LiveVariables.cpp revision 3e20475feebca3bfb29375ac7f3e5acbeb2a95c8
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include <algorithm>
41using namespace llvm;
42
43char LiveVariables::ID = 0;
44static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
45
46
47void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
48  AU.addRequiredID(UnreachableMachineBlockElimID);
49  AU.setPreservesAll();
50  MachineFunctionPass::getAnalysisUsage(AU);
51}
52
53MachineInstr *
54LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
55  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
56    if (Kills[i]->getParent() == MBB)
57      return Kills[i];
58  return NULL;
59}
60
61void LiveVariables::VarInfo::dump() const {
62  errs() << "  Alive in blocks: ";
63  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
64           E = AliveBlocks.end(); I != E; ++I)
65    errs() << *I << ", ";
66  errs() << "\n  Killed by:";
67  if (Kills.empty())
68    errs() << " No instructions.\n";
69  else {
70    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
71      errs() << "\n    #" << i << ": " << *Kills[i];
72    errs() << "\n";
73  }
74}
75
76/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
77LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
78  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
79         "getVarInfo: not a virtual register!");
80  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
81  if (RegIdx >= VirtRegInfo.size()) {
82    if (RegIdx >= 2*VirtRegInfo.size())
83      VirtRegInfo.resize(RegIdx*2);
84    else
85      VirtRegInfo.resize(2*VirtRegInfo.size());
86  }
87  return VirtRegInfo[RegIdx];
88}
89
90void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
91                                            MachineBasicBlock *DefBlock,
92                                            MachineBasicBlock *MBB,
93                                    std::vector<MachineBasicBlock*> &WorkList) {
94  unsigned BBNum = MBB->getNumber();
95
96  // Check to see if this basic block is one of the killing blocks.  If so,
97  // remove it.
98  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
99    if (VRInfo.Kills[i]->getParent() == MBB) {
100      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
101      break;
102    }
103
104  if (MBB == DefBlock) return;  // Terminate recursion
105
106  if (VRInfo.AliveBlocks.test(BBNum))
107    return;  // We already know the block is live
108
109  // Mark the variable known alive in this bb
110  VRInfo.AliveBlocks.set(BBNum);
111
112  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
113         E = MBB->pred_rend(); PI != E; ++PI)
114    WorkList.push_back(*PI);
115}
116
117void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
118                                            MachineBasicBlock *DefBlock,
119                                            MachineBasicBlock *MBB) {
120  std::vector<MachineBasicBlock*> WorkList;
121  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
122
123  while (!WorkList.empty()) {
124    MachineBasicBlock *Pred = WorkList.back();
125    WorkList.pop_back();
126    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
127  }
128}
129
130void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
131                                     MachineInstr *MI) {
132  assert(MRI->getVRegDef(reg) && "Register use before def!");
133
134  unsigned BBNum = MBB->getNumber();
135
136  VarInfo& VRInfo = getVarInfo(reg);
137  VRInfo.NumUses++;
138
139  // Check to see if this basic block is already a kill block.
140  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
141    // Yes, this register is killed in this basic block already. Increase the
142    // live range by updating the kill instruction.
143    VRInfo.Kills.back() = MI;
144    return;
145  }
146
147#ifndef NDEBUG
148  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
149    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
150#endif
151
152  // This situation can occur:
153  //
154  //     ,------.
155  //     |      |
156  //     |      v
157  //     |   t2 = phi ... t1 ...
158  //     |      |
159  //     |      v
160  //     |   t1 = ...
161  //     |  ... = ... t1 ...
162  //     |      |
163  //     `------'
164  //
165  // where there is a use in a PHI node that's a predecessor to the defining
166  // block. We don't want to mark all predecessors as having the value "alive"
167  // in this case.
168  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
169
170  // Add a new kill entry for this basic block. If this virtual register is
171  // already marked as alive in this basic block, that means it is alive in at
172  // least one of the successor blocks, it's not a kill.
173  if (!VRInfo.AliveBlocks.test(BBNum))
174    VRInfo.Kills.push_back(MI);
175
176  // Update all dominating blocks to mark them as "known live".
177  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
178         E = MBB->pred_end(); PI != E; ++PI)
179    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
180}
181
182void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
183  VarInfo &VRInfo = getVarInfo(Reg);
184
185  if (VRInfo.AliveBlocks.empty())
186    // If vr is not alive in any block, then defaults to dead.
187    VRInfo.Kills.push_back(MI);
188}
189
190/// FindLastPartialDef - Return the last partial def of the specified register.
191/// Also returns the sub-registers that're defined by the instruction.
192MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
193                                            SmallSet<unsigned,4> &PartDefRegs) {
194  unsigned LastDefReg = 0;
195  unsigned LastDefDist = 0;
196  MachineInstr *LastDef = NULL;
197  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
198       unsigned SubReg = *SubRegs; ++SubRegs) {
199    MachineInstr *Def = PhysRegDef[SubReg];
200    if (!Def)
201      continue;
202    unsigned Dist = DistanceMap[Def];
203    if (Dist > LastDefDist) {
204      LastDefReg  = SubReg;
205      LastDef     = Def;
206      LastDefDist = Dist;
207    }
208  }
209
210  if (!LastDef)
211    return 0;
212
213  PartDefRegs.insert(LastDefReg);
214  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
215    MachineOperand &MO = LastDef->getOperand(i);
216    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
217      continue;
218    unsigned DefReg = MO.getReg();
219    if (TRI->isSubRegister(Reg, DefReg)) {
220      PartDefRegs.insert(DefReg);
221      for (const unsigned *SubRegs = TRI->getSubRegisters(DefReg);
222           unsigned SubReg = *SubRegs; ++SubRegs)
223        PartDefRegs.insert(SubReg);
224    }
225  }
226  return LastDef;
227}
228
229/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
230/// implicit defs to a machine instruction if there was an earlier def of its
231/// super-register.
232void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
233  // If there was a previous use or a "full" def all is well.
234  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
235    // Otherwise, the last sub-register def implicitly defines this register.
236    // e.g.
237    // AH =
238    // AL = ... <imp-def EAX>, <imp-kill AH>
239    //    = AH
240    // ...
241    //    = EAX
242    // All of the sub-registers must have been defined before the use of Reg!
243    SmallSet<unsigned, 4> PartDefRegs;
244    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
245    // If LastPartialDef is NULL, it must be using a livein register.
246    if (LastPartialDef) {
247      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
248                                                           true/*IsImp*/));
249      PhysRegDef[Reg] = LastPartialDef;
250      SmallSet<unsigned, 8> Processed;
251      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
252           unsigned SubReg = *SubRegs; ++SubRegs) {
253        if (Processed.count(SubReg))
254          continue;
255        if (PartDefRegs.count(SubReg))
256          continue;
257        // This part of Reg was defined before the last partial def. It's killed
258        // here.
259        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
260                                                             false/*IsDef*/,
261                                                             true/*IsImp*/));
262        PhysRegDef[SubReg] = LastPartialDef;
263        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
264          Processed.insert(*SS);
265      }
266    }
267  }
268
269  // Remember this use.
270  PhysRegUse[Reg]  = MI;
271  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
272       unsigned SubReg = *SubRegs; ++SubRegs)
273    PhysRegUse[SubReg] =  MI;
274}
275
276bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
277  MachineInstr *LastDef = PhysRegDef[Reg];
278  MachineInstr *LastUse = PhysRegUse[Reg];
279  if (!LastDef && !LastUse)
280    return false;
281
282  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
283  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
284  // The whole register is used.
285  // AL =
286  // AH =
287  //
288  //    = AX
289  //    = AL, AX<imp-use, kill>
290  // AX =
291  //
292  // Or whole register is defined, but not used at all.
293  // AX<dead> =
294  // ...
295  // AX =
296  //
297  // Or whole register is defined, but only partly used.
298  // AX<dead> = AL<imp-def>
299  //    = AL<kill>
300  // AX =
301  MachineInstr *LastPartDef = 0;
302  unsigned LastPartDefDist = 0;
303  SmallSet<unsigned, 8> PartUses;
304  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
305       unsigned SubReg = *SubRegs; ++SubRegs) {
306    MachineInstr *Def = PhysRegDef[SubReg];
307    if (Def && Def != LastDef) {
308      // There was a def of this sub-register in between. This is a partial
309      // def, keep track of the last one.
310      unsigned Dist = DistanceMap[Def];
311      if (Dist > LastPartDefDist) {
312        LastPartDefDist = Dist;
313        LastPartDef = Def;
314      }
315      continue;
316    }
317    if (MachineInstr *Use = PhysRegUse[SubReg]) {
318      PartUses.insert(SubReg);
319      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
320        PartUses.insert(*SS);
321      unsigned Dist = DistanceMap[Use];
322      if (Dist > LastRefOrPartRefDist) {
323        LastRefOrPartRefDist = Dist;
324        LastRefOrPartRef = Use;
325      }
326    }
327  }
328
329  if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
330    if (LastPartDef)
331      // The last partial def kills the register.
332      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
333                                                true/*IsImp*/, true/*IsKill*/));
334    else {
335      MachineOperand *MO =
336        LastRefOrPartRef->findRegisterDefOperand(Reg, false, TRI);
337      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
338      // If the last reference is the last def, then it's not used at all.
339      // That is, unless we are currently processing the last reference itself.
340      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
341      if (NeedEC) {
342        // If we are adding a subreg def and the superreg def is marked early
343        // clobber, add an early clobber marker to the subreg def.
344        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
345        if (MO)
346          MO->setIsEarlyClobber();
347      }
348    }
349  } else if (!PhysRegUse[Reg]) {
350    // Partial uses. Mark register def dead and add implicit def of
351    // sub-registers which are used.
352    // EAX<dead>  = op  AL<imp-def>
353    // That is, EAX def is dead but AL def extends pass it.
354    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
355    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
356         unsigned SubReg = *SubRegs; ++SubRegs) {
357      if (!PartUses.count(SubReg))
358        continue;
359      bool NeedDef = true;
360      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
361        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
362        if (MO) {
363          NeedDef = false;
364          assert(!MO->isDead());
365        }
366      }
367      if (NeedDef)
368        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
369                                                 true/*IsDef*/, true/*IsImp*/));
370      LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
371      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
372        PartUses.erase(*SS);
373    }
374  } else
375    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
376  return true;
377}
378
379void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
380                                     SmallVector<unsigned, 4> &Defs) {
381  // What parts of the register are previously defined?
382  SmallSet<unsigned, 32> Live;
383  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
384    Live.insert(Reg);
385    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
386      Live.insert(*SS);
387  } else {
388    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
389         unsigned SubReg = *SubRegs; ++SubRegs) {
390      // If a register isn't itself defined, but all parts that make up of it
391      // are defined, then consider it also defined.
392      // e.g.
393      // AL =
394      // AH =
395      //    = AX
396      if (Live.count(SubReg))
397        continue;
398      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
399        Live.insert(SubReg);
400        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
401          Live.insert(*SS);
402      }
403    }
404  }
405
406  // Start from the largest piece, find the last time any part of the register
407  // is referenced.
408  HandlePhysRegKill(Reg, MI);
409  // Only some of the sub-registers are used.
410  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
411       unsigned SubReg = *SubRegs; ++SubRegs) {
412    if (!Live.count(SubReg))
413      // Skip if this sub-register isn't defined.
414      continue;
415    HandlePhysRegKill(SubReg, MI);
416  }
417
418  if (MI)
419    Defs.push_back(Reg);  // Remember this def.
420}
421
422void LiveVariables::UpdatePhysRegDefs(MachineInstr *MI,
423                                      SmallVector<unsigned, 4> &Defs) {
424  while (!Defs.empty()) {
425    unsigned Reg = Defs.back();
426    Defs.pop_back();
427    PhysRegDef[Reg]  = MI;
428    PhysRegUse[Reg]  = NULL;
429    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
430         unsigned SubReg = *SubRegs; ++SubRegs) {
431      PhysRegDef[SubReg]  = MI;
432      PhysRegUse[SubReg]  = NULL;
433    }
434  }
435}
436
437namespace {
438  struct RegSorter {
439    const TargetRegisterInfo *TRI;
440
441    RegSorter(const TargetRegisterInfo *tri) : TRI(tri) { }
442    bool operator()(unsigned A, unsigned B) {
443      if (TRI->isSubRegister(A, B))
444        return true;
445      else if (TRI->isSubRegister(B, A))
446        return false;
447      return A < B;
448    }
449  };
450}
451
452bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
453  MF = &mf;
454  MRI = &mf.getRegInfo();
455  TRI = MF->getTarget().getRegisterInfo();
456
457  ReservedRegisters = TRI->getReservedRegs(mf);
458
459  unsigned NumRegs = TRI->getNumRegs();
460  PhysRegDef  = new MachineInstr*[NumRegs];
461  PhysRegUse  = new MachineInstr*[NumRegs];
462  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
463  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
464  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
465
466  /// Get some space for a respectable number of registers.
467  VirtRegInfo.resize(64);
468
469  analyzePHINodes(mf);
470
471  // Calculate live variable information in depth first order on the CFG of the
472  // function.  This guarantees that we will see the definition of a virtual
473  // register before its uses due to dominance properties of SSA (except for PHI
474  // nodes, which are treated as a special case).
475  MachineBasicBlock *Entry = MF->begin();
476  SmallPtrSet<MachineBasicBlock*,16> Visited;
477
478  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
479         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
480       DFI != E; ++DFI) {
481    MachineBasicBlock *MBB = *DFI;
482
483    // Mark live-in registers as live-in.
484    SmallVector<unsigned, 4> Defs;
485    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
486           EE = MBB->livein_end(); II != EE; ++II) {
487      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
488             "Cannot have a live-in virtual register!");
489      HandlePhysRegDef(*II, 0, Defs);
490    }
491
492    // Loop over all of the instructions, processing them.
493    DistanceMap.clear();
494    unsigned Dist = 0;
495    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
496         I != E; ++I) {
497      MachineInstr *MI = I;
498      DistanceMap.insert(std::make_pair(MI, Dist++));
499
500      // Process all of the operands of the instruction...
501      unsigned NumOperandsToProcess = MI->getNumOperands();
502
503      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
504      // of the uses.  They will be handled in other basic blocks.
505      if (MI->getOpcode() == TargetInstrInfo::PHI)
506        NumOperandsToProcess = 1;
507
508      SmallVector<unsigned, 4> UseRegs;
509      SmallVector<unsigned, 4> DefRegs;
510      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
511        const MachineOperand &MO = MI->getOperand(i);
512        if (!MO.isReg() || MO.getReg() == 0)
513          continue;
514        unsigned MOReg = MO.getReg();
515        if (MO.isUse())
516          UseRegs.push_back(MOReg);
517        if (MO.isDef())
518          DefRegs.push_back(MOReg);
519      }
520
521      // Process all uses.
522      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
523        unsigned MOReg = UseRegs[i];
524        if (TargetRegisterInfo::isVirtualRegister(MOReg))
525          HandleVirtRegUse(MOReg, MBB, MI);
526        else if (!ReservedRegisters[MOReg])
527          HandlePhysRegUse(MOReg, MI);
528      }
529
530      // Process all defs.
531      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
532        unsigned MOReg = DefRegs[i];
533        if (TargetRegisterInfo::isVirtualRegister(MOReg))
534          HandleVirtRegDef(MOReg, MI);
535        else if (!ReservedRegisters[MOReg])
536          HandlePhysRegDef(MOReg, MI, Defs);
537      }
538      UpdatePhysRegDefs(MI, Defs);
539    }
540
541    // Handle any virtual assignments from PHI nodes which might be at the
542    // bottom of this basic block.  We check all of our successor blocks to see
543    // if they have PHI nodes, and if so, we simulate an assignment at the end
544    // of the current block.
545    if (!PHIVarInfo[MBB->getNumber()].empty()) {
546      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
547
548      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
549             E = VarInfoVec.end(); I != E; ++I)
550        // Mark it alive only in the block we are representing.
551        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
552                                MBB);
553    }
554
555    // Finally, if the last instruction in the block is a return, make sure to
556    // mark it as using all of the live-out values in the function.
557    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
558      MachineInstr *Ret = &MBB->back();
559
560      for (MachineRegisterInfo::liveout_iterator
561           I = MF->getRegInfo().liveout_begin(),
562           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
563        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
564               "Cannot have a live-out virtual register!");
565        HandlePhysRegUse(*I, Ret);
566
567        // Add live-out registers as implicit uses.
568        if (!Ret->readsRegister(*I))
569          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
570      }
571    }
572
573    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
574    // available at the end of the basic block.
575    for (unsigned i = 0; i != NumRegs; ++i)
576      if (PhysRegDef[i] || PhysRegUse[i])
577        HandlePhysRegDef(i, 0, Defs);
578
579    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
580    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
581  }
582
583  // Convert and transfer the dead / killed information we have gathered into
584  // VirtRegInfo onto MI's.
585  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
586    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
587      if (VirtRegInfo[i].Kills[j] ==
588          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
589        VirtRegInfo[i]
590          .Kills[j]->addRegisterDead(i +
591                                     TargetRegisterInfo::FirstVirtualRegister,
592                                     TRI);
593      else
594        VirtRegInfo[i]
595          .Kills[j]->addRegisterKilled(i +
596                                       TargetRegisterInfo::FirstVirtualRegister,
597                                       TRI);
598
599  // Check to make sure there are no unreachable blocks in the MC CFG for the
600  // function.  If so, it is due to a bug in the instruction selector or some
601  // other part of the code generator if this happens.
602#ifndef NDEBUG
603  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
604    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
605#endif
606
607  delete[] PhysRegDef;
608  delete[] PhysRegUse;
609  delete[] PHIVarInfo;
610
611  return false;
612}
613
614/// replaceKillInstruction - Update register kill info by replacing a kill
615/// instruction with a new one.
616void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
617                                           MachineInstr *NewMI) {
618  VarInfo &VI = getVarInfo(Reg);
619  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
620}
621
622/// removeVirtualRegistersKilled - Remove all killed info for the specified
623/// instruction.
624void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
625  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
626    MachineOperand &MO = MI->getOperand(i);
627    if (MO.isReg() && MO.isKill()) {
628      MO.setIsKill(false);
629      unsigned Reg = MO.getReg();
630      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
631        bool removed = getVarInfo(Reg).removeKill(MI);
632        assert(removed && "kill not in register's VarInfo?");
633        removed = true;
634      }
635    }
636  }
637}
638
639/// analyzePHINodes - Gather information about the PHI nodes in here. In
640/// particular, we want to map the variable information of a virtual register
641/// which is used in a PHI node. We map that to the BB the vreg is coming from.
642///
643void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
644  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
645       I != E; ++I)
646    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
647         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
648      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
649        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
650          .push_back(BBI->getOperand(i).getReg());
651}
652
653/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
654/// variables that are live out of DomBB will be marked as passing live through
655/// BB.
656void LiveVariables::addNewBlock(MachineBasicBlock *BB,
657                                MachineBasicBlock *DomBB) {
658  const unsigned NumNew = BB->getNumber();
659  const unsigned NumDom = DomBB->getNumber();
660
661  // Update info for all live variables
662  for (unsigned Reg = TargetRegisterInfo::FirstVirtualRegister,
663         E = MRI->getLastVirtReg()+1; Reg != E; ++Reg) {
664    VarInfo &VI = getVarInfo(Reg);
665
666    // Anything live through DomBB is also live through BB.
667    if (VI.AliveBlocks.test(NumDom)) {
668      VI.AliveBlocks.set(NumNew);
669      continue;
670    }
671
672    // Variables not defined in DomBB cannot be live out.
673    const MachineInstr *Def = MRI->getVRegDef(Reg);
674    if (!Def || Def->getParent() != DomBB)
675      continue;
676
677    // Killed by DomBB?
678    if (VI.findKill(DomBB))
679      continue;
680
681    // This register is defined in DomBB and live out
682    VI.AliveBlocks.set(NumNew);
683  }
684}
685