LiveRangeEdit.cpp revision 320db3f8052c9f506d9ea043ba5da534df40aa08
1//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LiveRangeEdit class represents changes done to a virtual register when it
11// is spilled or split.
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "regalloc"
15#include "VirtRegMap.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/CalcSpillWeights.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/LiveRangeEdit.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31
32void LiveRangeEdit::Delegate::anchor() { }
33
34LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
35  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36  if (VRM) {
37    VRM->grow();
38    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39  }
40  LiveInterval &LI = LIS.getOrCreateInterval(VReg);
41  NewRegs.push_back(&LI);
42  return LI;
43}
44
45bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
46                                          const MachineInstr *DefMI,
47                                          AliasAnalysis *aa) {
48  assert(DefMI && "Missing instruction");
49  ScannedRemattable = true;
50  if (!TII.isTriviallyReMaterializable(DefMI, aa))
51    return false;
52  Remattable.insert(VNI);
53  return true;
54}
55
56void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
57  for (LiveInterval::vni_iterator I = getParent().vni_begin(),
58       E = getParent().vni_end(); I != E; ++I) {
59    VNInfo *VNI = *I;
60    if (VNI->isUnused())
61      continue;
62    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
63    if (!DefMI)
64      continue;
65    checkRematerializable(VNI, DefMI, aa);
66  }
67  ScannedRemattable = true;
68}
69
70bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
71  if (!ScannedRemattable)
72    scanRemattable(aa);
73  return !Remattable.empty();
74}
75
76/// allUsesAvailableAt - Return true if all registers used by OrigMI at
77/// OrigIdx are also available with the same value at UseIdx.
78bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
79                                       SlotIndex OrigIdx,
80                                       SlotIndex UseIdx) {
81  OrigIdx = OrigIdx.getRegSlot(true);
82  UseIdx = UseIdx.getRegSlot(true);
83  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
84    const MachineOperand &MO = OrigMI->getOperand(i);
85    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
86      continue;
87
88    // We can't remat physreg uses, unless it is a constant.
89    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
90      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
91        continue;
92      return false;
93    }
94
95    LiveInterval &li = LIS.getInterval(MO.getReg());
96    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
97    if (!OVNI)
98      continue;
99
100    // Don't allow rematerialization immediately after the original def.
101    // It would be incorrect if OrigMI redefines the register.
102    // See PR14098.
103    if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
104      return false;
105
106    if (OVNI != li.getVNInfoAt(UseIdx))
107      return false;
108  }
109  return true;
110}
111
112bool LiveRangeEdit::canRematerializeAt(Remat &RM,
113                                       SlotIndex UseIdx,
114                                       bool cheapAsAMove) {
115  assert(ScannedRemattable && "Call anyRematerializable first");
116
117  // Use scanRemattable info.
118  if (!Remattable.count(RM.ParentVNI))
119    return false;
120
121  // No defining instruction provided.
122  SlotIndex DefIdx;
123  if (RM.OrigMI)
124    DefIdx = LIS.getInstructionIndex(RM.OrigMI);
125  else {
126    DefIdx = RM.ParentVNI->def;
127    RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
128    assert(RM.OrigMI && "No defining instruction for remattable value");
129  }
130
131  // If only cheap remats were requested, bail out early.
132  if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
133    return false;
134
135  // Verify that all used registers are available with the same values.
136  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
137    return false;
138
139  return true;
140}
141
142SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
143                                         MachineBasicBlock::iterator MI,
144                                         unsigned DestReg,
145                                         const Remat &RM,
146                                         const TargetRegisterInfo &tri,
147                                         bool Late) {
148  assert(RM.OrigMI && "Invalid remat");
149  TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
150  Rematted.insert(RM.ParentVNI);
151  return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
152           .getRegSlot();
153}
154
155void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
156  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
157    LIS.removeInterval(Reg);
158}
159
160bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
161                               SmallVectorImpl<MachineInstr*> &Dead) {
162  MachineInstr *DefMI = 0, *UseMI = 0;
163
164  // Check that there is a single def and a single use.
165  for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
166       E = MRI.reg_nodbg_end(); I != E; ++I) {
167    MachineOperand &MO = I.getOperand();
168    MachineInstr *MI = MO.getParent();
169    if (MO.isDef()) {
170      if (DefMI && DefMI != MI)
171        return false;
172      if (!MI->canFoldAsLoad())
173        return false;
174      DefMI = MI;
175    } else if (!MO.isUndef()) {
176      if (UseMI && UseMI != MI)
177        return false;
178      // FIXME: Targets don't know how to fold subreg uses.
179      if (MO.getSubReg())
180        return false;
181      UseMI = MI;
182    }
183  }
184  if (!DefMI || !UseMI)
185    return false;
186
187  // Since we're moving the DefMI load, make sure we're not extending any live
188  // ranges.
189  if (!allUsesAvailableAt(DefMI,
190                          LIS.getInstructionIndex(DefMI),
191                          LIS.getInstructionIndex(UseMI)))
192    return false;
193
194  // We also need to make sure it is safe to move the load.
195  // Assume there are stores between DefMI and UseMI.
196  bool SawStore = true;
197  if (!DefMI->isSafeToMove(&TII, 0, SawStore))
198    return false;
199
200  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
201               << "       into single use: " << *UseMI);
202
203  SmallVector<unsigned, 8> Ops;
204  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
205    return false;
206
207  MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
208  if (!FoldMI)
209    return false;
210  DEBUG(dbgs() << "                folded: " << *FoldMI);
211  LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
212  UseMI->eraseFromParent();
213  DefMI->addRegisterDead(LI->reg, 0);
214  Dead.push_back(DefMI);
215  ++NumDCEFoldedLoads;
216  return true;
217}
218
219void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
220                                      ArrayRef<unsigned> RegsBeingSpilled) {
221  SetVector<LiveInterval*,
222            SmallVector<LiveInterval*, 8>,
223            SmallPtrSet<LiveInterval*, 8> > ToShrink;
224
225  for (;;) {
226    // Erase all dead defs.
227    while (!Dead.empty()) {
228      MachineInstr *MI = Dead.pop_back_val();
229      assert(MI->allDefsAreDead() && "Def isn't really dead");
230      SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
231
232      // Never delete inline asm.
233      if (MI->isInlineAsm()) {
234        DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
235        continue;
236      }
237
238      // Use the same criteria as DeadMachineInstructionElim.
239      bool SawStore = false;
240      if (!MI->isSafeToMove(&TII, 0, SawStore)) {
241        DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
242        continue;
243      }
244
245      DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
246
247      // Collect virtual registers to be erased after MI is gone.
248      SmallVector<unsigned, 8> RegsToErase;
249      bool ReadsPhysRegs = false;
250
251      // Check for live intervals that may shrink
252      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
253             MOE = MI->operands_end(); MOI != MOE; ++MOI) {
254        if (!MOI->isReg())
255          continue;
256        unsigned Reg = MOI->getReg();
257        if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
258          // Check if MI reads any unreserved physregs.
259          if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
260            ReadsPhysRegs = true;
261          continue;
262        }
263        LiveInterval &LI = LIS.getInterval(Reg);
264
265        // Shrink read registers, unless it is likely to be expensive and
266        // unlikely to change anything. We typically don't want to shrink the
267        // PIC base register that has lots of uses everywhere.
268        // Always shrink COPY uses that probably come from live range splitting.
269        if (MI->readsVirtualRegister(Reg) &&
270            (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
271             LI.killedAt(Idx)))
272          ToShrink.insert(&LI);
273
274        // Remove defined value.
275        if (MOI->isDef()) {
276          if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
277            if (TheDelegate)
278              TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
279            LI.removeValNo(VNI);
280            if (LI.empty())
281              RegsToErase.push_back(Reg);
282          }
283        }
284      }
285
286      // Currently, we don't support DCE of physreg live ranges. If MI reads
287      // any unreserved physregs, don't erase the instruction, but turn it into
288      // a KILL instead. This way, the physreg live ranges don't end up
289      // dangling.
290      // FIXME: It would be better to have something like shrinkToUses() for
291      // physregs. That could potentially enable more DCE and it would free up
292      // the physreg. It would not happen often, though.
293      if (ReadsPhysRegs) {
294        MI->setDesc(TII.get(TargetOpcode::KILL));
295        // Remove all operands that aren't physregs.
296        for (unsigned i = MI->getNumOperands(); i; --i) {
297          const MachineOperand &MO = MI->getOperand(i-1);
298          if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
299            continue;
300          MI->RemoveOperand(i-1);
301        }
302        DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
303      } else {
304        if (TheDelegate)
305          TheDelegate->LRE_WillEraseInstruction(MI);
306        LIS.RemoveMachineInstrFromMaps(MI);
307        MI->eraseFromParent();
308        ++NumDCEDeleted;
309      }
310
311      // Erase any virtregs that are now empty and unused. There may be <undef>
312      // uses around. Keep the empty live range in that case.
313      for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
314        unsigned Reg = RegsToErase[i];
315        if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
316          ToShrink.remove(&LIS.getInterval(Reg));
317          eraseVirtReg(Reg);
318        }
319      }
320    }
321
322    if (ToShrink.empty())
323      break;
324
325    // Shrink just one live interval. Then delete new dead defs.
326    LiveInterval *LI = ToShrink.back();
327    ToShrink.pop_back();
328    if (foldAsLoad(LI, Dead))
329      continue;
330    if (TheDelegate)
331      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
332    if (!LIS.shrinkToUses(LI, &Dead))
333      continue;
334
335    // Don't create new intervals for a register being spilled.
336    // The new intervals would have to be spilled anyway so its not worth it.
337    // Also they currently aren't spilled so creating them and not spilling
338    // them results in incorrect code.
339    bool BeingSpilled = false;
340    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
341      if (LI->reg == RegsBeingSpilled[i]) {
342        BeingSpilled = true;
343        break;
344      }
345    }
346
347    if (BeingSpilled) continue;
348
349    // LI may have been separated, create new intervals.
350    LI->RenumberValues(LIS);
351    ConnectedVNInfoEqClasses ConEQ(LIS);
352    unsigned NumComp = ConEQ.Classify(LI);
353    if (NumComp <= 1)
354      continue;
355    ++NumFracRanges;
356    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
357    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
358    SmallVector<LiveInterval*, 8> Dups(1, LI);
359    for (unsigned i = 1; i != NumComp; ++i) {
360      Dups.push_back(&createFrom(LI->reg));
361      // If LI is an original interval that hasn't been split yet, make the new
362      // intervals their own originals instead of referring to LI. The original
363      // interval must contain all the split products, and LI doesn't.
364      if (IsOriginal)
365        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
366      if (TheDelegate)
367        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
368    }
369    ConEQ.Distribute(&Dups[0], MRI);
370    DEBUG({
371      for (unsigned i = 0; i != NumComp; ++i)
372        dbgs() << '\t' << *Dups[i] << '\n';
373    });
374  }
375}
376
377void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
378                                             const MachineLoopInfo &Loops) {
379  VirtRegAuxInfo VRAI(MF, LIS, Loops);
380  for (iterator I = begin(), E = end(); I != E; ++I) {
381    LiveInterval &LI = **I;
382    if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
383      DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
384                   << MRI.getRegClass(LI.reg)->getName() << '\n');
385    VRAI.CalculateWeightAndHint(LI);
386  }
387}
388