uses.
242  // Ignore uses of reserved registers. We only track defs of those.
243  for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
244    unsigned Root = *Roots;
245    if (!MRI->isReserved(Root) && !MRI->reg_empty(Root))
246      LRCalc->extendToUses(LI, Root);
247    for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
248      unsigned Reg = *Supers;
249      if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
250        LRCalc->extendToUses(LI, Reg);
251    }
252  }
253}
254
255
256/// computeLiveInRegUnits - Precompute the live ranges of any register units
257/// that are live-in to an ABI block somewhere. Register values can appear
258/// without a corresponding def when entering the entry block or a landing pad.
259///
260void LiveIntervals::computeLiveInRegUnits() {
261  RegUnitIntervals.resize(TRI->getNumRegUnits());
262  DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
263
264  // Keep track of the intervals allocated.
265  SmallVector<LiveInterval*, 8> NewIntvs;
266
267  // Check all basic blocks for live-ins.
268  for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
269       MFI != MFE; ++MFI) {
270    const MachineBasicBlock *MBB = MFI;
271
272    // We only care about ABI blocks: Entry + landing pads.
273    if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
274      continue;
275
276    // Create phi-defs at Begin for all live-in registers.
277    SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
278    DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
279    for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
280         LIE = MBB->livein_end(); LII != LIE; ++LII) {
281      for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
282        unsigned Unit = *Units;
283        LiveInterval *Intv = RegUnitIntervals[Unit];
284        if (!Intv) {
285          Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
286          NewIntvs.push_back(Intv);
287        }
288        VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
289        (void)VNI;
290        DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
291      }
292    }
293    DEBUG(dbgs() << '\n');
294  }
295  DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
296
297  // Compute the 'normal' part of the intervals.
298  for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
299    computeRegUnitInterval(NewIntvs[i]);
300}
301
302
303/// shrinkToUses - After removing some uses of a register, shrink its live
304/// range to just the remaining uses. This method does not compute reaching
305/// defs for new uses, and it doesn't remove dead defs.
306bool LiveIntervals::shrinkToUses(LiveInterval *li,
307                                 SmallVectorImpl<MachineInstr*> *dead) {
308  DEBUG(dbgs() << "Shrink: " << *li << '\n');
309  assert(TargetRegisterInfo::isVirtualRegister(li->reg)
310         && "Can only shrink virtual registers");
311  // Find all the values used, including PHI kills.
312  SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
313
314  // Blocks that have already been added to WorkList as live-out.
315  SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
316
317  // Visit all instructions reading li->reg.
318  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
319       MachineInstr *UseMI = I.skipInstruction();) {
320    if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
321      continue;
322    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
323    LiveRangeQuery LRQ(*li, Idx);
324    VNInfo *VNI = LRQ.valueIn();
325    if (!VNI) {
326      // This shouldn't happen: readsVirtualRegister returns true, but there is
327      // no live value. It is likely caused by a target getting <undef> flags
328      // wrong.
329      DEBUG(dbgs() << Idx << '\t' << *UseMI
330                   << "Warning: Instr claims to read non-existent value in "
331                    << *li << '\n');
332      continue;
333    }
334    // Special case: An early-clobber tied operand reads and writes the
335    // register one slot early.
336    if (VNInfo *DefVNI = LRQ.valueDefined())
337      Idx = DefVNI->def;
338
339    WorkList.push_back(std::make_pair(Idx, VNI));
340  }
341
342  // Create a new live interval with only minimal live segments per def.
343  LiveInterval NewLI(li->reg, 0);
344  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
345       I != E; ++I) {
346    VNInfo *VNI = *I;
347    if (VNI->isUnused())
348      continue;
349    NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
350  }
351
352  // Keep track of the PHIs that are in use.
353  SmallPtrSet<VNInfo*, 8> UsedPHIs;
354
355  // Extend intervals to reach all uses in WorkList.
356  while (!WorkList.empty()) {
357    SlotIndex Idx = WorkList.back().first;
358    VNInfo *VNI = WorkList.back().second;
359    WorkList.pop_back();
360    const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
361    SlotIndex BlockStart = getMBBStartIdx(MBB);
362
363    // Extend the live range for VNI to be live at Idx.
364    if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
365      (void)ExtVNI;
366      assert(ExtVNI == VNI && "Unexpected existing value number");
367      // Is this a PHIDef we haven't seen before?
368      if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
369        continue;
370      // The PHI is live, make sure the predecessors are live-out.
371      for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
372           PE = MBB->pred_end(); PI != PE; ++PI) {
373        if (!LiveOut.insert(*PI))
374          continue;
375        SlotIndex Stop = getMBBEndIdx(*PI);
376        // A predecessor is not required to have a live-out value for a PHI.
377        if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
378          WorkList.push_back(std::make_pair(Stop, PVNI));
379      }
380      continue;
381    }
382
383    // VNI is live-in to MBB.
384    DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
385    NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
386
387    // Make sure VNI is live-out from the predecessors.
388    for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
389         PE = MBB->pred_end(); PI != PE; ++PI) {
390      if (!LiveOut.insert(*PI))
391        continue;
392      SlotIndex Stop = getMBBEndIdx(*PI);
393      assert(li->getVNInfoBefore(Stop) == VNI &&
394             "Wrong value out of predecessor");
395      WorkList.push_back(std::make_pair(Stop, VNI));
396    }
397  }
398
399  // Handle dead values.
400  bool CanSeparate = false;
401  for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
402       I != E; ++I) {
403    VNInfo *VNI = *I;
404    if (VNI->isUnused())
405      continue;
406    LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
407    assert(LII != NewLI.end() && "Missing live range for PHI");
408    if (LII->end != VNI->def.getDeadSlot())
409      continue;
410    if (VNI->isPHIDef()) {
411      // This is a dead PHI. Remove it.
412      VNI->markUnused();
413      NewLI.removeRange(*LII);
414      DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
415      CanSeparate = true;
416    } else {
417      // This is a dead def. Make sure the instruction knows.
418      MachineInstr *MI = getInstructionFromIndex(VNI->def);
419      assert(MI && "No instruction defining live value");
420      MI->addRegisterDead(li->reg, TRI);
421      if (dead && MI->allDefsAreDead()) {
422        DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
423        dead->push_back(MI);
424      }
425    }
426  }
427
428  // Move the trimmed ranges back.
429  li->ranges.swap(NewLI.ranges);
430  DEBUG(dbgs() << "Shrunk: " << *li << '\n');
431  return CanSeparate;
432}
433
434void LiveIntervals::extendToIndices(LiveInterval *LI,
435                                    ArrayRef<SlotIndex> Indices) {
436  assert(LRCalc && "LRCalc not initialized.");
437  LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
438  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
439    LRCalc->extend(LI, Indices[i]);
440}
441
442void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
443                               SmallVectorImpl<SlotIndex> *EndPoints) {
444  LiveRangeQuery LRQ(*LI, Kill);
445  VNInfo *VNI = LRQ.valueOut();
446  if (!VNI)
447    return;
448
449  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
450  SlotIndex MBBStart, MBBEnd;
451  tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
452
453  // If VNI isn't live out from KillMBB, the value is trivially pruned.
454  if (LRQ.endPoint() < MBBEnd) {
455    LI->removeRange(Kill, LRQ.endPoint());
456    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
457    return;
458  }
459
460  // VNI is live out of KillMBB.
461  LI->removeRange(Kill, MBBEnd);
462  if (EndPoints) EndPoints->push_back(MBBEnd);
463
464  // Find all blocks that are reachable from KillMBB without leaving VNI's live
465  // range. It is possible that KillMBB itself is reachable, so start a DFS
466  // from each successor.
467  typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
468  VisitedTy Visited;
469  for (MachineBasicBlock::succ_iterator
470       SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
471       SuccI != SuccE; ++SuccI) {
472    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
473         I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
474         I != E;) {
475      MachineBasicBlock *MBB = *I;
476
477      // Check if VNI is live in to MBB.
478      tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
479      LiveRangeQuery LRQ(*LI, MBBStart);
480      if (LRQ.valueIn() != VNI) {
481        // This block isn't part of the VNI live range. Prune the search.
482        I.skipChildren();
483        continue;
484      }
485
486      // Prune the search if VNI is killed in MBB.
487      if (LRQ.endPoint() < MBBEnd) {
488        LI->removeRange(MBBStart, LRQ.endPoint());
489        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
490        I.skipChildren();
491        continue;
492      }
493
494      // VNI is live through MBB.
495      LI->removeRange(MBBStart, MBBEnd);
496      if (EndPoints) EndPoints->push_back(MBBEnd);
497      ++I;
498    }
499  }
500}
501
502//===----------------------------------------------------------------------===//
503// Register allocator hooks.
504//
505
506void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
507  // Keep track of regunit ranges.
508  SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
509
510  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
511    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
512    if (MRI->reg_nodbg_empty(Reg))
513      continue;
514    LiveInterval *LI = &getInterval(Reg);
515    if (LI->empty())
516      continue;
517
518    // Find the regunit intervals for the assigned register. They may overlap
519    // the virtual register live range, cancelling any kills.
520    RU.clear();
521    for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
522         ++Units) {
523      LiveInterval *RUInt = &getRegUnit(*Units);
524      if (RUInt->empty())
525        continue;
526      RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
527    }
528
529    // Every instruction that kills Reg corresponds to a live range end point.
530    for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
531         ++RI) {
532      // A block index indicates an MBB edge.
533      if (RI->end.isBlock())
534        continue;
535      MachineInstr *MI = getInstructionFromIndex(RI->end);
536      if (!MI)
537        continue;
538
539      // Check if any of the reguints are live beyond the end of RI. That could
540      // happen when a physreg is defined as a copy of a virtreg:
541      //
542      //   %EAX = COPY %vreg5
543      //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
544      //   BAR %EAX<kill>
545      //
546      // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
547      bool CancelKill = false;
548      for (unsigned u = 0, e = RU.size(); u != e; ++u) {
549        LiveInterval *RInt = RU[u].first;
550        LiveInterval::iterator &I = RU[u].second;
551        if (I == RInt->end())
552          continue;
553        I = RInt->advanceTo(I, RI->end);
554        if (I == RInt->end() || I->start >= RI->end)
555          continue;
556        // I is overlapping RI.
557        CancelKill = true;
558        break;
559      }
560      if (CancelKill)
561        MI->clearRegisterKills(Reg, NULL);
562      else
563        MI->addRegisterKilled(Reg, NULL);
564    }
565  }
566}
567
568MachineBasicBlock*
569LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
570  // A local live range must be fully contained inside the block, meaning it is
571  // defined and killed at instructions, not at block boundaries. It is not
572  // live in or or out of any block.
573  //
574  // It is technically possible to have a PHI-defined live range identical to a
575  // single block, but we are going to return false in that case.
576
577  SlotIndex Start = LI.beginIndex();
578  if (Start.isBlock())
579    return NULL;
580
581  SlotIndex Stop = LI.endIndex();
582  if (Stop.isBlock())
583    return NULL;
584
585  // getMBBFromIndex doesn't need to search the MBB table when both indexes
586  // belong to proper instructions.
587  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
588  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
589  return MBB1 == MBB2 ? MBB1 : NULL;
590}
591
592bool
593LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
594  for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
595       I != E; ++I) {
596    const VNInfo *PHI = *I;
597    if (PHI->isUnused() || !PHI->isPHIDef())
598      continue;
599    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
600    // Conservatively return true instead of scanning huge predecessor lists.
601    if (PHIMBB->pred_size() > 100)
602      return true;
603    for (MachineBasicBlock::const_pred_iterator
604         PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
605      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
606        return true;
607  }
608  return false;
609}
610
611float
612LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
613  // Limit the loop depth ridiculousness.
614  if (loopDepth > 200)
615    loopDepth = 200;
616
617  // The loop depth is used to roughly estimate the number of times the
618  // instruction is executed. Something like 10^d is simple, but will quickly
619  // overflow a float. This expression behaves like 10^d for small d, but is
620  // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
621  // headroom before overflow.
622  // By the way, powf() might be unavailable here. For consistency,
623  // We may take pow(double,double).
624  float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
625
626  return (isDef + isUse) * lc;
627}
628
629LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
630                                                  MachineInstr* startInst) {
631  LiveInterval& Interval = getOrCreateInterval(reg);
632  VNInfo* VN = Interval.getNextValue(
633    SlotIndex(getInstructionIndex(startInst).getRegSlot()),
634    getVNInfoAllocator());
635  LiveRange LR(
636     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
637     getMBBEndIdx(startInst->getParent()), VN);
638  Interval.addRange(LR);
639
640  return LR;
641}
642
643
644//===----------------------------------------------------------------------===//
645//                          Register mask functions
646//===----------------------------------------------------------------------===//
647
648bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
649                                             BitVector &UsableRegs) {
650  if (LI.empty())
651    return false;
652  LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
653
654  // Use a smaller arrays for local live ranges.
655  ArrayRef<SlotIndex> Slots;
656  ArrayRef<const uint32_t*> Bits;
657  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
658    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
659    Bits = getRegMaskBitsInBlock(MBB->getNumber());
660  } else {
661    Slots = getRegMaskSlots();
662    Bits = getRegMaskBits();
663  }
664
665  // We are going to enumerate all the register mask slots contained in LI.
666  // Start with a binary search of RegMaskSlots to find a starting point.
667  ArrayRef<SlotIndex>::iterator SlotI =
668    std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
669  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
670
671  // No slots in range, LI begins after the last call.
672  if (SlotI == SlotE)
673    return false;
674
675  bool Found = false;
676  for (;;) {
677    assert(*SlotI >= LiveI->start);
678    // Loop over all slots overlapping this segment.
679    while (*SlotI < LiveI->end) {
680      // *SlotI overlaps LI. Collect mask bits.
681      if (!Found) {
682        // This is the first overlap. Initialize UsableRegs to all ones.
683        UsableRegs.clear();
684        UsableRegs.resize(TRI->getNumRegs(), true);
685        Found = true;
686      }
687      // Remove usable registers clobbered by this mask.
688      UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
689      if (++SlotI == SlotE)
690        return Found;
691    }
692    // *SlotI is beyond the current LI segment.
693    LiveI = LI.advanceTo(LiveI, *SlotI);
694    if (LiveI == LiveE)
695      return Found;
696    // Advance SlotI until it overlaps.
697    while (*SlotI < LiveI->start)
698      if (++SlotI == SlotE)
699        return Found;
700  }
701}
702
703//===----------------------------------------------------------------------===//
704//                         IntervalUpdate class.
705//===----------------------------------------------------------------------===//
706
707// HMEditor is a toolkit used by handleMove to trim or extend live intervals.
708class LiveIntervals::HMEditor {
709private:
710  LiveIntervals& LIS;
711  const MachineRegisterInfo& MRI;
712  const TargetRegisterInfo& TRI;
713  SlotIndex OldIdx;
714  SlotIndex NewIdx;
715  SmallPtrSet<LiveInterval*, 8> Updated;
716  bool UpdateFlags;
717
718public:
719  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
720           const TargetRegisterInfo& TRI,
721           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
722    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
723      UpdateFlags(UpdateFlags) {}
724
725  // FIXME: UpdateFlags is a workaround that creates live intervals for all
726  // physregs, even those that aren't needed for regalloc, in order to update
727  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
728  // flags, and postRA passes will use a live register utility instead.
729  LiveInterval *getRegUnitLI(unsigned Unit) {
730    if (UpdateFlags)
731      return &LIS.getRegUnit(Unit);
732    return LIS.getCachedRegUnit(Unit);
733  }
734
735  /// Update all live ranges touched by MI, assuming a move from OldIdx to
736  /// NewIdx.
737  void updateAllRanges(MachineInstr *MI) {
738    DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
739    bool hasRegMask = false;
740    for (MIOperands MO(MI); MO.isValid(); ++MO) {
741      if (MO->isRegMask())
742        hasRegMask = true;
743      if (!MO->isReg())
744        continue;
745      // Aggressively clear all kill flags.
746      // They are reinserted by VirtRegRewriter.
747      if (MO->isUse())
748        MO->setIsKill(false);
749
750      unsigned Reg = MO->getReg();
751      if (!Reg)
752        continue;
753      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
754        updateRange(LIS.getInterval(Reg));
755        continue;
756      }
757
758      // For physregs, only update the regunits that actually have a
759      // precomputed live range.
760      for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
761        if (LiveInterval *LI = getRegUnitLI(*Units))
762          updateRange(*LI);
763    }
764    if (hasRegMask)
765      updateRegMaskSlots();
766  }
767
768private:
769  /// Update a single live range, assuming an instruction has been moved from
770  /// OldIdx to NewIdx.
771  void updateRange(LiveInterval &LI) {
772    if (!Updated.insert(&LI))
773      return;
774    DEBUG({
775      dbgs() << "     ";
776      if (TargetRegisterInfo::isVirtualRegister(LI.reg))
777        dbgs() << PrintReg(LI.reg);
778      else
779        dbgs() << PrintRegUnit(LI.reg, &TRI);
780      dbgs() << ":\t" << LI << '\n';
781    });
782    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
783      handleMoveDown(LI);
784    else
785      handleMoveUp(LI);
786    DEBUG(dbgs() << "        -->\t" << LI << '\n');
787    LI.verify();
788  }
789
790  /// Update LI to reflect an instruction has been moved downwards from OldIdx
791  /// to NewIdx.
792  ///
793  /// 1. Live def at OldIdx:
794  ///    Move def to NewIdx, assert endpoint after NewIdx.
795  ///
796  /// 2. Live def at OldIdx, killed at NewIdx:
797  ///    Change to dead def at NewIdx.
798  ///    (Happens when bundling def+kill together).
799  ///
800  /// 3. Dead def at OldIdx:
801  ///    Move def to NewIdx, possibly across another live value.
802  ///
803  /// 4. Def at OldIdx AND at NewIdx:
804  ///    Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
805  ///    (Happens when bundling multiple defs together).
806  ///
807  /// 5. Value read at OldIdx, killed before NewIdx:
808  ///    Extend kill to NewIdx.
809  ///
810  void handleMoveDown(LiveInterval &LI) {
811    // First look for a kill at OldIdx.
812    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
813    LiveInterval::iterator E = LI.end();
814    // Is LI even live at OldIdx?
815    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
816      return;
817
818    // Handle a live-in value.
819    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
820      bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
821      // If the live-in value already extends to NewIdx, there is nothing to do.
822      if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
823        return;
824      // Aggressively remove all kill flags from the old kill point.
825      // Kill flags shouldn't be used while live intervals exist, they will be
826      // reinserted by VirtRegRewriter.
827      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
828        for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
829          if (MO->isReg() && MO->isUse())
830            MO->setIsKill(false);
831      // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
832      // overlapping ranges. Case 5 above.
833      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
834      // If this was a kill, there may also be a def. Otherwise we're done.
835      if (!isKill)
836        return;
837      ++I;
838    }
839
840    // Check for a def at OldIdx.
841    if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
842      return;
843    // We have a def at OldIdx.
844    VNInfo *DefVNI = I->valno;
845    assert(DefVNI->def == I->start && "Inconsistent def");
846    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
847    // If the defined value extends beyond NewIdx, just move the def down.
848    // This is case 1 above.
849    if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
850      I->start = DefVNI->def;
851      return;
852    }
853    // The remaining possibilities are now:
854    // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
855    // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
856    // In either case, it is possible that there is an existing def at NewIdx.
857    assert((I->end == OldIdx.getDeadSlot() ||
858            SlotIndex::isSameInstr(I->end, NewIdx)) &&
859            "Cannot move def below kill");
860    LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
861    if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
862      // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
863      // coalesced into that value.
864      assert(NewI->valno != DefVNI && "Multiple defs of value?");
865      LI.removeValNo(DefVNI);
866      return;
867    }
868    // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
869    // If the def at OldIdx was dead, we allow it to be moved across other LI
870    // values. The new range should be placed immediately before NewI, move any
871    // intermediate ranges up.
872    assert(NewI != I && "Inconsistent iterators");
873    std::copy(llvm::next(I), NewI, I);
874    *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
875  }
876
877  /// Update LI to reflect an instruction has been moved upwards from OldIdx
878  /// to NewIdx.
879  ///
880  /// 1. Live def at OldIdx:
881  ///    Hoist def to NewIdx.
882  ///
883  /// 2. Dead def at OldIdx:
884  ///    Hoist def+end to NewIdx, possibly move across other values.
885  ///
886  /// 3. Dead def at OldIdx AND existing def at NewIdx:
887  ///    Remove value defined at OldIdx, coalescing it with existing value.
888  ///
889  /// 4. Live def at OldIdx AND existing def at NewIdx:
890  ///    Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
891  ///    (Happens when bundling multiple defs together).
892  ///
893  /// 5. Value killed at OldIdx:
894  ///    Hoist kill to NewIdx, then scan for last kill between NewIdx and
895  ///    OldIdx.
896  ///
897  void handleMoveUp(LiveInterval &LI) {
898    // First look for a kill at OldIdx.
899    LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
900    LiveInterval::iterator E = LI.end();
901    // Is LI even live at OldIdx?
902    if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
903      return;
904
905    // Handle a live-in value.
906    if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
907      // If the live-in value isn't killed here, there is nothing to do.
908      if (!SlotIndex::isSameInstr(OldIdx, I->end))
909        return;
910      // Adjust I->end to end at NewIdx. If we are hoisting a kill above
911      // another use, we need to search for that use. Case 5 above.
912      I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
913      ++I;
914      // If OldIdx also defines a value, there couldn't have been another use.
915      if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
916        // No def, search for the new kill.
917        // This can never be an early clobber kill since there is no def.
918        llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
919        return;
920      }
921    }
922
923    // Now deal with the def at OldIdx.
924    assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
925    VNInfo *DefVNI = I->valno;
926    assert(DefVNI->def == I->start && "Inconsistent def");
927    DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
928
929    // Check for an existing def at NewIdx.
930    LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
931    if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
932      assert(NewI->valno != DefVNI && "Same value defined more than once?");
933      // There is an existing def at NewIdx.
934      if (I->end.isDead()) {
935        // Case 3: Remove the dead def at OldIdx.
936        LI.removeValNo(DefVNI);
937        return;
938      }
939      // Case 4: Replace def at NewIdx with live def at OldIdx.
940      I->start = DefVNI->def;
941      LI.removeValNo(NewI->valno);
942      return;
943    }
944
945    // There is no existing def at NewIdx. Hoist DefVNI.
946    if (!I->end.isDead()) {
947      // Leave the end point of a live def.
948      I->start = DefVNI->def;
949      return;
950    }
951
952    // DefVNI is a dead def. It may have been moved across other values in LI,
953    // so move I up to NewI. Slide [NewI;I) down one position.
954    std::copy_backward(NewI, I, llvm::next(I));
955    *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
956  }
957
958  void updateRegMaskSlots() {
959    SmallVectorImpl<SlotIndex>::iterator RI =
960      std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
961                       OldIdx);
962    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
963           "No RegMask at OldIdx.");
964    *RI = NewIdx.getRegSlot();
965    assert((RI == LIS.RegMaskSlots.begin() ||
966            SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
967            "Cannot move regmask instruction above another call");
968    assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
969            SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
970            "Cannot move regmask instruction below another call");
971  }
972
973  // Return the last use of reg between NewIdx and OldIdx.
974  SlotIndex findLastUseBefore(unsigned Reg) {
975    SlotIndex LastUse = NewIdx;
976
977    if (TargetRegisterInfo::isVirtualRegister(Reg)) {
978      for (MachineRegisterInfo::use_nodbg_iterator
979             UI = MRI.use_nodbg_begin(Reg),
980             UE = MRI.use_nodbg_end();
981           UI != UE; UI.skipInstruction()) {
982        const MachineInstr* MI = &*UI;
983        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
984        if (InstSlot > LastUse && InstSlot < OldIdx)
985          LastUse = InstSlot;
986      }
987    } else {
988      MachineInstr* MI = LIS.getSlotIndexes()->getInstructionFromIndex(NewIdx);
989      MachineBasicBlock::iterator MII(MI);
990      ++MII;
991      MachineBasicBlock* MBB = MI->getParent();
992      for (; MII != MBB->end(); ++MII){
993        if (MII->isDebugValue())
994          continue;
995        if (LIS.getInstructionIndex(MII) < OldIdx)
996          break;
997        for (MachineInstr::mop_iterator MOI = MII->operands_begin(),
998                                        MOE = MII->operands_end();
999             MOI != MOE; ++MOI) {
1000          const MachineOperand& mop = *MOI;
1001          if (!mop.isReg() || mop.getReg() == 0 ||
1002              TargetRegisterInfo::isVirtualRegister(mop.getReg()))
1003            continue;
1004
1005          if (TRI.hasRegUnit(mop.getReg(), Reg))
1006            LastUse = LIS.getInstructionIndex(MII);
1007        }
1008      }
1009    }
1010    return LastUse;
1011  }
1012};
1013
1014void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1015  assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1016  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1017  Indexes->removeMachineInstrFromMaps(MI);
1018  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1019  assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1020         OldIndex < getMBBEndIdx(MI->getParent()) &&
1021         "Cannot handle moves across basic block boundaries.");
1022
1023  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1024  HME.updateAllRanges(MI);
1025}
1026
1027void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1028                                         MachineInstr* BundleStart,
1029                                         bool UpdateFlags) {
1030  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1031  SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1032  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1033  HME.updateAllRanges(MI);
1034}
1035
1036void
1037LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1038                                     MachineBasicBlock::reverse_iterator RBegin,
1039                                     MachineBasicBlock::reverse_iterator REnd,
1040                                     SmallVectorImpl<unsigned> &OrigRegs) {
1041  for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1042    unsigned Reg = OrigRegs[i];
1043    if (!TargetRegisterInfo::isVirtualRegister(Reg))
1044      continue;
1045
1046    LiveInterval &LI = getInterval(Reg);
1047    SlotIndex startIdx = (REnd == MBB->rend()) ? getMBBStartIdx(MBB)
1048                                               : getInstructionIndex(&*REnd);
1049    for (MachineBasicBlock::reverse_iterator I = RBegin; I != REnd; ++I) {
1050      MachineInstr *MI = &*I;
1051      SlotIndex instrIdx = getInstructionIndex(MI);
1052
1053      for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1054           OE = MI->operands_end(); OI != OE; ++OI) {
1055        const MachineOperand &MO = *OI;
1056        if (!MO.isReg() || MO.getReg() != Reg)
1057          continue;
1058
1059        assert(MO.isUse() && "Register defs are not yet supported.");
1060
1061        if (!LI.liveAt(instrIdx)) {
1062          LiveRange *LR = LI.getLiveRangeContaining(startIdx.getRegSlot());
1063          assert(LR && "Used registers must be live-in.");
1064          LR->end = instrIdx.getRegSlot();
1065          break;
1066        }
1067      }
1068    }
1069  }
1070}
1071