LiveRangeEdit.cpp revision 1c6d387dc90fba589f8effb17c72a39f966f87df
1//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LiveRangeEdit class represents changes done to a virtual register when it
11// is spilled or split.
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "regalloc"
15#include "llvm/CodeGen/LiveRangeEdit.h"
16#include "llvm/ADT/Statistic.h"
17#include "llvm/CodeGen/CalcSpillWeights.h"
18#include "llvm/CodeGen/LiveIntervalAnalysis.h"
19#include "llvm/CodeGen/MachineRegisterInfo.h"
20#include "llvm/CodeGen/VirtRegMap.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Support/raw_ostream.h"
23#include "llvm/Target/TargetInstrInfo.h"
24
25using namespace llvm;
26
27STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
28STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
29STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
30
31void LiveRangeEdit::Delegate::anchor() { }
32
33LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
34  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
35  if (VRM) {
36    VRM->grow();
37    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
38  }
39  LiveInterval &LI = LIS.getOrCreateInterval(VReg);
40  NewRegs.push_back(&LI);
41  return LI;
42}
43
44bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
45                                          const MachineInstr *DefMI,
46                                          AliasAnalysis *aa) {
47  assert(DefMI && "Missing instruction");
48  ScannedRemattable = true;
49  if (!TII.isTriviallyReMaterializable(DefMI, aa))
50    return false;
51  Remattable.insert(VNI);
52  return true;
53}
54
55void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
56  for (LiveInterval::vni_iterator I = getParent().vni_begin(),
57       E = getParent().vni_end(); I != E; ++I) {
58    VNInfo *VNI = *I;
59    if (VNI->isUnused())
60      continue;
61    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
62    if (!DefMI)
63      continue;
64    checkRematerializable(VNI, DefMI, aa);
65  }
66  ScannedRemattable = true;
67}
68
69bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
70  if (!ScannedRemattable)
71    scanRemattable(aa);
72  return !Remattable.empty();
73}
74
75/// allUsesAvailableAt - Return true if all registers used by OrigMI at
76/// OrigIdx are also available with the same value at UseIdx.
77bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
78                                       SlotIndex OrigIdx,
79                                       SlotIndex UseIdx) const {
80  OrigIdx = OrigIdx.getRegSlot(true);
81  UseIdx = UseIdx.getRegSlot(true);
82  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
83    const MachineOperand &MO = OrigMI->getOperand(i);
84    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
85      continue;
86
87    // We can't remat physreg uses, unless it is a constant.
88    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
89      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
90        continue;
91      return false;
92    }
93
94    LiveInterval &li = LIS.getInterval(MO.getReg());
95    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
96    if (!OVNI)
97      continue;
98
99    // Don't allow rematerialization immediately after the original def.
100    // It would be incorrect if OrigMI redefines the register.
101    // See PR14098.
102    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
103      return false;
104
105    if (OVNI != li.getVNInfoAt(UseIdx))
106      return false;
107  }
108  return true;
109}
110
111bool LiveRangeEdit::canRematerializeAt(Remat &RM,
112                                       SlotIndex UseIdx,
113                                       bool cheapAsAMove) {
114  assert(ScannedRemattable && "Call anyRematerializable first");
115
116  // Use scanRemattable info.
117  if (!Remattable.count(RM.ParentVNI))
118    return false;
119
120  // No defining instruction provided.
121  SlotIndex DefIdx;
122  if (RM.OrigMI)
123    DefIdx = LIS.getInstructionIndex(RM.OrigMI);
124  else {
125    DefIdx = RM.ParentVNI->def;
126    RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
127    assert(RM.OrigMI && "No defining instruction for remattable value");
128  }
129
130  // If only cheap remats were requested, bail out early.
131  if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
132    return false;
133
134  // Verify that all used registers are available with the same values.
135  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
136    return false;
137
138  return true;
139}
140
141SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
142                                         MachineBasicBlock::iterator MI,
143                                         unsigned DestReg,
144                                         const Remat &RM,
145                                         const TargetRegisterInfo &tri,
146                                         bool Late) {
147  assert(RM.OrigMI && "Invalid remat");
148  TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
149  Rematted.insert(RM.ParentVNI);
150  return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
151           .getRegSlot();
152}
153
154void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
155  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
156    LIS.removeInterval(Reg);
157}
158
159bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
160                               SmallVectorImpl<MachineInstr*> &Dead) {
161  MachineInstr *DefMI = 0, *UseMI = 0;
162
163  // Check that there is a single def and a single use.
164  for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
165       E = MRI.reg_nodbg_end(); I != E; ++I) {
166    MachineOperand &MO = I.getOperand();
167    MachineInstr *MI = MO.getParent();
168    if (MO.isDef()) {
169      if (DefMI && DefMI != MI)
170        return false;
171      if (!MI->canFoldAsLoad())
172        return false;
173      DefMI = MI;
174    } else if (!MO.isUndef()) {
175      if (UseMI && UseMI != MI)
176        return false;
177      // FIXME: Targets don't know how to fold subreg uses.
178      if (MO.getSubReg())
179        return false;
180      UseMI = MI;
181    }
182  }
183  if (!DefMI || !UseMI)
184    return false;
185
186  // Since we're moving the DefMI load, make sure we're not extending any live
187  // ranges.
188  if (!allUsesAvailableAt(DefMI,
189                          LIS.getInstructionIndex(DefMI),
190                          LIS.getInstructionIndex(UseMI)))
191    return false;
192
193  // We also need to make sure it is safe to move the load.
194  // Assume there are stores between DefMI and UseMI.
195  bool SawStore = true;
196  if (!DefMI->isSafeToMove(&TII, 0, SawStore))
197    return false;
198
199  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
200               << "       into single use: " << *UseMI);
201
202  SmallVector<unsigned, 8> Ops;
203  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
204    return false;
205
206  MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
207  if (!FoldMI)
208    return false;
209  DEBUG(dbgs() << "                folded: " << *FoldMI);
210  LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
211  UseMI->eraseFromParent();
212  DefMI->addRegisterDead(LI->reg, 0);
213  Dead.push_back(DefMI);
214  ++NumDCEFoldedLoads;
215  return true;
216}
217
218/// Find all live intervals that need to shrink, then remove the instruction.
219void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
220  assert(MI->allDefsAreDead() && "Def isn't really dead");
221  SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
222
223  // Never delete a bundled instruction.
224  if (MI->isBundled()) {
225    return;
226  }
227  // Never delete inline asm.
228  if (MI->isInlineAsm()) {
229    DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
230    return;
231  }
232
233  // Use the same criteria as DeadMachineInstructionElim.
234  bool SawStore = false;
235  if (!MI->isSafeToMove(&TII, 0, SawStore)) {
236    DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
237    return;
238  }
239
240  DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
241
242  // Collect virtual registers to be erased after MI is gone.
243  SmallVector<unsigned, 8> RegsToErase;
244  bool ReadsPhysRegs = false;
245
246  // Check for live intervals that may shrink
247  for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
248         MOE = MI->operands_end(); MOI != MOE; ++MOI) {
249    if (!MOI->isReg())
250      continue;
251    unsigned Reg = MOI->getReg();
252    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
253      // Check if MI reads any unreserved physregs.
254      if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
255        ReadsPhysRegs = true;
256      else if (MOI->isDef()) {
257        for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
258             Units.isValid(); ++Units) {
259          if (LiveInterval *LI = LIS.getCachedRegUnit(*Units)) {
260            if (VNInfo *VNI = LI->getVNInfoAt(Idx))
261              LI->removeValNo(VNI);
262          }
263        }
264      }
265      continue;
266    }
267    LiveInterval &LI = LIS.getInterval(Reg);
268
269    // Shrink read registers, unless it is likely to be expensive and
270    // unlikely to change anything. We typically don't want to shrink the
271    // PIC base register that has lots of uses everywhere.
272    // Always shrink COPY uses that probably come from live range splitting.
273    if (MI->readsVirtualRegister(Reg) &&
274        (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
275         LI.killedAt(Idx)))
276      ToShrink.insert(&LI);
277
278    // Remove defined value.
279    if (MOI->isDef()) {
280      if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
281        if (TheDelegate)
282          TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
283        LI.removeValNo(VNI);
284        if (LI.empty())
285          RegsToErase.push_back(Reg);
286      }
287    }
288  }
289
290  // Currently, we don't support DCE of physreg live ranges. If MI reads
291  // any unreserved physregs, don't erase the instruction, but turn it into
292  // a KILL instead. This way, the physreg live ranges don't end up
293  // dangling.
294  // FIXME: It would be better to have something like shrinkToUses() for
295  // physregs. That could potentially enable more DCE and it would free up
296  // the physreg. It would not happen often, though.
297  if (ReadsPhysRegs) {
298    MI->setDesc(TII.get(TargetOpcode::KILL));
299    // Remove all operands that aren't physregs.
300    for (unsigned i = MI->getNumOperands(); i; --i) {
301      const MachineOperand &MO = MI->getOperand(i-1);
302      if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
303        continue;
304      MI->RemoveOperand(i-1);
305    }
306    DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
307  } else {
308    if (TheDelegate)
309      TheDelegate->LRE_WillEraseInstruction(MI);
310    LIS.RemoveMachineInstrFromMaps(MI);
311    MI->eraseFromParent();
312    ++NumDCEDeleted;
313  }
314
315  // Erase any virtregs that are now empty and unused. There may be <undef>
316  // uses around. Keep the empty live range in that case.
317  for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
318    unsigned Reg = RegsToErase[i];
319    if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
320      ToShrink.remove(&LIS.getInterval(Reg));
321      eraseVirtReg(Reg);
322    }
323  }
324}
325
326void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
327                                      ArrayRef<unsigned> RegsBeingSpilled) {
328  ToShrinkSet ToShrink;
329
330  for (;;) {
331    // Erase all dead defs.
332    while (!Dead.empty())
333      eliminateDeadDef(Dead.pop_back_val(), ToShrink);
334
335    if (ToShrink.empty())
336      break;
337
338    // Shrink just one live interval. Then delete new dead defs.
339    LiveInterval *LI = ToShrink.back();
340    ToShrink.pop_back();
341    if (foldAsLoad(LI, Dead))
342      continue;
343    if (TheDelegate)
344      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
345    if (!LIS.shrinkToUses(LI, &Dead))
346      continue;
347
348    // Don't create new intervals for a register being spilled.
349    // The new intervals would have to be spilled anyway so its not worth it.
350    // Also they currently aren't spilled so creating them and not spilling
351    // them results in incorrect code.
352    bool BeingSpilled = false;
353    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
354      if (LI->reg == RegsBeingSpilled[i]) {
355        BeingSpilled = true;
356        break;
357      }
358    }
359
360    if (BeingSpilled) continue;
361
362    // LI may have been separated, create new intervals.
363    LI->RenumberValues();
364    ConnectedVNInfoEqClasses ConEQ(LIS);
365    unsigned NumComp = ConEQ.Classify(LI);
366    if (NumComp <= 1)
367      continue;
368    ++NumFracRanges;
369    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
370    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
371    SmallVector<LiveInterval*, 8> Dups(1, LI);
372    for (unsigned i = 1; i != NumComp; ++i) {
373      Dups.push_back(&createFrom(LI->reg));
374      // If LI is an original interval that hasn't been split yet, make the new
375      // intervals their own originals instead of referring to LI. The original
376      // interval must contain all the split products, and LI doesn't.
377      if (IsOriginal)
378        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
379      if (TheDelegate)
380        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
381    }
382    ConEQ.Distribute(&Dups[0], MRI);
383    DEBUG({
384      for (unsigned i = 0; i != NumComp; ++i)
385        dbgs() << '\t' << *Dups[i] << '\n';
386    });
387  }
388}
389
390void
391LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
392                                        const MachineLoopInfo &Loops,
393                                        const MachineBlockFrequencyInfo &MBFI) {
394  VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
395  for (iterator I = begin(), E = end(); I != E; ++I) {
396    LiveInterval &LI = **I;
397    if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
398      DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
399                   << MRI.getRegClass(LI.reg)->getName() << '\n');
400    VRAI.CalculateWeightAndHint(LI);
401  }
402}
403