LiveRangeEdit.cpp revision ddc26d89362330995f59ad29eb8bb439a817050b
1//===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// The LiveRangeEdit class represents changes done to a virtual register when it
11// is spilled or split.
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "regalloc"
15#include "VirtRegMap.h"
16#include "llvm/ADT/SetVector.h"
17#include "llvm/ADT/Statistic.h"
18#include "llvm/CodeGen/CalcSpillWeights.h"
19#include "llvm/CodeGen/LiveIntervalAnalysis.h"
20#include "llvm/CodeGen/LiveRangeEdit.h"
21#include "llvm/CodeGen/MachineRegisterInfo.h"
22#include "llvm/Target/TargetInstrInfo.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/raw_ostream.h"
25
26using namespace llvm;
27
28STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31
32void LiveRangeEdit::Delegate::anchor() { }
33
34LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
35  unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36  if (VRM) {
37    VRM->grow();
38    VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39  }
40  LiveInterval &LI = LIS.getOrCreateInterval(VReg);
41  NewRegs.push_back(&LI);
42  return LI;
43}
44
45bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
46                                          const MachineInstr *DefMI,
47                                          AliasAnalysis *aa) {
48  assert(DefMI && "Missing instruction");
49  ScannedRemattable = true;
50  if (!TII.isTriviallyReMaterializable(DefMI, aa))
51    return false;
52  Remattable.insert(VNI);
53  return true;
54}
55
56void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
57  for (LiveInterval::vni_iterator I = getParent().vni_begin(),
58       E = getParent().vni_end(); I != E; ++I) {
59    VNInfo *VNI = *I;
60    if (VNI->isUnused())
61      continue;
62    MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
63    if (!DefMI)
64      continue;
65    checkRematerializable(VNI, DefMI, aa);
66  }
67  ScannedRemattable = true;
68}
69
70bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
71  if (!ScannedRemattable)
72    scanRemattable(aa);
73  return !Remattable.empty();
74}
75
76/// allUsesAvailableAt - Return true if all registers used by OrigMI at
77/// OrigIdx are also available with the same value at UseIdx.
78bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
79                                       SlotIndex OrigIdx,
80                                       SlotIndex UseIdx) {
81  OrigIdx = OrigIdx.getRegSlot(true);
82  UseIdx = UseIdx.getRegSlot(true);
83  for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
84    const MachineOperand &MO = OrigMI->getOperand(i);
85    if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
86      continue;
87
88    // We can't remat physreg uses, unless it is a constant.
89    if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
90      if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
91        continue;
92      return false;
93    }
94
95    LiveInterval &li = LIS.getInterval(MO.getReg());
96    const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
97    if (!OVNI)
98      continue;
99    if (OVNI != li.getVNInfoAt(UseIdx))
100      return false;
101  }
102  return true;
103}
104
105bool LiveRangeEdit::canRematerializeAt(Remat &RM,
106                                       SlotIndex UseIdx,
107                                       bool cheapAsAMove) {
108  assert(ScannedRemattable && "Call anyRematerializable first");
109
110  // Use scanRemattable info.
111  if (!Remattable.count(RM.ParentVNI))
112    return false;
113
114  // No defining instruction provided.
115  SlotIndex DefIdx;
116  if (RM.OrigMI)
117    DefIdx = LIS.getInstructionIndex(RM.OrigMI);
118  else {
119    DefIdx = RM.ParentVNI->def;
120    RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
121    assert(RM.OrigMI && "No defining instruction for remattable value");
122  }
123
124  // If only cheap remats were requested, bail out early.
125  if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
126    return false;
127
128  // Verify that all used registers are available with the same values.
129  if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
130    return false;
131
132  return true;
133}
134
135SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
136                                         MachineBasicBlock::iterator MI,
137                                         unsigned DestReg,
138                                         const Remat &RM,
139                                         const TargetRegisterInfo &tri,
140                                         bool Late) {
141  assert(RM.OrigMI && "Invalid remat");
142  TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
143  Rematted.insert(RM.ParentVNI);
144  return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
145           .getRegSlot();
146}
147
148void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
149  if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
150    LIS.removeInterval(Reg);
151}
152
153bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
154                               SmallVectorImpl<MachineInstr*> &Dead) {
155  MachineInstr *DefMI = 0, *UseMI = 0;
156
157  // Check that there is a single def and a single use.
158  for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
159       E = MRI.reg_nodbg_end(); I != E; ++I) {
160    MachineOperand &MO = I.getOperand();
161    MachineInstr *MI = MO.getParent();
162    if (MO.isDef()) {
163      if (DefMI && DefMI != MI)
164        return false;
165      if (!MI->canFoldAsLoad())
166        return false;
167      DefMI = MI;
168    } else if (!MO.isUndef()) {
169      if (UseMI && UseMI != MI)
170        return false;
171      // FIXME: Targets don't know how to fold subreg uses.
172      if (MO.getSubReg())
173        return false;
174      UseMI = MI;
175    }
176  }
177  if (!DefMI || !UseMI)
178    return false;
179
180  // Since we're moving the DefMI load, make sure we're not extending any live
181  // ranges.
182  if (!allUsesAvailableAt(DefMI,
183                          LIS.getInstructionIndex(DefMI),
184                          LIS.getInstructionIndex(UseMI)))
185    return false;
186
187  // We also need to make sure it is safe to move the load.
188  // Assume there are stores between DefMI and UseMI.
189  bool SawStore = true;
190  if (!DefMI->isSafeToMove(&TII, 0, SawStore))
191    return false;
192
193  DEBUG(dbgs() << "Try to fold single def: " << *DefMI
194               << "       into single use: " << *UseMI);
195
196  SmallVector<unsigned, 8> Ops;
197  if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
198    return false;
199
200  MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
201  if (!FoldMI)
202    return false;
203  DEBUG(dbgs() << "                folded: " << *FoldMI);
204  LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
205  UseMI->eraseFromParent();
206  DefMI->addRegisterDead(LI->reg, 0);
207  Dead.push_back(DefMI);
208  ++NumDCEFoldedLoads;
209  return true;
210}
211
212void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
213                                      ArrayRef<unsigned> RegsBeingSpilled) {
214  SetVector<LiveInterval*,
215            SmallVector<LiveInterval*, 8>,
216            SmallPtrSet<LiveInterval*, 8> > ToShrink;
217
218  for (;;) {
219    // Erase all dead defs.
220    while (!Dead.empty()) {
221      MachineInstr *MI = Dead.pop_back_val();
222      assert(MI->allDefsAreDead() && "Def isn't really dead");
223      SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
224
225      // Never delete inline asm.
226      if (MI->isInlineAsm()) {
227        DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
228        continue;
229      }
230
231      // Use the same criteria as DeadMachineInstructionElim.
232      bool SawStore = false;
233      if (!MI->isSafeToMove(&TII, 0, SawStore)) {
234        DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
235        continue;
236      }
237
238      DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
239
240      // Collect virtual registers to be erased after MI is gone.
241      SmallVector<unsigned, 8> RegsToErase;
242      bool ReadsPhysRegs = false;
243
244      // Check for live intervals that may shrink
245      for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
246             MOE = MI->operands_end(); MOI != MOE; ++MOI) {
247        if (!MOI->isReg())
248          continue;
249        unsigned Reg = MOI->getReg();
250        if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
251          // Check if MI reads any unreserved physregs.
252          if (Reg && MOI->readsReg() && !LIS.isReserved(Reg))
253            ReadsPhysRegs = true;
254          continue;
255        }
256        LiveInterval &LI = LIS.getInterval(Reg);
257
258        // Shrink read registers, unless it is likely to be expensive and
259        // unlikely to change anything. We typically don't want to shrink the
260        // PIC base register that has lots of uses everywhere.
261        // Always shrink COPY uses that probably come from live range splitting.
262        if (MI->readsVirtualRegister(Reg) &&
263            (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
264             LI.killedAt(Idx)))
265          ToShrink.insert(&LI);
266
267        // Remove defined value.
268        if (MOI->isDef()) {
269          if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
270            if (TheDelegate)
271              TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
272            LI.removeValNo(VNI);
273            if (LI.empty())
274              RegsToErase.push_back(Reg);
275          }
276        }
277      }
278
279      // Currently, we don't support DCE of physreg live ranges. If MI reads
280      // any unreserved physregs, don't erase the instruction, but turn it into
281      // a KILL instead. This way, the physreg live ranges don't end up
282      // dangling.
283      // FIXME: It would be better to have something like shrinkToUses() for
284      // physregs. That could potentially enable more DCE and it would free up
285      // the physreg. It would not happen often, though.
286      if (ReadsPhysRegs) {
287        MI->setDesc(TII.get(TargetOpcode::KILL));
288        // Remove all operands that aren't physregs.
289        for (unsigned i = MI->getNumOperands(); i; --i) {
290          const MachineOperand &MO = MI->getOperand(i-1);
291          if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
292            continue;
293          MI->RemoveOperand(i-1);
294        }
295        DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
296      } else {
297        if (TheDelegate)
298          TheDelegate->LRE_WillEraseInstruction(MI);
299        LIS.RemoveMachineInstrFromMaps(MI);
300        MI->eraseFromParent();
301        ++NumDCEDeleted;
302      }
303
304      // Erase any virtregs that are now empty and unused. There may be <undef>
305      // uses around. Keep the empty live range in that case.
306      for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
307        unsigned Reg = RegsToErase[i];
308        if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
309          ToShrink.remove(&LIS.getInterval(Reg));
310          eraseVirtReg(Reg);
311        }
312      }
313    }
314
315    if (ToShrink.empty())
316      break;
317
318    // Shrink just one live interval. Then delete new dead defs.
319    LiveInterval *LI = ToShrink.back();
320    ToShrink.pop_back();
321    if (foldAsLoad(LI, Dead))
322      continue;
323    if (TheDelegate)
324      TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
325    if (!LIS.shrinkToUses(LI, &Dead))
326      continue;
327
328    // Don't create new intervals for a register being spilled.
329    // The new intervals would have to be spilled anyway so its not worth it.
330    // Also they currently aren't spilled so creating them and not spilling
331    // them results in incorrect code.
332    bool BeingSpilled = false;
333    for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
334      if (LI->reg == RegsBeingSpilled[i]) {
335        BeingSpilled = true;
336        break;
337      }
338    }
339
340    if (BeingSpilled) continue;
341
342    // LI may have been separated, create new intervals.
343    LI->RenumberValues(LIS);
344    ConnectedVNInfoEqClasses ConEQ(LIS);
345    unsigned NumComp = ConEQ.Classify(LI);
346    if (NumComp <= 1)
347      continue;
348    ++NumFracRanges;
349    bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
350    DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
351    SmallVector<LiveInterval*, 8> Dups(1, LI);
352    for (unsigned i = 1; i != NumComp; ++i) {
353      Dups.push_back(&createFrom(LI->reg));
354      // If LI is an original interval that hasn't been split yet, make the new
355      // intervals their own originals instead of referring to LI. The original
356      // interval must contain all the split products, and LI doesn't.
357      if (IsOriginal)
358        VRM->setIsSplitFromReg(Dups.back()->reg, 0);
359      if (TheDelegate)
360        TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
361    }
362    ConEQ.Distribute(&Dups[0], MRI);
363    DEBUG({
364      for (unsigned i = 0; i != NumComp; ++i)
365        dbgs() << '\t' << *Dups[i] << '\n';
366    });
367  }
368}
369
370void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
371                                             const MachineLoopInfo &Loops) {
372  VirtRegAuxInfo VRAI(MF, LIS, Loops);
373  for (iterator I = begin(), E = end(); I != E; ++I) {
374    LiveInterval &LI = **I;
375    if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
376      DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
377                   << MRI.getRegClass(LI.reg)->getName() << '\n');
378    VRAI.CalculateWeightAndHint(LI);
379  }
380}
381