LiveIntervalAnalysis.cpp revision fa451ed258e7958ec862a98701204b30a7f87aeb
1//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveInterval analysis pass which is used
11// by the Linear Scan Register allocator. This pass linearizes the
12// basic blocks of the function in DFS order and uses the
13// LiveVariables pass to conservatively compute live intervals for
14// each virtual and physical register.
15//
16//===----------------------------------------------------------------------===//
17
18#define DEBUG_TYPE "liveintervals"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "VirtRegMap.h"
21#include "llvm/Value.h"
22#include "llvm/Analysis/LoopInfo.h"
23#include "llvm/CodeGen/LiveVariables.h"
24#include "llvm/CodeGen/MachineFrameInfo.h"
25#include "llvm/CodeGen/MachineInstr.h"
26#include "llvm/CodeGen/Passes.h"
27#include "llvm/CodeGen/SSARegMap.h"
28#include "llvm/Target/MRegisterInfo.h"
29#include "llvm/Target/TargetInstrInfo.h"
30#include "llvm/Target/TargetMachine.h"
31#include "llvm/Support/CommandLine.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/ADT/Statistic.h"
34#include "llvm/ADT/STLExtras.h"
35#include <algorithm>
36#include <cmath>
37using namespace llvm;
38
39namespace {
40  // Hidden options for help debugging.
41  cl::opt<bool> DisableReMat("disable-rematerialization",
42                              cl::init(false), cl::Hidden);
43}
44
45STATISTIC(numIntervals, "Number of original intervals");
46STATISTIC(numIntervalsAfter, "Number of intervals after coalescing");
47STATISTIC(numFolded   , "Number of loads/stores folded into instructions");
48
49char LiveIntervals::ID = 0;
50namespace {
51  RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
52}
53
54void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
55  AU.addPreserved<LiveVariables>();
56  AU.addRequired<LiveVariables>();
57  AU.addPreservedID(PHIEliminationID);
58  AU.addRequiredID(PHIEliminationID);
59  AU.addRequiredID(TwoAddressInstructionPassID);
60  AU.addRequired<LoopInfo>();
61  MachineFunctionPass::getAnalysisUsage(AU);
62}
63
64void LiveIntervals::releaseMemory() {
65  mi2iMap_.clear();
66  i2miMap_.clear();
67  r2iMap_.clear();
68  // Release VNInfo memroy regions after all VNInfo objects are dtor'd.
69  VNInfoAllocator.Reset();
70  for (unsigned i = 0, e = ClonedMIs.size(); i != e; ++i)
71    delete ClonedMIs[i];
72}
73
74/// runOnMachineFunction - Register allocate the whole function
75///
76bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
77  mf_ = &fn;
78  tm_ = &fn.getTarget();
79  mri_ = tm_->getRegisterInfo();
80  tii_ = tm_->getInstrInfo();
81  lv_ = &getAnalysis<LiveVariables>();
82  allocatableRegs_ = mri_->getAllocatableSet(fn);
83
84  // Number MachineInstrs and MachineBasicBlocks.
85  // Initialize MBB indexes to a sentinal.
86  MBB2IdxMap.resize(mf_->getNumBlockIDs(), std::make_pair(~0U,~0U));
87
88  unsigned MIIndex = 0;
89  for (MachineFunction::iterator MBB = mf_->begin(), E = mf_->end();
90       MBB != E; ++MBB) {
91    unsigned StartIdx = MIIndex;
92
93    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
94         I != E; ++I) {
95      bool inserted = mi2iMap_.insert(std::make_pair(I, MIIndex)).second;
96      assert(inserted && "multiple MachineInstr -> index mappings");
97      i2miMap_.push_back(I);
98      MIIndex += InstrSlots::NUM;
99    }
100
101    // Set the MBB2IdxMap entry for this MBB.
102    MBB2IdxMap[MBB->getNumber()] = std::make_pair(StartIdx, MIIndex - 1);
103  }
104
105  computeIntervals();
106
107  numIntervals += getNumIntervals();
108
109  DOUT << "********** INTERVALS **********\n";
110  for (iterator I = begin(), E = end(); I != E; ++I) {
111    I->second.print(DOUT, mri_);
112    DOUT << "\n";
113  }
114
115  numIntervalsAfter += getNumIntervals();
116  DEBUG(dump());
117  return true;
118}
119
120/// print - Implement the dump method.
121void LiveIntervals::print(std::ostream &O, const Module* ) const {
122  O << "********** INTERVALS **********\n";
123  for (const_iterator I = begin(), E = end(); I != E; ++I) {
124    I->second.print(DOUT, mri_);
125    DOUT << "\n";
126  }
127
128  O << "********** MACHINEINSTRS **********\n";
129  for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
130       mbbi != mbbe; ++mbbi) {
131    O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
132    for (MachineBasicBlock::iterator mii = mbbi->begin(),
133           mie = mbbi->end(); mii != mie; ++mii) {
134      O << getInstructionIndex(mii) << '\t' << *mii;
135    }
136  }
137}
138
139// Not called?
140/// CreateNewLiveInterval - Create a new live interval with the given live
141/// ranges. The new live interval will have an infinite spill weight.
142LiveInterval&
143LiveIntervals::CreateNewLiveInterval(const LiveInterval *LI,
144                                     const std::vector<LiveRange> &LRs) {
145  const TargetRegisterClass *RC = mf_->getSSARegMap()->getRegClass(LI->reg);
146
147  // Create a new virtual register for the spill interval.
148  unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(RC);
149
150  // Replace the old virtual registers in the machine operands with the shiny
151  // new one.
152  for (std::vector<LiveRange>::const_iterator
153         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
154    unsigned Index = getBaseIndex(I->start);
155    unsigned End = getBaseIndex(I->end - 1) + InstrSlots::NUM;
156
157    for (; Index != End; Index += InstrSlots::NUM) {
158      // Skip deleted instructions
159      while (Index != End && !getInstructionFromIndex(Index))
160        Index += InstrSlots::NUM;
161
162      if (Index == End) break;
163
164      MachineInstr *MI = getInstructionFromIndex(Index);
165
166      for (unsigned J = 0, e = MI->getNumOperands(); J != e; ++J) {
167        MachineOperand &MOp = MI->getOperand(J);
168        if (MOp.isRegister() && MOp.getReg() == LI->reg)
169          MOp.setReg(NewVReg);
170      }
171    }
172  }
173
174  LiveInterval &NewLI = getOrCreateInterval(NewVReg);
175
176  // The spill weight is now infinity as it cannot be spilled again
177  NewLI.weight = float(HUGE_VAL);
178
179  for (std::vector<LiveRange>::const_iterator
180         I = LRs.begin(), E = LRs.end(); I != E; ++I) {
181    DOUT << "  Adding live range " << *I << " to new interval\n";
182    NewLI.addRange(*I);
183  }
184
185  DOUT << "Created new live interval " << NewLI << "\n";
186  return NewLI;
187}
188
189/// isReDefinedByTwoAddr - Returns true if the Reg re-definition is due to
190/// two addr elimination.
191static bool isReDefinedByTwoAddr(MachineInstr *MI, unsigned Reg,
192                                const TargetInstrInfo *TII) {
193  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
194    MachineOperand &MO1 = MI->getOperand(i);
195    if (MO1.isRegister() && MO1.isDef() && MO1.getReg() == Reg) {
196      for (unsigned j = i+1; j < e; ++j) {
197        MachineOperand &MO2 = MI->getOperand(j);
198        if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
199            MI->getInstrDescriptor()->
200            getOperandConstraint(j, TOI::TIED_TO) == (int)i)
201          return true;
202      }
203    }
204  }
205  return false;
206}
207
208/// isReMaterializable - Returns true if the definition MI of the specified
209/// val# of the specified interval is re-materializable.
210bool LiveIntervals::isReMaterializable(const LiveInterval &li,
211                                       const VNInfo *ValNo, MachineInstr *MI) {
212  if (DisableReMat)
213    return false;
214
215  if (tii_->isTriviallyReMaterializable(MI))
216    return true;
217
218  int FrameIdx = 0;
219  if (!tii_->isLoadFromStackSlot(MI, FrameIdx) ||
220      !mf_->getFrameInfo()->isFixedObjectIndex(FrameIdx))
221    return false;
222
223  // This is a load from fixed stack slot. It can be rematerialized unless it's
224  // re-defined by a two-address instruction.
225  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
226       i != e; ++i) {
227    const VNInfo *VNI = *i;
228    if (VNI == ValNo)
229      continue;
230    unsigned DefIdx = VNI->def;
231    if (DefIdx == ~1U)
232      continue; // Dead val#.
233    MachineInstr *DefMI = (DefIdx == ~0u)
234      ? NULL : getInstructionFromIndex(DefIdx);
235    if (DefMI && isReDefinedByTwoAddr(DefMI, li.reg, tii_))
236      return false;
237  }
238  return true;
239}
240
241/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
242/// slot / to reg or any rematerialized load into ith operand of specified
243/// MI. If it is successul, MI is updated with the newly created MI and
244/// returns true.
245bool LiveIntervals::tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
246                                         unsigned index, unsigned i,
247                                         bool isSS, MachineInstr *DefMI,
248                                         int slot, unsigned reg) {
249  MachineInstr *fmi = isSS
250    ? mri_->foldMemoryOperand(MI, i, slot)
251    : mri_->foldMemoryOperand(MI, i, DefMI);
252  if (fmi) {
253    // Attempt to fold the memory reference into the instruction. If
254    // we can do this, we don't need to insert spill code.
255    if (lv_)
256      lv_->instructionChanged(MI, fmi);
257    MachineBasicBlock &MBB = *MI->getParent();
258    vrm.virtFolded(reg, MI, i, fmi);
259    mi2iMap_.erase(MI);
260    i2miMap_[index/InstrSlots::NUM] = fmi;
261    mi2iMap_[fmi] = index;
262    MI = MBB.insert(MBB.erase(MI), fmi);
263    ++numFolded;
264    return true;
265  }
266  return false;
267}
268
269std::vector<LiveInterval*> LiveIntervals::
270addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, unsigned reg) {
271  // since this is called after the analysis is done we don't know if
272  // LiveVariables is available
273  lv_ = getAnalysisToUpdate<LiveVariables>();
274
275  std::vector<LiveInterval*> added;
276
277  assert(li.weight != HUGE_VALF &&
278         "attempt to spill already spilled interval!");
279
280  DOUT << "\t\t\t\tadding intervals for spills for interval: ";
281  li.print(DOUT, mri_);
282  DOUT << '\n';
283
284  const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
285
286  unsigned NumValNums = li.getNumValNums();
287  SmallVector<MachineInstr*, 4> ReMatDefs;
288  ReMatDefs.resize(NumValNums, NULL);
289  SmallVector<MachineInstr*, 4> ReMatOrigDefs;
290  ReMatOrigDefs.resize(NumValNums, NULL);
291  SmallVector<int, 4> ReMatIds;
292  ReMatIds.resize(NumValNums, VirtRegMap::MAX_STACK_SLOT);
293  BitVector ReMatDelete(NumValNums);
294  unsigned slot = VirtRegMap::MAX_STACK_SLOT;
295
296  bool NeedStackSlot = false;
297  for (LiveInterval::const_vni_iterator i = li.vni_begin(), e = li.vni_end();
298       i != e; ++i) {
299    const VNInfo *VNI = *i;
300    unsigned VN = VNI->id;
301    unsigned DefIdx = VNI->def;
302    if (DefIdx == ~1U)
303      continue; // Dead val#.
304    // Is the def for the val# rematerializable?
305    MachineInstr *DefMI = (DefIdx == ~0u)
306      ? NULL : getInstructionFromIndex(DefIdx);
307    if (DefMI && isReMaterializable(li, VNI, DefMI)) {
308      // Remember how to remat the def of this val#.
309      ReMatOrigDefs[VN] = DefMI;
310      // Original def may be modified so we have to make a copy here. vrm must
311      // delete these!
312      ReMatDefs[VN] = DefMI = DefMI->clone();
313      vrm.setVirtIsReMaterialized(reg, DefMI);
314
315      bool CanDelete = true;
316      for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
317        unsigned KillIdx = VNI->kills[j];
318        MachineInstr *KillMI = (KillIdx & 1)
319          ? NULL : getInstructionFromIndex(KillIdx);
320        // Kill is a phi node, not all of its uses can be rematerialized.
321        // It must not be deleted.
322        if (!KillMI) {
323          CanDelete = false;
324          // Need a stack slot if there is any live range where uses cannot be
325          // rematerialized.
326          NeedStackSlot = true;
327          break;
328        }
329      }
330
331      if (CanDelete)
332        ReMatDelete.set(VN);
333    } else {
334      // Need a stack slot if there is any live range where uses cannot be
335      // rematerialized.
336      NeedStackSlot = true;
337    }
338  }
339
340  // One stack slot per live interval.
341  if (NeedStackSlot)
342    slot = vrm.assignVirt2StackSlot(reg);
343
344  for (LiveInterval::Ranges::const_iterator
345         I = li.ranges.begin(), E = li.ranges.end(); I != E; ++I) {
346    MachineInstr *DefMI = ReMatDefs[I->valno->id];
347    MachineInstr *OrigDefMI = ReMatOrigDefs[I->valno->id];
348    bool DefIsReMat = DefMI != NULL;
349    bool CanDelete = ReMatDelete[I->valno->id];
350    int LdSlot = 0;
351    bool isLoadSS = DefIsReMat && tii_->isLoadFromStackSlot(DefMI, LdSlot);
352    bool isLoad = isLoadSS ||
353      (DefIsReMat && (DefMI->getInstrDescriptor()->Flags & M_LOAD_FLAG));
354    unsigned index = getBaseIndex(I->start);
355    unsigned end = getBaseIndex(I->end-1) + InstrSlots::NUM;
356    for (; index != end; index += InstrSlots::NUM) {
357      // skip deleted instructions
358      while (index != end && !getInstructionFromIndex(index))
359        index += InstrSlots::NUM;
360      if (index == end) break;
361
362      MachineInstr *MI = getInstructionFromIndex(index);
363
364    RestartInstruction:
365      for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
366        MachineOperand& mop = MI->getOperand(i);
367        if (mop.isRegister() && mop.getReg() == li.reg) {
368          if (DefIsReMat) {
369            // If this is the rematerializable definition MI itself and
370            // all of its uses are rematerialized, simply delete it.
371            if (MI == OrigDefMI) {
372              if (CanDelete) {
373                RemoveMachineInstrFromMaps(MI);
374                MI->eraseFromParent();
375                break;
376              } else if (tryFoldMemoryOperand(MI, vrm, index, i, true,
377                                              DefMI, slot, li.reg)) {
378                // Folding the load/store can completely change the instruction
379                // in unpredictable ways, rescan it from the beginning.
380                goto RestartInstruction;
381              }
382            } else if (isLoad &&
383                       tryFoldMemoryOperand(MI, vrm, index, i, isLoadSS,
384                                            DefMI, LdSlot, li.reg))
385                // Folding the load/store can completely change the
386                // instruction in unpredictable ways, rescan it from
387                // the beginning.
388                goto RestartInstruction;
389          } else {
390            if (tryFoldMemoryOperand(MI,  vrm, index, i, true, DefMI,
391                                     slot, li.reg))
392              // Folding the load/store can completely change the instruction in
393              // unpredictable ways, rescan it from the beginning.
394              goto RestartInstruction;
395          }
396
397          // Create a new virtual register for the spill interval.
398          unsigned NewVReg = mf_->getSSARegMap()->createVirtualRegister(rc);
399
400          // Scan all of the operands of this instruction rewriting operands
401          // to use NewVReg instead of li.reg as appropriate.  We do this for
402          // two reasons:
403          //
404          //   1. If the instr reads the same spilled vreg multiple times, we
405          //      want to reuse the NewVReg.
406          //   2. If the instr is a two-addr instruction, we are required to
407          //      keep the src/dst regs pinned.
408          //
409          // Keep track of whether we replace a use and/or def so that we can
410          // create the spill interval with the appropriate range.
411          mop.setReg(NewVReg);
412
413          bool HasUse = mop.isUse();
414          bool HasDef = mop.isDef();
415          for (unsigned j = i+1, e = MI->getNumOperands(); j != e; ++j) {
416            if (MI->getOperand(j).isRegister() &&
417                MI->getOperand(j).getReg() == li.reg) {
418              MI->getOperand(j).setReg(NewVReg);
419              HasUse |= MI->getOperand(j).isUse();
420              HasDef |= MI->getOperand(j).isDef();
421            }
422          }
423
424          vrm.grow();
425          if (DefIsReMat) {
426            vrm.setVirtIsReMaterialized(NewVReg, DefMI/*, CanDelete*/);
427            if (ReMatIds[I->valno->id] == VirtRegMap::MAX_STACK_SLOT) {
428              // Each valnum may have its own remat id.
429              ReMatIds[I->valno->id] = vrm.assignVirtReMatId(NewVReg);
430            } else {
431              vrm.assignVirtReMatId(NewVReg, ReMatIds[I->valno->id]);
432            }
433            if (!CanDelete || (HasUse && HasDef)) {
434              // If this is a two-addr instruction then its use operands are
435              // rematerializable but its def is not. It should be assigned a
436              // stack slot.
437              vrm.assignVirt2StackSlot(NewVReg, slot);
438            }
439          } else {
440            vrm.assignVirt2StackSlot(NewVReg, slot);
441          }
442
443          // create a new register interval for this spill / remat.
444          LiveInterval &nI = getOrCreateInterval(NewVReg);
445          assert(nI.empty());
446
447          // the spill weight is now infinity as it
448          // cannot be spilled again
449          nI.weight = HUGE_VALF;
450
451          if (HasUse) {
452            LiveRange LR(getLoadIndex(index), getUseIndex(index)+1,
453                         nI.getNextValue(~0U, 0, VNInfoAllocator));
454            DOUT << " +" << LR;
455            nI.addRange(LR);
456          }
457          if (HasDef) {
458            LiveRange LR(getDefIndex(index), getStoreIndex(index),
459                         nI.getNextValue(~0U, 0, VNInfoAllocator));
460            DOUT << " +" << LR;
461            nI.addRange(LR);
462          }
463
464          added.push_back(&nI);
465
466          // update live variables if it is available
467          if (lv_)
468            lv_->addVirtualRegisterKilled(NewVReg, MI);
469
470          DOUT << "\t\t\t\tadded new interval: ";
471          nI.print(DOUT, mri_);
472          DOUT << '\n';
473        }
474      }
475    }
476  }
477
478  return added;
479}
480
481void LiveIntervals::printRegName(unsigned reg) const {
482  if (MRegisterInfo::isPhysicalRegister(reg))
483    cerr << mri_->getName(reg);
484  else
485    cerr << "%reg" << reg;
486}
487
488void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
489                                             MachineBasicBlock::iterator mi,
490                                             unsigned MIIdx,
491                                             LiveInterval &interval) {
492  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
493  LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
494
495  // Virtual registers may be defined multiple times (due to phi
496  // elimination and 2-addr elimination).  Much of what we do only has to be
497  // done once for the vreg.  We use an empty interval to detect the first
498  // time we see a vreg.
499  if (interval.empty()) {
500    // Get the Idx of the defining instructions.
501    unsigned defIndex = getDefIndex(MIIdx);
502    VNInfo *ValNo;
503    unsigned SrcReg, DstReg;
504    if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
505      ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
506    else
507      ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
508
509    assert(ValNo->id == 0 && "First value in interval is not 0?");
510
511    // Loop over all of the blocks that the vreg is defined in.  There are
512    // two cases we have to handle here.  The most common case is a vreg
513    // whose lifetime is contained within a basic block.  In this case there
514    // will be a single kill, in MBB, which comes after the definition.
515    if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
516      // FIXME: what about dead vars?
517      unsigned killIdx;
518      if (vi.Kills[0] != mi)
519        killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
520      else
521        killIdx = defIndex+1;
522
523      // If the kill happens after the definition, we have an intra-block
524      // live range.
525      if (killIdx > defIndex) {
526        assert(vi.AliveBlocks.none() &&
527               "Shouldn't be alive across any blocks!");
528        LiveRange LR(defIndex, killIdx, ValNo);
529        interval.addRange(LR);
530        DOUT << " +" << LR << "\n";
531        interval.addKill(ValNo, killIdx);
532        return;
533      }
534    }
535
536    // The other case we handle is when a virtual register lives to the end
537    // of the defining block, potentially live across some blocks, then is
538    // live into some number of blocks, but gets killed.  Start by adding a
539    // range that goes from this definition to the end of the defining block.
540    LiveRange NewLR(defIndex,
541                    getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
542                    ValNo);
543    DOUT << " +" << NewLR;
544    interval.addRange(NewLR);
545
546    // Iterate over all of the blocks that the variable is completely
547    // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
548    // live interval.
549    for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
550      if (vi.AliveBlocks[i]) {
551        MachineBasicBlock *MBB = mf_->getBlockNumbered(i);
552        if (!MBB->empty()) {
553          LiveRange LR(getMBBStartIdx(i),
554                       getInstructionIndex(&MBB->back()) + InstrSlots::NUM,
555                       ValNo);
556          interval.addRange(LR);
557          DOUT << " +" << LR;
558        }
559      }
560    }
561
562    // Finally, this virtual register is live from the start of any killing
563    // block to the 'use' slot of the killing instruction.
564    for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
565      MachineInstr *Kill = vi.Kills[i];
566      unsigned killIdx = getUseIndex(getInstructionIndex(Kill))+1;
567      LiveRange LR(getMBBStartIdx(Kill->getParent()),
568                   killIdx, ValNo);
569      interval.addRange(LR);
570      interval.addKill(ValNo, killIdx);
571      DOUT << " +" << LR;
572    }
573
574  } else {
575    // If this is the second time we see a virtual register definition, it
576    // must be due to phi elimination or two addr elimination.  If this is
577    // the result of two address elimination, then the vreg is one of the
578    // def-and-use register operand.
579    if (isReDefinedByTwoAddr(mi, interval.reg, tii_)) {
580      // If this is a two-address definition, then we have already processed
581      // the live range.  The only problem is that we didn't realize there
582      // are actually two values in the live interval.  Because of this we
583      // need to take the LiveRegion that defines this register and split it
584      // into two values.
585      unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
586      unsigned RedefIndex = getDefIndex(MIIdx);
587
588      const LiveRange *OldLR = interval.getLiveRangeContaining(RedefIndex-1);
589      VNInfo *OldValNo = OldLR->valno;
590      unsigned OldEnd = OldLR->end;
591
592      // Delete the initial value, which should be short and continuous,
593      // because the 2-addr copy must be in the same MBB as the redef.
594      interval.removeRange(DefIndex, RedefIndex);
595
596      // Two-address vregs should always only be redefined once.  This means
597      // that at this point, there should be exactly one value number in it.
598      assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
599
600      // The new value number (#1) is defined by the instruction we claimed
601      // defined value #0.
602      VNInfo *ValNo = interval.getNextValue(0, 0, VNInfoAllocator);
603      interval.copyValNumInfo(ValNo, OldValNo);
604
605      // Value#0 is now defined by the 2-addr instruction.
606      OldValNo->def = RedefIndex;
607      OldValNo->reg = 0;
608
609      // Add the new live interval which replaces the range for the input copy.
610      LiveRange LR(DefIndex, RedefIndex, ValNo);
611      DOUT << " replace range with " << LR;
612      interval.addRange(LR);
613      interval.addKill(ValNo, RedefIndex);
614      interval.removeKills(ValNo, RedefIndex, OldEnd);
615
616      // If this redefinition is dead, we need to add a dummy unit live
617      // range covering the def slot.
618      if (lv_->RegisterDefIsDead(mi, interval.reg))
619        interval.addRange(LiveRange(RedefIndex, RedefIndex+1, OldValNo));
620
621      DOUT << " RESULT: ";
622      interval.print(DOUT, mri_);
623
624    } else {
625      // Otherwise, this must be because of phi elimination.  If this is the
626      // first redefinition of the vreg that we have seen, go back and change
627      // the live range in the PHI block to be a different value number.
628      if (interval.containsOneValue()) {
629        assert(vi.Kills.size() == 1 &&
630               "PHI elimination vreg should have one kill, the PHI itself!");
631
632        // Remove the old range that we now know has an incorrect number.
633        VNInfo *VNI = interval.getValNumInfo(0);
634        MachineInstr *Killer = vi.Kills[0];
635        unsigned Start = getMBBStartIdx(Killer->getParent());
636        unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
637        DOUT << " Removing [" << Start << "," << End << "] from: ";
638        interval.print(DOUT, mri_); DOUT << "\n";
639        interval.removeRange(Start, End);
640        interval.addKill(VNI, Start+1); // odd # means phi node
641        DOUT << " RESULT: "; interval.print(DOUT, mri_);
642
643        // Replace the interval with one of a NEW value number.  Note that this
644        // value number isn't actually defined by an instruction, weird huh? :)
645        LiveRange LR(Start, End, interval.getNextValue(~0, 0, VNInfoAllocator));
646        DOUT << " replace range with " << LR;
647        interval.addRange(LR);
648        interval.addKill(LR.valno, End);
649        DOUT << " RESULT: "; interval.print(DOUT, mri_);
650      }
651
652      // In the case of PHI elimination, each variable definition is only
653      // live until the end of the block.  We've already taken care of the
654      // rest of the live range.
655      unsigned defIndex = getDefIndex(MIIdx);
656
657      VNInfo *ValNo;
658      unsigned SrcReg, DstReg;
659      if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
660        ValNo = interval.getNextValue(defIndex, 0, VNInfoAllocator);
661      else
662        ValNo = interval.getNextValue(defIndex, SrcReg, VNInfoAllocator);
663
664      unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
665      LiveRange LR(defIndex, killIndex, ValNo);
666      interval.addRange(LR);
667      interval.addKill(ValNo, killIndex-1); // odd # means phi node
668      DOUT << " +" << LR;
669    }
670  }
671
672  DOUT << '\n';
673}
674
675void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
676                                              MachineBasicBlock::iterator mi,
677                                              unsigned MIIdx,
678                                              LiveInterval &interval,
679                                              unsigned SrcReg) {
680  // A physical register cannot be live across basic block, so its
681  // lifetime must end somewhere in its defining basic block.
682  DOUT << "\t\tregister: "; DEBUG(printRegName(interval.reg));
683
684  unsigned baseIndex = MIIdx;
685  unsigned start = getDefIndex(baseIndex);
686  unsigned end = start;
687
688  // If it is not used after definition, it is considered dead at
689  // the instruction defining it. Hence its interval is:
690  // [defSlot(def), defSlot(def)+1)
691  if (lv_->RegisterDefIsDead(mi, interval.reg)) {
692    DOUT << " dead";
693    end = getDefIndex(start) + 1;
694    goto exit;
695  }
696
697  // If it is not dead on definition, it must be killed by a
698  // subsequent instruction. Hence its interval is:
699  // [defSlot(def), useSlot(kill)+1)
700  while (++mi != MBB->end()) {
701    baseIndex += InstrSlots::NUM;
702    if (lv_->KillsRegister(mi, interval.reg)) {
703      DOUT << " killed";
704      end = getUseIndex(baseIndex) + 1;
705      goto exit;
706    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
707      // Another instruction redefines the register before it is ever read.
708      // Then the register is essentially dead at the instruction that defines
709      // it. Hence its interval is:
710      // [defSlot(def), defSlot(def)+1)
711      DOUT << " dead";
712      end = getDefIndex(start) + 1;
713      goto exit;
714    }
715  }
716
717  // The only case we should have a dead physreg here without a killing or
718  // instruction where we know it's dead is if it is live-in to the function
719  // and never used.
720  assert(!SrcReg && "physreg was not killed in defining block!");
721  end = getDefIndex(start) + 1;  // It's dead.
722
723exit:
724  assert(start < end && "did not find end of interval?");
725
726  // Already exists? Extend old live interval.
727  LiveInterval::iterator OldLR = interval.FindLiveRangeContaining(start);
728  VNInfo *ValNo = (OldLR != interval.end())
729    ? OldLR->valno : interval.getNextValue(start, SrcReg, VNInfoAllocator);
730  LiveRange LR(start, end, ValNo);
731  interval.addRange(LR);
732  interval.addKill(LR.valno, end);
733  DOUT << " +" << LR << '\n';
734}
735
736void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
737                                      MachineBasicBlock::iterator MI,
738                                      unsigned MIIdx,
739                                      unsigned reg) {
740  if (MRegisterInfo::isVirtualRegister(reg))
741    handleVirtualRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg));
742  else if (allocatableRegs_[reg]) {
743    unsigned SrcReg, DstReg;
744    if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
745      SrcReg = 0;
746    handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(reg), SrcReg);
747    // Def of a register also defines its sub-registers.
748    for (const unsigned* AS = mri_->getSubRegisters(reg); *AS; ++AS)
749      // Avoid processing some defs more than once.
750      if (!MI->findRegisterDefOperand(*AS))
751        handlePhysicalRegisterDef(MBB, MI, MIIdx, getOrCreateInterval(*AS), 0);
752  }
753}
754
755void LiveIntervals::handleLiveInRegister(MachineBasicBlock *MBB,
756                                         unsigned MIIdx,
757                                         LiveInterval &interval, bool isAlias) {
758  DOUT << "\t\tlivein register: "; DEBUG(printRegName(interval.reg));
759
760  // Look for kills, if it reaches a def before it's killed, then it shouldn't
761  // be considered a livein.
762  MachineBasicBlock::iterator mi = MBB->begin();
763  unsigned baseIndex = MIIdx;
764  unsigned start = baseIndex;
765  unsigned end = start;
766  while (mi != MBB->end()) {
767    if (lv_->KillsRegister(mi, interval.reg)) {
768      DOUT << " killed";
769      end = getUseIndex(baseIndex) + 1;
770      goto exit;
771    } else if (lv_->ModifiesRegister(mi, interval.reg)) {
772      // Another instruction redefines the register before it is ever read.
773      // Then the register is essentially dead at the instruction that defines
774      // it. Hence its interval is:
775      // [defSlot(def), defSlot(def)+1)
776      DOUT << " dead";
777      end = getDefIndex(start) + 1;
778      goto exit;
779    }
780
781    baseIndex += InstrSlots::NUM;
782    ++mi;
783  }
784
785exit:
786  // Live-in register might not be used at all.
787  if (end == MIIdx) {
788    if (isAlias) {
789      DOUT << " dead";
790      end = getDefIndex(MIIdx) + 1;
791    } else {
792      DOUT << " live through";
793      end = baseIndex;
794    }
795  }
796
797  LiveRange LR(start, end, interval.getNextValue(start, 0, VNInfoAllocator));
798  interval.addRange(LR);
799  interval.addKill(LR.valno, end);
800  DOUT << " +" << LR << '\n';
801}
802
803/// computeIntervals - computes the live intervals for virtual
804/// registers. for some ordering of the machine instructions [1,N] a
805/// live interval is an interval [i, j) where 1 <= i <= j < N for
806/// which a variable is live
807void LiveIntervals::computeIntervals() {
808  DOUT << "********** COMPUTING LIVE INTERVALS **********\n"
809       << "********** Function: "
810       << ((Value*)mf_->getFunction())->getName() << '\n';
811  // Track the index of the current machine instr.
812  unsigned MIIndex = 0;
813  for (MachineFunction::iterator MBBI = mf_->begin(), E = mf_->end();
814       MBBI != E; ++MBBI) {
815    MachineBasicBlock *MBB = MBBI;
816    DOUT << ((Value*)MBB->getBasicBlock())->getName() << ":\n";
817
818    MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
819
820    // Create intervals for live-ins to this BB first.
821    for (MachineBasicBlock::const_livein_iterator LI = MBB->livein_begin(),
822           LE = MBB->livein_end(); LI != LE; ++LI) {
823      handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*LI));
824      // Multiple live-ins can alias the same register.
825      for (const unsigned* AS = mri_->getSubRegisters(*LI); *AS; ++AS)
826        if (!hasInterval(*AS))
827          handleLiveInRegister(MBB, MIIndex, getOrCreateInterval(*AS),
828                               true);
829    }
830
831    for (; MI != miEnd; ++MI) {
832      DOUT << MIIndex << "\t" << *MI;
833
834      // Handle defs.
835      for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
836        MachineOperand &MO = MI->getOperand(i);
837        // handle register defs - build intervals
838        if (MO.isRegister() && MO.getReg() && MO.isDef())
839          handleRegisterDef(MBB, MI, MIIndex, MO.getReg());
840      }
841
842      MIIndex += InstrSlots::NUM;
843    }
844  }
845}
846
847LiveInterval LiveIntervals::createInterval(unsigned reg) {
848  float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
849                       HUGE_VALF : 0.0F;
850  return LiveInterval(reg, Weight);
851}
852