LiveVariables.cpp revision 56184904cd9a348920de0c3b391d42b691091137
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/STLExtras.h"
36#include "llvm/Config/alloca.h"
37#include <algorithm>
38using namespace llvm;
39
40char LiveVariables::ID = 0;
41static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
42
43void LiveVariables::VarInfo::dump() const {
44  cerr << "Register Defined by: ";
45  if (DefInst)
46    cerr << *DefInst;
47  else
48    cerr << "<null>\n";
49  cerr << "  Alive in blocks: ";
50  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
51    if (AliveBlocks[i]) cerr << i << ", ";
52  cerr << "\n  Killed by:";
53  if (Kills.empty())
54    cerr << " No instructions.\n";
55  else {
56    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
57      cerr << "\n    #" << i << ": " << *Kills[i];
58    cerr << "\n";
59  }
60}
61
62LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
63  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
64         "getVarInfo: not a virtual register!");
65  RegIdx -= MRegisterInfo::FirstVirtualRegister;
66  if (RegIdx >= VirtRegInfo.size()) {
67    if (RegIdx >= 2*VirtRegInfo.size())
68      VirtRegInfo.resize(RegIdx*2);
69    else
70      VirtRegInfo.resize(2*VirtRegInfo.size());
71  }
72  VarInfo &VI = VirtRegInfo[RegIdx];
73  VI.AliveBlocks.resize(MF->getNumBlockIDs());
74  return VI;
75}
76
77bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
78  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
79    MachineOperand &MO = MI->getOperand(i);
80    if (MO.isReg() && MO.isKill()) {
81      if ((MO.getReg() == Reg) ||
82          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
83           MRegisterInfo::isPhysicalRegister(Reg) &&
84           RegInfo->isSubRegister(MO.getReg(), Reg)))
85        return true;
86    }
87  }
88  return false;
89}
90
91bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
92  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
93    MachineOperand &MO = MI->getOperand(i);
94    if (MO.isReg() && MO.isDead()) {
95      if ((MO.getReg() == Reg) ||
96          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
97           MRegisterInfo::isPhysicalRegister(Reg) &&
98           RegInfo->isSubRegister(MO.getReg(), Reg)))
99        return true;
100    }
101  }
102  return false;
103}
104
105bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
106  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
107    MachineOperand &MO = MI->getOperand(i);
108    if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
109      return true;
110  }
111  return false;
112}
113
114void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
115                                            MachineBasicBlock *MBB,
116                                    std::vector<MachineBasicBlock*> &WorkList) {
117  unsigned BBNum = MBB->getNumber();
118
119  // Check to see if this basic block is one of the killing blocks.  If so,
120  // remove it...
121  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
122    if (VRInfo.Kills[i]->getParent() == MBB) {
123      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
124      break;
125    }
126
127  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
128
129  if (VRInfo.AliveBlocks[BBNum])
130    return;  // We already know the block is live
131
132  // Mark the variable known alive in this bb
133  VRInfo.AliveBlocks[BBNum] = true;
134
135  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
136         E = MBB->pred_rend(); PI != E; ++PI)
137    WorkList.push_back(*PI);
138}
139
140void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
141                                            MachineBasicBlock *MBB) {
142  std::vector<MachineBasicBlock*> WorkList;
143  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
144  while (!WorkList.empty()) {
145    MachineBasicBlock *Pred = WorkList.back();
146    WorkList.pop_back();
147    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
148  }
149}
150
151
152void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
153                                     MachineInstr *MI) {
154  assert(VRInfo.DefInst && "Register use before def!");
155
156  VRInfo.NumUses++;
157
158  // Check to see if this basic block is already a kill block...
159  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
160    // Yes, this register is killed in this basic block already.  Increase the
161    // live range by updating the kill instruction.
162    VRInfo.Kills.back() = MI;
163    return;
164  }
165
166#ifndef NDEBUG
167  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
168    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
169#endif
170
171  assert(MBB != VRInfo.DefInst->getParent() &&
172         "Should have kill for defblock!");
173
174  // Add a new kill entry for this basic block.
175  // If this virtual register is already marked as alive in this basic block,
176  // that means it is alive in at least one of the successor block, it's not
177  // a kill.
178  if (!VRInfo.AliveBlocks[MBB->getNumber()])
179    VRInfo.Kills.push_back(MI);
180
181  // Update all dominating blocks to mark them known live.
182  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
183         E = MBB->pred_end(); PI != E; ++PI)
184    MarkVirtRegAliveInBlock(VRInfo, *PI);
185}
186
187bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
188                                      bool AddIfNotFound) {
189  bool Found = false;
190  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
191    MachineOperand &MO = MI->getOperand(i);
192    if (MO.isReg() && MO.isUse()) {
193      unsigned Reg = MO.getReg();
194      if (!Reg)
195        continue;
196      if (Reg == IncomingReg) {
197        MO.setIsKill();
198        Found = true;
199        break;
200      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
201                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
202                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
203                 MO.isKill())
204        // A super-register kill already exists.
205        return true;
206    }
207  }
208
209  // If not found, this means an alias of one of the operand is killed. Add a
210  // new implicit operand if required.
211  if (!Found && AddIfNotFound) {
212    MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
213    return true;
214  }
215  return Found;
216}
217
218bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
219                                    bool AddIfNotFound) {
220  bool Found = false;
221  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
222    MachineOperand &MO = MI->getOperand(i);
223    if (MO.isReg() && MO.isDef()) {
224      unsigned Reg = MO.getReg();
225      if (!Reg)
226        continue;
227      if (Reg == IncomingReg) {
228        MO.setIsDead();
229        Found = true;
230        break;
231      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
232                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
233                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
234                 MO.isDead())
235        // There exists a super-register that's marked dead.
236        return true;
237    }
238  }
239
240  // If not found, this means an alias of one of the operand is dead. Add a
241  // new implicit operand.
242  if (!Found && AddIfNotFound) {
243    MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
244                      true/*IsDead*/);
245    return true;
246  }
247  return Found;
248}
249
250void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
251  // There is a now a proper use, forget about the last partial use.
252  PhysRegPartUse[Reg] = NULL;
253
254  // Turn previous partial def's into read/mod/write.
255  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
256    MachineInstr *Def = PhysRegPartDef[Reg][i];
257    // First one is just a def. This means the use is reading some undef bits.
258    if (i != 0)
259      Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
260    Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
261  }
262  PhysRegPartDef[Reg].clear();
263
264  // There was an earlier def of a super-register. Add implicit def to that MI.
265  // A: EAX = ...
266  // B:     = AX
267  // Add implicit def to A.
268  if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) {
269    MachineInstr *Def = PhysRegInfo[Reg];
270    if (!Def->findRegisterDefOperand(Reg))
271      Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
272  }
273
274  PhysRegInfo[Reg] = MI;
275  PhysRegUsed[Reg] = true;
276
277  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
278       unsigned SubReg = *SubRegs; ++SubRegs) {
279    PhysRegInfo[SubReg] = MI;
280    PhysRegUsed[SubReg] = true;
281  }
282
283  // Remember the partial uses.
284  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
285       unsigned SuperReg = *SuperRegs; ++SuperRegs)
286    PhysRegPartUse[SuperReg] = MI;
287}
288
289void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
290  // Does this kill a previous version of this register?
291  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
292    if (PhysRegUsed[Reg])
293      addRegisterKilled(Reg, LastRef);
294    else if (PhysRegPartUse[Reg])
295      // Add implicit use / kill to last use of a sub-register.
296      addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
297    else
298      addRegisterDead(Reg, LastRef);
299  }
300  PhysRegInfo[Reg] = MI;
301  PhysRegUsed[Reg] = false;
302  PhysRegPartUse[Reg] = NULL;
303
304  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
305       unsigned SubReg = *SubRegs; ++SubRegs) {
306    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
307      if (PhysRegUsed[SubReg])
308        addRegisterKilled(SubReg, LastRef);
309      else if (PhysRegPartUse[SubReg])
310        // Add implicit use / kill to last use of a sub-register.
311        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
312      else
313        addRegisterDead(SubReg, LastRef);
314    }
315    PhysRegInfo[SubReg] = MI;
316    PhysRegUsed[SubReg] = false;
317  }
318
319  if (MI)
320    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
321         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
322      if (PhysRegInfo[SuperReg]) {
323        // The larger register is previously defined. Now a smaller part is
324        // being re-defined. Treat it as read/mod/write.
325        // EAX =
326        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
327        MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
328        MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
329        PhysRegInfo[SuperReg] = MI;
330        PhysRegUsed[SuperReg] = false;
331      } else {
332        // Remember this partial def.
333        PhysRegPartDef[SuperReg].push_back(MI);
334      }
335  }
336}
337
338bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
339  MF = &mf;
340  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
341  RegInfo = MF->getTarget().getRegisterInfo();
342  assert(RegInfo && "Target doesn't have register information?");
343
344  ReservedRegisters = RegInfo->getReservedRegs(mf);
345
346  unsigned NumRegs = RegInfo->getNumRegs();
347  PhysRegInfo = new MachineInstr*[NumRegs];
348  PhysRegUsed = new bool[NumRegs];
349  PhysRegPartUse = new MachineInstr*[NumRegs];
350  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
351  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
352  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
353  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
354  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
355
356  /// Get some space for a respectable number of registers...
357  VirtRegInfo.resize(64);
358
359  analyzePHINodes(mf);
360
361  // Calculate live variable information in depth first order on the CFG of the
362  // function.  This guarantees that we will see the definition of a virtual
363  // register before its uses due to dominance properties of SSA (except for PHI
364  // nodes, which are treated as a special case).
365  //
366  MachineBasicBlock *Entry = MF->begin();
367  std::set<MachineBasicBlock*> Visited;
368  for (df_ext_iterator<MachineBasicBlock*> DFI = df_ext_begin(Entry, Visited),
369         E = df_ext_end(Entry, Visited); DFI != E; ++DFI) {
370    MachineBasicBlock *MBB = *DFI;
371
372    // Mark live-in registers as live-in.
373    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
374           EE = MBB->livein_end(); II != EE; ++II) {
375      assert(MRegisterInfo::isPhysicalRegister(*II) &&
376             "Cannot have a live-in virtual register!");
377      HandlePhysRegDef(*II, 0);
378    }
379
380    // Loop over all of the instructions, processing them.
381    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
382         I != E; ++I) {
383      MachineInstr *MI = I;
384
385      // Process all of the operands of the instruction...
386      unsigned NumOperandsToProcess = MI->getNumOperands();
387
388      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
389      // of the uses.  They will be handled in other basic blocks.
390      if (MI->getOpcode() == TargetInstrInfo::PHI)
391        NumOperandsToProcess = 1;
392
393      // Process all uses...
394      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
395        MachineOperand &MO = MI->getOperand(i);
396        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
397          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
398            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
399          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
400                     !ReservedRegisters[MO.getReg()]) {
401            HandlePhysRegUse(MO.getReg(), MI);
402          }
403        }
404      }
405
406      // Process all defs...
407      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
408        MachineOperand &MO = MI->getOperand(i);
409        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
410          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
411            VarInfo &VRInfo = getVarInfo(MO.getReg());
412
413            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
414            VRInfo.DefInst = MI;
415            // Defaults to dead
416            VRInfo.Kills.push_back(MI);
417          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
418                     !ReservedRegisters[MO.getReg()]) {
419            HandlePhysRegDef(MO.getReg(), MI);
420          }
421        }
422      }
423    }
424
425    // Handle any virtual assignments from PHI nodes which might be at the
426    // bottom of this basic block.  We check all of our successor blocks to see
427    // if they have PHI nodes, and if so, we simulate an assignment at the end
428    // of the current block.
429    if (!PHIVarInfo[MBB->getNumber()].empty()) {
430      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
431
432      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
433             E = VarInfoVec.end(); I != E; ++I) {
434        VarInfo& VRInfo = getVarInfo(*I);
435        assert(VRInfo.DefInst && "Register use before def (or no def)!");
436
437        // Only mark it alive only in the block we are representing.
438        MarkVirtRegAliveInBlock(VRInfo, MBB);
439      }
440    }
441
442    // Finally, if the last instruction in the block is a return, make sure to mark
443    // it as using all of the live-out values in the function.
444    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
445      MachineInstr *Ret = &MBB->back();
446      for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
447             E = MF->liveout_end(); I != E; ++I) {
448        assert(MRegisterInfo::isPhysicalRegister(*I) &&
449               "Cannot have a live-in virtual register!");
450        HandlePhysRegUse(*I, Ret);
451        // Add live-out registers as implicit uses.
452        if (Ret->findRegisterUseOperandIdx(*I) == -1)
453          Ret->addRegOperand(*I, false, true);
454      }
455    }
456
457    // Loop over PhysRegInfo, killing any registers that are available at the
458    // end of the basic block.  This also resets the PhysRegInfo map.
459    for (unsigned i = 0; i != NumRegs; ++i)
460      if (PhysRegInfo[i])
461        HandlePhysRegDef(i, 0);
462
463    // Clear some states between BB's. These are purely local information.
464    for (unsigned i = 0; i != NumRegs; ++i)
465      PhysRegPartDef[i].clear();
466    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
467  }
468
469  // Convert and transfer the dead / killed information we have gathered into
470  // VirtRegInfo onto MI's.
471  //
472  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
473    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
474      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
475        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
476                        VirtRegInfo[i].Kills[j]);
477      else
478        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
479                          VirtRegInfo[i].Kills[j]);
480    }
481
482  // Check to make sure there are no unreachable blocks in the MC CFG for the
483  // function.  If so, it is due to a bug in the instruction selector or some
484  // other part of the code generator if this happens.
485#ifndef NDEBUG
486  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
487    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
488#endif
489
490  delete[] PhysRegInfo;
491  delete[] PhysRegUsed;
492  delete[] PhysRegPartUse;
493  delete[] PhysRegPartDef;
494  delete[] PHIVarInfo;
495
496  return false;
497}
498
499/// instructionChanged - When the address of an instruction changes, this
500/// method should be called so that live variables can update its internal
501/// data structures.  This removes the records for OldMI, transfering them to
502/// the records for NewMI.
503void LiveVariables::instructionChanged(MachineInstr *OldMI,
504                                       MachineInstr *NewMI) {
505  // If the instruction defines any virtual registers, update the VarInfo,
506  // kill and dead information for the instruction.
507  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
508    MachineOperand &MO = OldMI->getOperand(i);
509    if (MO.isRegister() && MO.getReg() &&
510        MRegisterInfo::isVirtualRegister(MO.getReg())) {
511      unsigned Reg = MO.getReg();
512      VarInfo &VI = getVarInfo(Reg);
513      if (MO.isDef()) {
514        if (MO.isDead()) {
515          MO.unsetIsDead();
516          addVirtualRegisterDead(Reg, NewMI);
517        }
518        // Update the defining instruction.
519        if (VI.DefInst == OldMI)
520          VI.DefInst = NewMI;
521      }
522      if (MO.isUse()) {
523        if (MO.isKill()) {
524          MO.unsetIsKill();
525          addVirtualRegisterKilled(Reg, NewMI);
526        }
527        // If this is a kill of the value, update the VI kills list.
528        if (VI.removeKill(OldMI))
529          VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
530      }
531    }
532  }
533}
534
535/// removeVirtualRegistersKilled - Remove all killed info for the specified
536/// instruction.
537void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
538  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
539    MachineOperand &MO = MI->getOperand(i);
540    if (MO.isReg() && MO.isKill()) {
541      MO.unsetIsKill();
542      unsigned Reg = MO.getReg();
543      if (MRegisterInfo::isVirtualRegister(Reg)) {
544        bool removed = getVarInfo(Reg).removeKill(MI);
545        assert(removed && "kill not in register's VarInfo?");
546      }
547    }
548  }
549}
550
551/// removeVirtualRegistersDead - Remove all of the dead registers for the
552/// specified instruction from the live variable information.
553void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
554  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
555    MachineOperand &MO = MI->getOperand(i);
556    if (MO.isReg() && MO.isDead()) {
557      MO.unsetIsDead();
558      unsigned Reg = MO.getReg();
559      if (MRegisterInfo::isVirtualRegister(Reg)) {
560        bool removed = getVarInfo(Reg).removeKill(MI);
561        assert(removed && "kill not in register's VarInfo?");
562      }
563    }
564  }
565}
566
567/// analyzePHINodes - Gather information about the PHI nodes in here. In
568/// particular, we want to map the variable information of a virtual
569/// register which is used in a PHI node. We map that to the BB the vreg is
570/// coming from.
571///
572void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
573  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
574       I != E; ++I)
575    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
576         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
577      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
578        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
579          push_back(BBI->getOperand(i).getReg());
580}
581