LiveVariables.cpp revision 49a5aaacef127970f91648ac468de1cd2b6f462f
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/TargetInstrInfo.h"
32#include "llvm/Target/TargetMachine.h"
33#include "llvm/Support/CFG.h"
34#include "Support/DepthFirstIterator.h"
35using namespace llvm;
36
37static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
38
39const std::pair<MachineBasicBlock*, unsigned> &
40LiveVariables::getMachineBasicBlockInfo(MachineBasicBlock *MBB) const{
41  return BBMap.find(MBB->getBasicBlock())->second;
42}
43
44/// getIndexMachineBasicBlock() - Given a block index, return the
45/// MachineBasicBlock corresponding to it.
46MachineBasicBlock *LiveVariables::getIndexMachineBasicBlock(unsigned Idx) {
47  if (BBIdxMap.empty()) {
48    BBIdxMap.resize(BBMap.size());
49    for (std::map<const BasicBlock*, std::pair<MachineBasicBlock*, unsigned> >
50           ::iterator I = BBMap.begin(), E = BBMap.end(); I != E; ++I) {
51      assert(BBIdxMap.size() > I->second.second &&"Indices are not sequential");
52      assert(BBIdxMap[I->second.second] == 0 && "Multiple idx collision!");
53      BBIdxMap[I->second.second] = I->second.first;
54    }
55  }
56  assert(Idx < BBIdxMap.size() && "BB Index out of range!");
57  return BBIdxMap[Idx];
58}
59
60LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
61  assert(RegIdx >= MRegisterInfo::FirstVirtualRegister &&
62         "getVarInfo: not a virtual register!");
63  RegIdx -= MRegisterInfo::FirstVirtualRegister;
64  if (RegIdx >= VirtRegInfo.size()) {
65    if (RegIdx >= 2*VirtRegInfo.size())
66      VirtRegInfo.resize(RegIdx*2);
67    else
68      VirtRegInfo.resize(2*VirtRegInfo.size());
69  }
70  return VirtRegInfo[RegIdx];
71}
72
73
74
75void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
76					    const BasicBlock *BB) {
77  const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
78  MachineBasicBlock *MBB = Info.first;
79  unsigned BBNum = Info.second;
80
81  // Check to see if this basic block is one of the killing blocks.  If so,
82  // remove it...
83  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
84    if (VRInfo.Kills[i].first == MBB) {
85      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
86      break;
87    }
88
89  if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
90
91  if (VRInfo.AliveBlocks.size() <= BBNum)
92    VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
93
94  if (VRInfo.AliveBlocks[BBNum])
95    return;  // We already know the block is live
96
97  // Mark the variable known alive in this bb
98  VRInfo.AliveBlocks[BBNum] = true;
99
100  for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
101    MarkVirtRegAliveInBlock(VRInfo, *PI);
102}
103
104void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
105				     MachineInstr *MI) {
106  // Check to see if this basic block is already a kill block...
107  if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
108    // Yes, this register is killed in this basic block already.  Increase the
109    // live range by updating the kill instruction.
110    VRInfo.Kills.back().second = MI;
111    return;
112  }
113
114#ifndef NDEBUG
115  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
116    assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
117#endif
118
119  assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
120
121  // Add a new kill entry for this basic block.
122  VRInfo.Kills.push_back(std::make_pair(MBB, MI));
123
124  // Update all dominating blocks to mark them known live.
125  const BasicBlock *BB = MBB->getBasicBlock();
126  for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
127       PI != E; ++PI)
128    MarkVirtRegAliveInBlock(VRInfo, *PI);
129}
130
131void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
132  PhysRegInfo[Reg] = MI;
133  PhysRegUsed[Reg] = true;
134}
135
136void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
137  // Does this kill a previous version of this register?
138  if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
139    if (PhysRegUsed[Reg])
140      RegistersKilled.insert(std::make_pair(LastUse, Reg));
141    else
142      RegistersDead.insert(std::make_pair(LastUse, Reg));
143  }
144  PhysRegInfo[Reg] = MI;
145  PhysRegUsed[Reg] = false;
146
147  for (const unsigned *AliasSet = RegInfo->getAliasSet(Reg);
148       *AliasSet; ++AliasSet) {
149    if (MachineInstr *LastUse = PhysRegInfo[*AliasSet]) {
150      if (PhysRegUsed[*AliasSet])
151	RegistersKilled.insert(std::make_pair(LastUse, *AliasSet));
152      else
153	RegistersDead.insert(std::make_pair(LastUse, *AliasSet));
154    }
155    PhysRegInfo[*AliasSet] = MI;
156    PhysRegUsed[*AliasSet] = false;
157  }
158}
159
160bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
161  // First time though, initialize AllocatablePhysicalRegisters for the target
162  if (AllocatablePhysicalRegisters.empty()) {
163    const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
164    assert(&MRI && "Target doesn't have register information?");
165
166    // Make space, initializing to false...
167    AllocatablePhysicalRegisters.resize(MRegisterInfo::FirstVirtualRegister);
168
169    // Loop over all of the register classes...
170    for (MRegisterInfo::regclass_iterator RCI = MRI.regclass_begin(),
171           E = MRI.regclass_end(); RCI != E; ++RCI)
172      // Loop over all of the allocatable registers in the function...
173      for (TargetRegisterClass::iterator I = (*RCI)->allocation_order_begin(MF),
174             E = (*RCI)->allocation_order_end(MF); I != E; ++I)
175        AllocatablePhysicalRegisters[*I] = true;  // The reg is allocatable!
176  }
177
178  // Build BBMap...
179  unsigned BBNum = 0;
180  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
181    BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
182
183  // PhysRegInfo - Keep track of which instruction was the last use of a
184  // physical register.  This is a purely local property, because all physical
185  // register references as presumed dead across basic blocks.
186  //
187  MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
188  bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
189  std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
190	    (MachineInstr*)0);
191  PhysRegInfo = PhysRegInfoA;
192  PhysRegUsed = PhysRegUsedA;
193
194  const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
195  RegInfo = MF.getTarget().getRegisterInfo();
196
197  /// Get some space for a respectable number of registers...
198  VirtRegInfo.resize(64);
199
200  // Calculate live variable information in depth first order on the CFG of the
201  // function.  This guarantees that we will see the definition of a virtual
202  // register before its uses due to dominance properties of SSA (except for PHI
203  // nodes, which are treated as a special case).
204  //
205  const BasicBlock *Entry = MF.getFunction()->begin();
206  for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
207       DFI != E; ++DFI) {
208    const BasicBlock *BB = *DFI;
209    std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
210    MachineBasicBlock *MBB = BBRec.first;
211    unsigned BBNum = BBRec.second;
212
213    // Loop over all of the instructions, processing them.
214    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
215	 I != E; ++I) {
216      MachineInstr *MI = *I;
217      const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
218
219      // Process all of the operands of the instruction...
220      unsigned NumOperandsToProcess = MI->getNumOperands();
221
222      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
223      // of the uses.  They will be handled in other basic blocks.
224      if (MI->getOpcode() == TargetInstrInfo::PHI)
225	NumOperandsToProcess = 1;
226
227      // Loop over implicit uses, using them.
228      for (const unsigned *ImplicitUses = MID.ImplicitUses;
229           *ImplicitUses; ++ImplicitUses)
230	HandlePhysRegUse(*ImplicitUses, MI);
231
232      // Process all explicit uses...
233      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
234	MachineOperand &MO = MI->getOperand(i);
235	if (MO.isUse()) {
236	  if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
237	    HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
238	  } else if (MO.isPhysicalRegister() &&
239                     AllocatablePhysicalRegisters[MO.getReg()]) {
240	    HandlePhysRegUse(MO.getReg(), MI);
241	  }
242	}
243      }
244
245      // Loop over implicit defs, defining them.
246      for (const unsigned *ImplicitDefs = MID.ImplicitDefs;
247           *ImplicitDefs; ++ImplicitDefs)
248        HandlePhysRegDef(*ImplicitDefs, MI);
249
250      // Process all explicit defs...
251      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
252	MachineOperand &MO = MI->getOperand(i);
253	if (MO.isDef()) {
254	  if (MO.isVirtualRegister()) {
255	    VarInfo &VRInfo = getVarInfo(MO.getReg());
256
257	    assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
258	    VRInfo.DefBlock = MBB;                           // Created here...
259	    VRInfo.DefInst = MI;
260	    VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
261	  } else if (MO.isPhysicalRegister() &&
262                     AllocatablePhysicalRegisters[MO.getReg()]) {
263	    HandlePhysRegDef(MO.getReg(), MI);
264	  }
265	}
266      }
267    }
268
269    // Handle any virtual assignments from PHI nodes which might be at the
270    // bottom of this basic block.  We check all of our successor blocks to see
271    // if they have PHI nodes, and if so, we simulate an assignment at the end
272    // of the current block.
273    for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB);
274         SI != E; ++SI) {
275      MachineBasicBlock *Succ = BBMap.find(*SI)->second.first;
276
277      // PHI nodes are guaranteed to be at the top of the block...
278      for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
279	   I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
280        MachineInstr *MI = *I;
281	for (unsigned i = 1; ; i += 2)
282	  if (MI->getOperand(i+1).getMachineBasicBlock() == MBB) {
283	    MachineOperand &MO = MI->getOperand(i);
284	    if (!MO.getVRegValueOrNull()) {
285	      VarInfo &VRInfo = getVarInfo(MO.getReg());
286
287	      // Only mark it alive only in the block we are representing...
288	      MarkVirtRegAliveInBlock(VRInfo, BB);
289	      break;   // Found the PHI entry for this block...
290	    }
291	  }
292      }
293    }
294
295    // Loop over PhysRegInfo, killing any registers that are available at the
296    // end of the basic block.  This also resets the PhysRegInfo map.
297    for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i)
298      if (PhysRegInfo[i])
299	HandlePhysRegDef(i, 0);
300  }
301
302  // Convert the information we have gathered into VirtRegInfo and transform it
303  // into a form usable by RegistersKilled.
304  //
305  for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
306    for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
307      if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
308	RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
309		    i + MRegisterInfo::FirstVirtualRegister));
310
311      else
312	RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
313		    i + MRegisterInfo::FirstVirtualRegister));
314    }
315
316  return false;
317}
318