LiveVariables.cpp revision 04f3d1de138c7ebffc1d37a273e5a8675b6a933d
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43char LiveVariables::ID = 0;
44static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
45
46
47void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
48  AU.addRequiredID(UnreachableMachineBlockElimID);
49  AU.setPreservesAll();
50  MachineFunctionPass::getAnalysisUsage(AU);
51}
52
53void LiveVariables::VarInfo::dump() const {
54  errs() << "  Alive in blocks: ";
55  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
56           E = AliveBlocks.end(); I != E; ++I)
57    errs() << *I << ", ";
58  errs() << "\n  Killed by:";
59  if (Kills.empty())
60    errs() << " No instructions.\n";
61  else {
62    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
63      errs() << "\n    #" << i << ": " << *Kills[i];
64    errs() << "\n";
65  }
66}
67
68/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
69LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
70  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
71         "getVarInfo: not a virtual register!");
72  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
73  if (RegIdx >= VirtRegInfo.size()) {
74    if (RegIdx >= 2*VirtRegInfo.size())
75      VirtRegInfo.resize(RegIdx*2);
76    else
77      VirtRegInfo.resize(2*VirtRegInfo.size());
78  }
79  return VirtRegInfo[RegIdx];
80}
81
82void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
83                                            MachineBasicBlock *DefBlock,
84                                            MachineBasicBlock *MBB,
85                                    std::vector<MachineBasicBlock*> &WorkList) {
86  unsigned BBNum = MBB->getNumber();
87
88  // Check to see if this basic block is one of the killing blocks.  If so,
89  // remove it.
90  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
91    if (VRInfo.Kills[i]->getParent() == MBB) {
92      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
93      break;
94    }
95
96  if (MBB == DefBlock) return;  // Terminate recursion
97
98  if (VRInfo.AliveBlocks.test(BBNum))
99    return;  // We already know the block is live
100
101  // Mark the variable known alive in this bb
102  VRInfo.AliveBlocks.set(BBNum);
103
104  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
105         E = MBB->pred_rend(); PI != E; ++PI)
106    WorkList.push_back(*PI);
107}
108
109void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
110                                            MachineBasicBlock *DefBlock,
111                                            MachineBasicBlock *MBB) {
112  std::vector<MachineBasicBlock*> WorkList;
113  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
114
115  while (!WorkList.empty()) {
116    MachineBasicBlock *Pred = WorkList.back();
117    WorkList.pop_back();
118    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
119  }
120}
121
122void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
123                                     MachineInstr *MI) {
124  assert(MRI->getVRegDef(reg) && "Register use before def!");
125
126  unsigned BBNum = MBB->getNumber();
127
128  VarInfo& VRInfo = getVarInfo(reg);
129  VRInfo.NumUses++;
130
131  // Check to see if this basic block is already a kill block.
132  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
133    // Yes, this register is killed in this basic block already. Increase the
134    // live range by updating the kill instruction.
135    VRInfo.Kills.back() = MI;
136    return;
137  }
138
139#ifndef NDEBUG
140  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
141    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
142#endif
143
144  // This situation can occur:
145  //
146  //     ,------.
147  //     |      |
148  //     |      v
149  //     |   t2 = phi ... t1 ...
150  //     |      |
151  //     |      v
152  //     |   t1 = ...
153  //     |  ... = ... t1 ...
154  //     |      |
155  //     `------'
156  //
157  // where there is a use in a PHI node that's a predecessor to the defining
158  // block. We don't want to mark all predecessors as having the value "alive"
159  // in this case.
160  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
161
162  // Add a new kill entry for this basic block. If this virtual register is
163  // already marked as alive in this basic block, that means it is alive in at
164  // least one of the successor blocks, it's not a kill.
165  if (!VRInfo.AliveBlocks.test(BBNum))
166    VRInfo.Kills.push_back(MI);
167
168  // Update all dominating blocks to mark them as "known live".
169  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
170         E = MBB->pred_end(); PI != E; ++PI)
171    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
172}
173
174void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
175  VarInfo &VRInfo = getVarInfo(Reg);
176
177  if (VRInfo.AliveBlocks.empty())
178    // If vr is not alive in any block, then defaults to dead.
179    VRInfo.Kills.push_back(MI);
180}
181
182/// FindLastPartialDef - Return the last partial def of the specified register.
183/// Also returns the sub-registers that're defined by the instruction.
184MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
185                                            SmallSet<unsigned,4> &PartDefRegs) {
186  unsigned LastDefReg = 0;
187  unsigned LastDefDist = 0;
188  MachineInstr *LastDef = NULL;
189  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
190       unsigned SubReg = *SubRegs; ++SubRegs) {
191    MachineInstr *Def = PhysRegDef[SubReg];
192    if (!Def)
193      continue;
194    unsigned Dist = DistanceMap[Def];
195    if (Dist > LastDefDist) {
196      LastDefReg  = SubReg;
197      LastDef     = Def;
198      LastDefDist = Dist;
199    }
200  }
201
202  if (!LastDef)
203    return 0;
204
205  PartDefRegs.insert(LastDefReg);
206  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
207    MachineOperand &MO = LastDef->getOperand(i);
208    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
209      continue;
210    unsigned DefReg = MO.getReg();
211    if (TRI->isSubRegister(Reg, DefReg)) {
212      PartDefRegs.insert(DefReg);
213      for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
214           unsigned SubReg = *SubRegs; ++SubRegs)
215        PartDefRegs.insert(SubReg);
216    }
217  }
218  return LastDef;
219}
220
221/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
222/// implicit defs to a machine instruction if there was an earlier def of its
223/// super-register.
224void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
225  // If there was a previous use or a "full" def all is well.
226  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
227    // Otherwise, the last sub-register def implicitly defines this register.
228    // e.g.
229    // AH =
230    // AL = ... <imp-def EAX>, <imp-kill AH>
231    //    = AH
232    // ...
233    //    = EAX
234    // All of the sub-registers must have been defined before the use of Reg!
235    SmallSet<unsigned, 4> PartDefRegs;
236    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
237    // If LastPartialDef is NULL, it must be using a livein register.
238    if (LastPartialDef) {
239      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
240                                                           true/*IsImp*/));
241      PhysRegDef[Reg] = LastPartialDef;
242      SmallSet<unsigned, 8> Processed;
243      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
244           unsigned SubReg = *SubRegs; ++SubRegs) {
245        if (Processed.count(SubReg))
246          continue;
247        if (PartDefRegs.count(SubReg))
248          continue;
249        // This part of Reg was defined before the last partial def. It's killed
250        // here.
251        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
252                                                             false/*IsDef*/,
253                                                             true/*IsImp*/));
254        PhysRegDef[SubReg] = LastPartialDef;
255        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
256          Processed.insert(*SS);
257      }
258    }
259  }
260
261  // Remember this use.
262  PhysRegUse[Reg]  = MI;
263  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
264       unsigned SubReg = *SubRegs; ++SubRegs)
265    PhysRegUse[SubReg] =  MI;
266}
267
268bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
269  MachineInstr *LastDef = PhysRegDef[Reg];
270  MachineInstr *LastUse = PhysRegUse[Reg];
271  if (!LastDef && !LastUse)
272    return false;
273
274  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
275  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
276  // The whole register is used.
277  // AL =
278  // AH =
279  //
280  //    = AX
281  //    = AL, AX<imp-use, kill>
282  // AX =
283  //
284  // Or whole register is defined, but not used at all.
285  // AX<dead> =
286  // ...
287  // AX =
288  //
289  // Or whole register is defined, but only partly used.
290  // AX<dead> = AL<imp-def>
291  //    = AL<kill>
292  // AX =
293  MachineInstr *LastPartDef = 0;
294  unsigned LastPartDefDist = 0;
295  SmallSet<unsigned, 8> PartUses;
296  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
297       unsigned SubReg = *SubRegs; ++SubRegs) {
298    MachineInstr *Def = PhysRegDef[SubReg];
299    if (Def && Def != LastDef) {
300      // There was a def of this sub-register in between. This is a partial
301      // def, keep track of the last one.
302      unsigned Dist = DistanceMap[Def];
303      if (Dist > LastPartDefDist) {
304        LastPartDefDist = Dist;
305        LastPartDef = Def;
306      }
307      continue;
308    }
309    if (MachineInstr *Use = PhysRegUse[SubReg]) {
310      PartUses.insert(SubReg);
311      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
312        PartUses.insert(*SS);
313      unsigned Dist = DistanceMap[Use];
314      if (Dist > LastRefOrPartRefDist) {
315        LastRefOrPartRefDist = Dist;
316        LastRefOrPartRef = Use;
317      }
318    }
319  }
320
321  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
322    if (LastPartDef)
323      // The last partial def kills the register.
324      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
325                                                true/*IsImp*/, true/*IsKill*/));
326    else
327      // If the last reference is the last def, then it's not used at all.
328      // That is, unless we are currently processing the last reference itself.
329      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
330  } else if (!PhysRegUse[Reg]) {
331    // Partial uses. Mark register def dead and add implicit def of
332    // sub-registers which are used.
333    // EAX<dead>  = op  AL<imp-def>
334    // That is, EAX def is dead but AL def extends pass it.
335    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
336    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
337         unsigned SubReg = *SubRegs; ++SubRegs) {
338      if (!PartUses.count(SubReg))
339        continue;
340      bool NeedDef = true;
341      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
342        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
343        if (MO) {
344          NeedDef = false;
345          assert(!MO->isDead());
346        }
347      }
348      if (NeedDef)
349        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
350                                                 true/*IsDef*/, true/*IsImp*/));
351      LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
352      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
353        PartUses.erase(*SS);
354    }
355  } else
356    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
357  return true;
358}
359
360void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
361                                     SmallVector<unsigned, 4> &Defs) {
362  // What parts of the register are previously defined?
363  SmallSet<unsigned, 32> Live;
364  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
365    Live.insert(Reg);
366    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
367      Live.insert(*SS);
368  } else {
369    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
370         unsigned SubReg = *SubRegs; ++SubRegs) {
371      // If a register isn't itself defined, but all parts that make up of it
372      // are defined, then consider it also defined.
373      // e.g.
374      // AL =
375      // AH =
376      //    = AX
377      if (Live.count(SubReg))
378        continue;
379      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
380        Live.insert(SubReg);
381        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
382          Live.insert(*SS);
383      }
384    }
385  }
386
387  // Start from the largest piece, find the last time any part of the register
388  // is referenced.
389  HandlePhysRegKill(Reg, MI);
390  // Only some of the sub-registers are used.
391  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
392       unsigned SubReg = *SubRegs; ++SubRegs) {
393    if (!Live.count(SubReg))
394      // Skip if this sub-register isn't defined.
395      continue;
396    HandlePhysRegKill(SubReg, MI);
397  }
398
399  if (MI)
400    Defs.push_back(Reg);  // Remember this def.
401}
402
403void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
404                                      SmallVector<unsigned, 4> &Defs) {
405  while (!Defs.empty()) {
406    unsigned Reg = Defs.back();
407    Defs.pop_back();
408    PhysRegDef[Reg]  = MI;
409    PhysRegUse[Reg]  = NULL;
410    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
411         unsigned SubReg = *SubRegs; ++SubRegs) {
412      PhysRegDef[SubReg]  = MI;
413      PhysRegUse[SubReg]  = NULL;
414    }
415  }
416}
417
418namespace {
419  struct RegSorter {
420    const TargetRegisterInfo *TRI;
421
422    RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { }
423    bool operator()(unsigned A, unsigned B) {
424      if (TRI->isSubRegister(A, B))
425        return true;
426      else if (TRI->isSubRegister(B, A))
427        return false;
428      return A < B;
429    }
430  };
431}
432
433bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
434  MF = &mf;
435  MRI = &mf.getRegInfo();
436  TRI = MF->getTarget().getRegisterInfo();
437
438  ReservedRegisters = TRI->getReservedRegs(mf);
439
440  unsigned NumRegs = TRI->getNumRegs();
441  PhysRegDef  = new MachineInstr*[NumRegs];
442  PhysRegUse  = new MachineInstr*[NumRegs];
443  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
444  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
445  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
446
447  /// Get some space for a respectable number of registers.
448  VirtRegInfo.resize(64);
449
450  analyzePHINodes(mf);
451
452  // Calculate live variable information in depth first order on the CFG of the
453  // function.  This guarantees that we will see the definition of a virtual
454  // register before its uses due to dominance properties of SSA (except for PHI
455  // nodes, which are treated as a special case).
456  MachineBasicBlock *Entry = MF->begin();
457  SmallPtrSet<MachineBasicBlock*,16> Visited;
458
459  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
460         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
461       DFI != E; ++DFI) {
462    MachineBasicBlock *MBB = *DFI;
463
464    // Mark live-in registers as live-in.
465    SmallVector<unsigned, 4> Defs;
466    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
467           EE = MBB->livein_end(); II != EE; ++II) {
468      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
469             "Cannot have a live-in virtual register!");
470      HandlePhysRegDef(*II, 0, Defs);
471    }
472
473    // Loop over all of the instructions, processing them.
474    DistanceMap.clear();
475    unsigned Dist = 0;
476    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
477         I != E; ++I) {
478      MachineInstr *MI = I;
479      DistanceMap.insert(std::make_pair(MI, Dist++));
480
481      // Process all of the operands of the instruction...
482      unsigned NumOperandsToProcess = MI->getNumOperands();
483
484      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
485      // of the uses.  They will be handled in other basic blocks.
486      if (MI->getOpcode() == TargetInstrInfo::PHI)
487        NumOperandsToProcess = 1;
488
489      SmallVector<unsigned, 4> UseRegs;
490      SmallVector<unsigned, 4> DefRegs;
491      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
492        const MachineOperand &MO = MI->getOperand(i);
493        if (!MO.isReg() || MO.getReg() == 0)
494          continue;
495        unsigned MOReg = MO.getReg();
496        if (MO.isUse())
497          UseRegs.push_back(MOReg);
498        if (MO.isDef())
499          DefRegs.push_back(MOReg);
500      }
501
502      // Process all uses.
503      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
504        unsigned MOReg = UseRegs[i];
505        if (TargetRegisterInfo::isVirtualRegister(MOReg))
506          HandleVirtRegUse(MOReg, MBB, MI);
507        else if (!ReservedRegisters[MOReg])
508          HandlePhysRegUse(MOReg, MI);
509      }
510
511      // Process all defs.
512      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
513        unsigned MOReg = DefRegs[i];
514        if (TargetRegisterInfo::isVirtualRegister(MOReg))
515          HandleVirtRegDef(MOReg, MI);
516        else if (!ReservedRegisters[MOReg])
517          HandlePhysRegDef(MOReg, MI, Defs);
518      }
519      UpdatePhysRegDefs(MI, Defs);
520    }
521
522    // Handle any virtual assignments from PHI nodes which might be at the
523    // bottom of this basic block.  We check all of our successor blocks to see
524    // if they have PHI nodes, and if so, we simulate an assignment at the end
525    // of the current block.
526    if (!PHIVarInfo[MBB->getNumber()].empty()) {
527      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
528
529      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
530             E = VarInfoVec.end(); I != E; ++I)
531        // Mark it alive only in the block we are representing.
532        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
533                                MBB);
534    }
535
536    // Finally, if the last instruction in the block is a return, make sure to
537    // mark it as using all of the live-out values in the function.
538    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
539      MachineInstr *Ret = &MBB->back();
540
541      for (MachineRegisterInfo::liveout_iterator
542           I = MF->getRegInfo().liveout_begin(),
543           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
544        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
545               "Cannot have a live-out virtual register!");
546        HandlePhysRegUse(*I, Ret);
547
548        // Add live-out registers as implicit uses.
549        if (!Ret->readsRegister(*I))
550          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
551      }
552    }
553
554    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
555    // available at the end of the basic block.
556    for (unsigned i = 0; i != NumRegs; ++i)
557      if (PhysRegDef[i] || PhysRegUse[i])
558        HandlePhysRegDef(i, 0, Defs);
559
560    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
561    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
562  }
563
564  // Convert and transfer the dead / killed information we have gathered into
565  // VirtRegInfo onto MI's.
566  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
567    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
568      if (VirtRegInfo[i].Kills[j] ==
569          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
570        VirtRegInfo[i]
571          .Kills[j]->addRegisterDead(i +
572                                     TargetRegisterInfo::FirstVirtualRegister,
573                                     TRI);
574      else
575        VirtRegInfo[i]
576          .Kills[j]->addRegisterKilled(i +
577                                       TargetRegisterInfo::FirstVirtualRegister,
578                                       TRI);
579
580  // Check to make sure there are no unreachable blocks in the MC CFG for the
581  // function.  If so, it is due to a bug in the instruction selector or some
582  // other part of the code generator if this happens.
583#ifndef NDEBUG
584  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
585    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
586#endif
587
588  delete[] PhysRegDef;
589  delete[] PhysRegUse;
590  delete[] PHIVarInfo;
591
592  return false;
593}
594
595/// replaceKillInstruction - Update register kill info by replacing a kill
596/// instruction with a new one.
597void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
598                                           MachineInstr *NewMI) {
599  VarInfo &VI = getVarInfo(Reg);
600  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
601}
602
603/// removeVirtualRegistersKilled - Remove all killed info for the specified
604/// instruction.
605void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
606  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
607    MachineOperand &MO = MI->getOperand(i);
608    if (MO.isReg() && MO.isKill()) {
609      MO.setIsKill(false);
610      unsigned Reg = MO.getReg();
611      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
612        bool removed = getVarInfo(Reg).removeKill(MI);
613        assert(removed && "kill not in register's VarInfo?");
614        removed = true;
615      }
616    }
617  }
618}
619
620/// analyzePHINodes - Gather information about the PHI nodes in here. In
621/// particular, we want to map the variable information of a virtual register
622/// which is used in a PHI node. We map that to the BB the vreg is coming from.
623///
624void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
625  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
626       I != E; ++I)
627    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
628         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
629      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
630        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
631          .push_back(BBI->getOperand(i).getReg());
632}
633