LiveVariables.cpp revision 59500c8f9a76b3386329b6f837255c16f4e8b61b
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/CodeGen/MachineRegisterInfo.h"
32#include "llvm/CodeGen/Passes.h"
33#include "llvm/Target/TargetRegisterInfo.h"
34#include "llvm/Target/TargetInstrInfo.h"
35#include "llvm/Target/TargetMachine.h"
36#include "llvm/ADT/DepthFirstIterator.h"
37#include "llvm/ADT/SmallPtrSet.h"
38#include "llvm/ADT/SmallSet.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Config/alloca.h"
41#include <algorithm>
42using namespace llvm;
43
44char LiveVariables::ID = 0;
45static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
46
47
48void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
49  AU.addRequiredID(UnreachableMachineBlockElimID);
50  AU.setPreservesAll();
51}
52
53void LiveVariables::VarInfo::dump() const {
54  cerr << "  Alive in blocks: ";
55  for (int i = AliveBlocks.find_first(); i != -1; i = AliveBlocks.find_next(i))
56    cerr << i << ", ";
57  cerr << "  Used in blocks: ";
58  for (int i = UsedBlocks.find_first(); i != -1; i = UsedBlocks.find_next(i))
59    cerr << i << ", ";
60  cerr << "\n  Killed by:";
61  if (Kills.empty())
62    cerr << " No instructions.\n";
63  else {
64    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
65      cerr << "\n    #" << i << ": " << *Kills[i];
66    cerr << "\n";
67  }
68}
69
70/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
71LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
72  assert(TargetRegisterInfo::isVirtualRegister(RegIdx) &&
73         "getVarInfo: not a virtual register!");
74  RegIdx -= TargetRegisterInfo::FirstVirtualRegister;
75  if (RegIdx >= VirtRegInfo.size()) {
76    if (RegIdx >= 2*VirtRegInfo.size())
77      VirtRegInfo.resize(RegIdx*2);
78    else
79      VirtRegInfo.resize(2*VirtRegInfo.size());
80  }
81  VarInfo &VI = VirtRegInfo[RegIdx];
82  VI.AliveBlocks.resize(MF->getNumBlockIDs());
83  VI.UsedBlocks.resize(MF->getNumBlockIDs());
84  return VI;
85}
86
87void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
88                                            MachineBasicBlock *DefBlock,
89                                            MachineBasicBlock *MBB,
90                                    std::vector<MachineBasicBlock*> &WorkList) {
91  unsigned BBNum = MBB->getNumber();
92
93  // Check to see if this basic block is one of the killing blocks.  If so,
94  // remove it.
95  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
96    if (VRInfo.Kills[i]->getParent() == MBB) {
97      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
98      break;
99    }
100
101  if (MBB == DefBlock) return;  // Terminate recursion
102
103  if (VRInfo.AliveBlocks[BBNum])
104    return;  // We already know the block is live
105
106  // Mark the variable known alive in this bb
107  VRInfo.AliveBlocks[BBNum] = true;
108
109  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
110         E = MBB->pred_rend(); PI != E; ++PI)
111    WorkList.push_back(*PI);
112}
113
114void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
115                                            MachineBasicBlock *DefBlock,
116                                            MachineBasicBlock *MBB) {
117  std::vector<MachineBasicBlock*> WorkList;
118  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
119
120  while (!WorkList.empty()) {
121    MachineBasicBlock *Pred = WorkList.back();
122    WorkList.pop_back();
123    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
124  }
125}
126
127void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
128                                     MachineInstr *MI) {
129  assert(MRI->getVRegDef(reg) && "Register use before def!");
130
131  unsigned BBNum = MBB->getNumber();
132
133  VarInfo& VRInfo = getVarInfo(reg);
134  VRInfo.UsedBlocks[BBNum] = true;
135  VRInfo.NumUses++;
136
137  // Check to see if this basic block is already a kill block.
138  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
139    // Yes, this register is killed in this basic block already. Increase the
140    // live range by updating the kill instruction.
141    VRInfo.Kills.back() = MI;
142    return;
143  }
144
145#ifndef NDEBUG
146  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
147    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
148#endif
149
150  // This situation can occur:
151  //
152  //     ,------.
153  //     |      |
154  //     |      v
155  //     |   t2 = phi ... t1 ...
156  //     |      |
157  //     |      v
158  //     |   t1 = ...
159  //     |  ... = ... t1 ...
160  //     |      |
161  //     `------'
162  //
163  // where there is a use in a PHI node that's a predecessor to the defining
164  // block. We don't want to mark all predecessors as having the value "alive"
165  // in this case.
166  if (MBB == MRI->getVRegDef(reg)->getParent()) return;
167
168  // Add a new kill entry for this basic block. If this virtual register is
169  // already marked as alive in this basic block, that means it is alive in at
170  // least one of the successor blocks, it's not a kill.
171  if (!VRInfo.AliveBlocks[BBNum])
172    VRInfo.Kills.push_back(MI);
173
174  // Update all dominating blocks to mark them as "known live".
175  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
176         E = MBB->pred_end(); PI != E; ++PI)
177    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
178}
179
180void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr *MI) {
181  VarInfo &VRInfo = getVarInfo(Reg);
182
183  if (VRInfo.AliveBlocks.none())
184    // If vr is not alive in any block, then defaults to dead.
185    VRInfo.Kills.push_back(MI);
186}
187
188/// FindLastPartialDef - Return the last partial def of the specified register.
189/// Also returns the sub-register that's defined.
190MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
191                                                unsigned &PartDefReg) {
192  unsigned LastDefReg = 0;
193  unsigned LastDefDist = 0;
194  MachineInstr *LastDef = NULL;
195  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
196       unsigned SubReg = *SubRegs; ++SubRegs) {
197    MachineInstr *Def = PhysRegDef[SubReg];
198    if (!Def)
199      continue;
200    unsigned Dist = DistanceMap[Def];
201    if (Dist > LastDefDist) {
202      LastDefReg  = SubReg;
203      LastDef     = Def;
204      LastDefDist = Dist;
205    }
206  }
207  PartDefReg = LastDefReg;
208  return LastDef;
209}
210
211/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
212/// implicit defs to a machine instruction if there was an earlier def of its
213/// super-register.
214void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
215  // If there was a previous use or a "full" def all is well.
216  if (!PhysRegDef[Reg] && !PhysRegUse[Reg]) {
217    // Otherwise, the last sub-register def implicitly defines this register.
218    // e.g.
219    // AH =
220    // AL = ... <imp-def EAX>, <imp-kill AH>
221    //    = AH
222    // ...
223    //    = EAX
224    // All of the sub-registers must have been defined before the use of Reg!
225    unsigned PartDefReg = 0;
226    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefReg);
227    // If LastPartialDef is NULL, it must be using a livein register.
228    if (LastPartialDef) {
229      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
230                                                           true/*IsImp*/));
231      PhysRegDef[Reg] = LastPartialDef;
232      SmallSet<unsigned, 8> Processed;
233      for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
234           unsigned SubReg = *SubRegs; ++SubRegs) {
235        if (Processed.count(SubReg))
236          continue;
237        if (SubReg == PartDefReg || TRI->isSubRegister(PartDefReg, SubReg))
238          continue;
239        // This part of Reg was defined before the last partial def. It's killed
240        // here.
241        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
242                                                             false/*IsDef*/,
243                                                             true/*IsImp*/));
244        PhysRegDef[SubReg] = LastPartialDef;
245        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
246          Processed.insert(*SS);
247      }
248    }
249  }
250
251  // There was an earlier def of a super-register. Add implicit def to that MI.
252  //
253  //   A: EAX = ...
254  //   B: ... = AX
255  //
256  // Add implicit def to A if there isn't a use of AX (or EAX) before B.
257  if (!PhysRegUse[Reg]) {
258    MachineInstr *Def = PhysRegDef[Reg];
259    if (Def && !Def->modifiesRegister(Reg))
260      Def->addOperand(MachineOperand::CreateReg(Reg,
261                                                true  /*IsDef*/,
262                                                true  /*IsImp*/));
263  }
264
265  // Remember this use.
266  PhysRegUse[Reg]  = MI;
267  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
268       unsigned SubReg = *SubRegs; ++SubRegs)
269    PhysRegUse[SubReg] =  MI;
270}
271
272/// hasRegisterUseBelow - Return true if the specified register is used after
273/// the current instruction and before it's next definition.
274bool LiveVariables::hasRegisterUseBelow(unsigned Reg,
275                                        MachineBasicBlock::iterator I,
276                                        MachineBasicBlock *MBB) {
277  if (I == MBB->end())
278    return false;
279
280  // First find out if there are any uses / defs below.
281  bool hasDistInfo = true;
282  unsigned CurDist = DistanceMap[I];
283  SmallVector<MachineInstr*, 4> Uses;
284  SmallVector<MachineInstr*, 4> Defs;
285  for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(Reg),
286         RE = MRI->reg_end(); RI != RE; ++RI) {
287    MachineOperand &UDO = RI.getOperand();
288    MachineInstr *UDMI = &*RI;
289    if (UDMI->getParent() != MBB)
290      continue;
291    DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UDMI);
292    bool isBelow = false;
293    if (DI == DistanceMap.end()) {
294      // Must be below if it hasn't been assigned a distance yet.
295      isBelow = true;
296      hasDistInfo = false;
297    } else if (DI->second > CurDist)
298      isBelow = true;
299    if (isBelow) {
300      if (UDO.isUse())
301        Uses.push_back(UDMI);
302      if (UDO.isDef())
303        Defs.push_back(UDMI);
304    }
305  }
306
307  if (Uses.empty())
308    // No uses below.
309    return false;
310  else if (!Uses.empty() && Defs.empty())
311    // There are uses below but no defs below.
312    return true;
313  // There are both uses and defs below. We need to know which comes first.
314  if (!hasDistInfo) {
315    // Complete DistanceMap for this MBB. This information is computed only
316    // once per MBB.
317    ++I;
318    ++CurDist;
319    for (MachineBasicBlock::iterator E = MBB->end(); I != E; ++I, ++CurDist)
320      DistanceMap.insert(std::make_pair(I, CurDist));
321  }
322
323  unsigned EarliestUse = DistanceMap[Uses[0]];
324  for (unsigned i = 1, e = Uses.size(); i != e; ++i) {
325    unsigned Dist = DistanceMap[Uses[i]];
326    if (Dist < EarliestUse)
327      EarliestUse = Dist;
328  }
329  for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
330    unsigned Dist = DistanceMap[Defs[i]];
331    if (Dist < EarliestUse)
332      // The register is defined before its first use below.
333      return false;
334  }
335  return true;
336}
337
338bool LiveVariables::HandlePhysRegKill(unsigned Reg) {
339  if (!PhysRegUse[Reg] && !PhysRegDef[Reg])
340    return false;
341
342  MachineInstr *LastRefOrPartRef = PhysRegUse[Reg]
343    ? PhysRegUse[Reg] : PhysRegDef[Reg];
344  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
345  // The whole register is used.
346  // AL =
347  // AH =
348  //
349  //    = AX
350  //    = AL, AX<imp-use, kill>
351  // AX =
352  //
353  // Or whole register is defined, but not used at all.
354  // AX<dead> =
355  // ...
356  // AX =
357  //
358  // Or whole register is defined, but only partly used.
359  // AX<dead> = AL<imp-def>
360  //    = AL<kill>
361  // AX =
362  SmallSet<unsigned, 8> PartUses;
363  for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
364       unsigned SubReg = *SubRegs; ++SubRegs) {
365    if (MachineInstr *Use = PhysRegUse[SubReg]) {
366      PartUses.insert(SubReg);
367      for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
368        PartUses.insert(*SS);
369      unsigned Dist = DistanceMap[Use];
370      if (Dist > LastRefOrPartRefDist) {
371        LastRefOrPartRefDist = Dist;
372        LastRefOrPartRef = Use;
373      }
374    }
375  }
376  if (LastRefOrPartRef == PhysRegDef[Reg])
377    // Not used at all.
378    LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
379
380  /* Partial uses. Mark register def dead and add implicit def of
381     sub-registers which are used.
382    FIXME: LiveIntervalAnalysis can't handle this yet!
383    EAX<dead>  = op  AL<imp-def>
384    That is, EAX def is dead but AL def extends pass it.
385    Enable this after live interval analysis is fixed to improve codegen!
386  else if (!PhysRegUse[Reg]) {
387    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
388    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
389         unsigned SubReg = *SubRegs; ++SubRegs) {
390      if (PartUses.count(SubReg)) {
391        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
392                                                              true, true));
393        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
394        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
395          PartUses.erase(*SS);
396      }
397    }
398  } */
399  else
400    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
401  return true;
402}
403
404void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
405  // What parts of the register are previously defined?
406  SmallSet<unsigned, 32> Live;
407  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
408    Live.insert(Reg);
409    for (const unsigned *SS = TRI->getSubRegisters(Reg); *SS; ++SS)
410      Live.insert(*SS);
411  } else {
412    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
413         unsigned SubReg = *SubRegs; ++SubRegs) {
414      // If a register isn't itself defined, but all parts that make up of it
415      // are defined, then consider it also defined.
416      // e.g.
417      // AL =
418      // AH =
419      //    = AX
420      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
421        Live.insert(SubReg);
422        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
423          Live.insert(*SS);
424      }
425    }
426  }
427
428  // Start from the largest piece, find the last time any part of the register
429  // is referenced.
430  if (!HandlePhysRegKill(Reg)) {
431    // Only some of the sub-registers are used.
432    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
433         unsigned SubReg = *SubRegs; ++SubRegs) {
434      if (!Live.count(SubReg))
435        // Skip if this sub-register isn't defined.
436        continue;
437      if (HandlePhysRegKill(SubReg)) {
438        Live.erase(SubReg);
439        for (const unsigned *SS = TRI->getSubRegisters(SubReg); *SS; ++SS)
440          Live.erase(*SS);
441      }
442    }
443    assert(Live.empty() && "Not all defined registers are killed / dead?");
444  }
445
446  if (MI) {
447    // Does this extend the live range of a super-register?
448    SmallSet<unsigned, 8> Processed;
449    for (const unsigned *SuperRegs = TRI->getSuperRegisters(Reg);
450         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
451      if (Processed.count(SuperReg))
452        continue;
453      MachineInstr *LastRef = PhysRegUse[SuperReg]
454        ? PhysRegUse[SuperReg] : PhysRegDef[SuperReg];
455      if (LastRef && LastRef != MI) {
456        // The larger register is previously defined. Now a smaller part is
457        // being re-defined. Treat it as read/mod/write if there are uses
458        // below.
459        // EAX =
460        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
461        // ...
462        ///    =  EAX
463        if (hasRegisterUseBelow(SuperReg, MI, MI->getParent())) {
464          MI->addOperand(MachineOperand::CreateReg(SuperReg, false/*IsDef*/,
465                                                   true/*IsImp*/,true/*IsKill*/));
466          MI->addOperand(MachineOperand::CreateReg(SuperReg, true/*IsDef*/,
467                                                   true/*IsImp*/));
468          PhysRegDef[SuperReg]  = MI;
469          PhysRegUse[SuperReg]  = NULL;
470          Processed.insert(SuperReg);
471          for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
472            PhysRegDef[*SS]  = MI;
473            PhysRegUse[*SS]  = NULL;
474            Processed.insert(*SS);
475          }
476        } else {
477          // Otherwise, the super register is killed.
478          if (HandlePhysRegKill(SuperReg)) {
479            PhysRegDef[SuperReg]  = NULL;
480            PhysRegUse[SuperReg]  = NULL;
481            for (const unsigned *SS = TRI->getSubRegisters(SuperReg); *SS; ++SS) {
482              PhysRegDef[*SS]  = NULL;
483              PhysRegUse[*SS]  = NULL;
484              Processed.insert(*SS);
485            }
486          }
487        }
488      }
489    }
490
491    // Remember this def.
492    PhysRegDef[Reg]  = MI;
493    PhysRegUse[Reg]  = NULL;
494    for (const unsigned *SubRegs = TRI->getSubRegisters(Reg);
495         unsigned SubReg = *SubRegs; ++SubRegs) {
496      PhysRegDef[SubReg]  = MI;
497      PhysRegUse[SubReg]  = NULL;
498    }
499  }
500}
501
502bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
503  MF = &mf;
504  MRI = &mf.getRegInfo();
505  TRI = MF->getTarget().getRegisterInfo();
506
507  ReservedRegisters = TRI->getReservedRegs(mf);
508
509  unsigned NumRegs = TRI->getNumRegs();
510  PhysRegDef  = new MachineInstr*[NumRegs];
511  PhysRegUse  = new MachineInstr*[NumRegs];
512  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
513  std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
514  std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
515
516  /// Get some space for a respectable number of registers.
517  VirtRegInfo.resize(64);
518
519  analyzePHINodes(mf);
520
521  // Calculate live variable information in depth first order on the CFG of the
522  // function.  This guarantees that we will see the definition of a virtual
523  // register before its uses due to dominance properties of SSA (except for PHI
524  // nodes, which are treated as a special case).
525  MachineBasicBlock *Entry = MF->begin();
526  SmallPtrSet<MachineBasicBlock*,16> Visited;
527
528  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
529         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
530       DFI != E; ++DFI) {
531    MachineBasicBlock *MBB = *DFI;
532
533    // Mark live-in registers as live-in.
534    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
535           EE = MBB->livein_end(); II != EE; ++II) {
536      assert(TargetRegisterInfo::isPhysicalRegister(*II) &&
537             "Cannot have a live-in virtual register!");
538      HandlePhysRegDef(*II, 0);
539    }
540
541    // Loop over all of the instructions, processing them.
542    DistanceMap.clear();
543    unsigned Dist = 0;
544    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
545         I != E; ++I) {
546      MachineInstr *MI = I;
547      DistanceMap.insert(std::make_pair(MI, Dist++));
548
549      // Process all of the operands of the instruction...
550      unsigned NumOperandsToProcess = MI->getNumOperands();
551
552      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
553      // of the uses.  They will be handled in other basic blocks.
554      if (MI->getOpcode() == TargetInstrInfo::PHI)
555        NumOperandsToProcess = 1;
556
557      SmallVector<unsigned, 4> UseRegs;
558      SmallVector<unsigned, 4> DefRegs;
559      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
560        const MachineOperand &MO = MI->getOperand(i);
561        if (MO.isReg() && MO.getReg()) {
562          unsigned MOReg = MO.getReg();
563          if (MO.isUse())
564            UseRegs.push_back(MOReg);
565          if (MO.isDef())
566            DefRegs.push_back(MOReg);
567        }
568      }
569
570      // Process all uses.
571      for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
572        unsigned MOReg = UseRegs[i];
573        if (TargetRegisterInfo::isVirtualRegister(MOReg))
574          HandleVirtRegUse(MOReg, MBB, MI);
575        else if (!ReservedRegisters[MOReg])
576          HandlePhysRegUse(MOReg, MI);
577      }
578
579      // Process all defs.
580      for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
581        unsigned MOReg = DefRegs[i];
582        if (TargetRegisterInfo::isVirtualRegister(MOReg))
583          HandleVirtRegDef(MOReg, MI);
584        else if (!ReservedRegisters[MOReg])
585          HandlePhysRegDef(MOReg, MI);
586      }
587    }
588
589    // Handle any virtual assignments from PHI nodes which might be at the
590    // bottom of this basic block.  We check all of our successor blocks to see
591    // if they have PHI nodes, and if so, we simulate an assignment at the end
592    // of the current block.
593    if (!PHIVarInfo[MBB->getNumber()].empty()) {
594      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
595
596      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
597             E = VarInfoVec.end(); I != E; ++I)
598        // Mark it alive only in the block we are representing.
599        MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
600                                MBB);
601    }
602
603    // Finally, if the last instruction in the block is a return, make sure to
604    // mark it as using all of the live-out values in the function.
605    if (!MBB->empty() && MBB->back().getDesc().isReturn()) {
606      MachineInstr *Ret = &MBB->back();
607
608      for (MachineRegisterInfo::liveout_iterator
609           I = MF->getRegInfo().liveout_begin(),
610           E = MF->getRegInfo().liveout_end(); I != E; ++I) {
611        assert(TargetRegisterInfo::isPhysicalRegister(*I) &&
612               "Cannot have a live-out virtual register!");
613        HandlePhysRegUse(*I, Ret);
614
615        // Add live-out registers as implicit uses.
616        if (!Ret->readsRegister(*I))
617          Ret->addOperand(MachineOperand::CreateReg(*I, false, true));
618      }
619    }
620
621    // Loop over PhysRegDef / PhysRegUse, killing any registers that are
622    // available at the end of the basic block.
623    for (unsigned i = 0; i != NumRegs; ++i)
624      if (PhysRegDef[i] || PhysRegUse[i])
625        HandlePhysRegDef(i, 0);
626
627    std::fill(PhysRegDef,  PhysRegDef  + NumRegs, (MachineInstr*)0);
628    std::fill(PhysRegUse,  PhysRegUse  + NumRegs, (MachineInstr*)0);
629  }
630
631  // Convert and transfer the dead / killed information we have gathered into
632  // VirtRegInfo onto MI's.
633  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
634    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j)
635      if (VirtRegInfo[i].Kills[j] ==
636          MRI->getVRegDef(i + TargetRegisterInfo::FirstVirtualRegister))
637        VirtRegInfo[i]
638          .Kills[j]->addRegisterDead(i +
639                                     TargetRegisterInfo::FirstVirtualRegister,
640                                     TRI);
641      else
642        VirtRegInfo[i]
643          .Kills[j]->addRegisterKilled(i +
644                                       TargetRegisterInfo::FirstVirtualRegister,
645                                       TRI);
646
647  // Check to make sure there are no unreachable blocks in the MC CFG for the
648  // function.  If so, it is due to a bug in the instruction selector or some
649  // other part of the code generator if this happens.
650#ifndef NDEBUG
651  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
652    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
653#endif
654
655  delete[] PhysRegDef;
656  delete[] PhysRegUse;
657  delete[] PHIVarInfo;
658
659  return false;
660}
661
662/// replaceKillInstruction - Update register kill info by replacing a kill
663/// instruction with a new one.
664void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
665                                           MachineInstr *NewMI) {
666  VarInfo &VI = getVarInfo(Reg);
667  std::replace(VI.Kills.begin(), VI.Kills.end(), OldMI, NewMI);
668}
669
670/// removeVirtualRegistersKilled - Remove all killed info for the specified
671/// instruction.
672void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
673  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
674    MachineOperand &MO = MI->getOperand(i);
675    if (MO.isReg() && MO.isKill()) {
676      MO.setIsKill(false);
677      unsigned Reg = MO.getReg();
678      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
679        bool removed = getVarInfo(Reg).removeKill(MI);
680        assert(removed && "kill not in register's VarInfo?");
681        removed = true;
682      }
683    }
684  }
685}
686
687/// analyzePHINodes - Gather information about the PHI nodes in here. In
688/// particular, we want to map the variable information of a virtual register
689/// which is used in a PHI node. We map that to the BB the vreg is coming from.
690///
691void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
692  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
693       I != E; ++I)
694    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
695         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
696      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
697        PHIVarInfo[BBI->getOperand(i + 1).getMBB()->getNumber()]
698          .push_back(BBI->getOperand(i).getReg());
699}
700