LiveVariables.cpp revision 6d6d352ed9bf69f06d8084b76042d7e9b3980cb5
1//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the LiveVariable analysis pass.  For each machine
11// instruction in the function, this pass calculates the set of registers that
12// are immediately dead after the instruction (i.e., the instruction calculates
13// the value, but it is never used) and the set of registers that are used by
14// the instruction, but are never used after the instruction (i.e., they are
15// killed).
16//
17// This class computes live variables using are sparse implementation based on
18// the machine code SSA form.  This class computes live variable information for
19// each virtual and _register allocatable_ physical register in a function.  It
20// uses the dominance properties of SSA form to efficiently compute live
21// variables for virtual registers, and assumes that physical registers are only
22// live within a single basic block (allowing it to do a single local analysis
23// to resolve physical register lifetimes in each basic block).  If a physical
24// register is not register allocatable, it is not tracked.  This is useful for
25// things like the stack pointer and condition codes.
26//
27//===----------------------------------------------------------------------===//
28
29#include "llvm/CodeGen/LiveVariables.h"
30#include "llvm/CodeGen/MachineInstr.h"
31#include "llvm/Target/MRegisterInfo.h"
32#include "llvm/Target/TargetInstrInfo.h"
33#include "llvm/Target/TargetMachine.h"
34#include "llvm/ADT/DepthFirstIterator.h"
35#include "llvm/ADT/SmallPtrSet.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Config/alloca.h"
38#include <algorithm>
39using namespace llvm;
40
41char LiveVariables::ID = 0;
42static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
43
44void LiveVariables::VarInfo::dump() const {
45  cerr << "Register Defined by: ";
46  if (DefInst)
47    cerr << *DefInst;
48  else
49    cerr << "<null>\n";
50  cerr << "  Alive in blocks: ";
51  for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
52    if (AliveBlocks[i]) cerr << i << ", ";
53  cerr << "\n  Killed by:";
54  if (Kills.empty())
55    cerr << " No instructions.\n";
56  else {
57    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
58      cerr << "\n    #" << i << ": " << *Kills[i];
59    cerr << "\n";
60  }
61}
62
63LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
64  assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
65         "getVarInfo: not a virtual register!");
66  RegIdx -= MRegisterInfo::FirstVirtualRegister;
67  if (RegIdx >= VirtRegInfo.size()) {
68    if (RegIdx >= 2*VirtRegInfo.size())
69      VirtRegInfo.resize(RegIdx*2);
70    else
71      VirtRegInfo.resize(2*VirtRegInfo.size());
72  }
73  VarInfo &VI = VirtRegInfo[RegIdx];
74  VI.AliveBlocks.resize(MF->getNumBlockIDs());
75  return VI;
76}
77
78bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
79  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
80    MachineOperand &MO = MI->getOperand(i);
81    if (MO.isReg() && MO.isKill()) {
82      if ((MO.getReg() == Reg) ||
83          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
84           MRegisterInfo::isPhysicalRegister(Reg) &&
85           RegInfo->isSubRegister(MO.getReg(), Reg)))
86        return true;
87    }
88  }
89  return false;
90}
91
92bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
93  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
94    MachineOperand &MO = MI->getOperand(i);
95    if (MO.isReg() && MO.isDead()) {
96      if ((MO.getReg() == Reg) ||
97          (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
98           MRegisterInfo::isPhysicalRegister(Reg) &&
99           RegInfo->isSubRegister(MO.getReg(), Reg)))
100        return true;
101    }
102  }
103  return false;
104}
105
106bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
107  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
108    MachineOperand &MO = MI->getOperand(i);
109    if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
110      return true;
111  }
112  return false;
113}
114
115void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
116                                            MachineBasicBlock *MBB,
117                                    std::vector<MachineBasicBlock*> &WorkList) {
118  unsigned BBNum = MBB->getNumber();
119
120  // Check to see if this basic block is one of the killing blocks.  If so,
121  // remove it...
122  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
123    if (VRInfo.Kills[i]->getParent() == MBB) {
124      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
125      break;
126    }
127
128  if (MBB == VRInfo.DefInst->getParent()) return;  // Terminate recursion
129
130  if (VRInfo.AliveBlocks[BBNum])
131    return;  // We already know the block is live
132
133  // Mark the variable known alive in this bb
134  VRInfo.AliveBlocks[BBNum] = true;
135
136  for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
137         E = MBB->pred_rend(); PI != E; ++PI)
138    WorkList.push_back(*PI);
139}
140
141void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
142                                            MachineBasicBlock *MBB) {
143  std::vector<MachineBasicBlock*> WorkList;
144  MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
145  while (!WorkList.empty()) {
146    MachineBasicBlock *Pred = WorkList.back();
147    WorkList.pop_back();
148    MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
149  }
150}
151
152
153void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
154                                     MachineInstr *MI) {
155  assert(VRInfo.DefInst && "Register use before def!");
156
157  VRInfo.NumUses++;
158
159  // Check to see if this basic block is already a kill block...
160  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
161    // Yes, this register is killed in this basic block already.  Increase the
162    // live range by updating the kill instruction.
163    VRInfo.Kills.back() = MI;
164    return;
165  }
166
167#ifndef NDEBUG
168  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
169    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
170#endif
171
172  assert(MBB != VRInfo.DefInst->getParent() &&
173         "Should have kill for defblock!");
174
175  // Add a new kill entry for this basic block.
176  // If this virtual register is already marked as alive in this basic block,
177  // that means it is alive in at least one of the successor block, it's not
178  // a kill.
179  if (!VRInfo.AliveBlocks[MBB->getNumber()])
180    VRInfo.Kills.push_back(MI);
181
182  // Update all dominating blocks to mark them known live.
183  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
184         E = MBB->pred_end(); PI != E; ++PI)
185    MarkVirtRegAliveInBlock(VRInfo, *PI);
186}
187
188bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
189                                      bool AddIfNotFound) {
190  bool Found = false;
191  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
192    MachineOperand &MO = MI->getOperand(i);
193    if (MO.isReg() && MO.isUse()) {
194      unsigned Reg = MO.getReg();
195      if (!Reg)
196        continue;
197      if (Reg == IncomingReg) {
198        MO.setIsKill();
199        Found = true;
200        break;
201      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
202                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
203                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
204                 MO.isKill())
205        // A super-register kill already exists.
206        return true;
207    }
208  }
209
210  // If not found, this means an alias of one of the operand is killed. Add a
211  // new implicit operand if required.
212  if (!Found && AddIfNotFound) {
213    MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
214    return true;
215  }
216  return Found;
217}
218
219bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
220                                    bool AddIfNotFound) {
221  bool Found = false;
222  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
223    MachineOperand &MO = MI->getOperand(i);
224    if (MO.isReg() && MO.isDef()) {
225      unsigned Reg = MO.getReg();
226      if (!Reg)
227        continue;
228      if (Reg == IncomingReg) {
229        MO.setIsDead();
230        Found = true;
231        break;
232      } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
233                 MRegisterInfo::isPhysicalRegister(IncomingReg) &&
234                 RegInfo->isSuperRegister(IncomingReg, Reg) &&
235                 MO.isDead())
236        // There exists a super-register that's marked dead.
237        return true;
238    }
239  }
240
241  // If not found, this means an alias of one of the operand is dead. Add a
242  // new implicit operand.
243  if (!Found && AddIfNotFound) {
244    MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
245                      true/*IsDead*/);
246    return true;
247  }
248  return Found;
249}
250
251void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
252  // Turn previous partial def's into read/mod/write.
253  for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
254    MachineInstr *Def = PhysRegPartDef[Reg][i];
255    // First one is just a def. This means the use is reading some undef bits.
256    if (i != 0)
257      Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
258    Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
259  }
260  PhysRegPartDef[Reg].clear();
261
262  // There was an earlier def of a super-register. Add implicit def to that MI.
263  // A: EAX = ...
264  // B:     = AX
265  // Add implicit def to A.
266  if (PhysRegInfo[Reg] && PhysRegInfo[Reg] != PhysRegPartUse[Reg] &&
267      !PhysRegUsed[Reg]) {
268    MachineInstr *Def = PhysRegInfo[Reg];
269    if (!Def->findRegisterDefOperand(Reg))
270      Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
271  }
272
273  // There is a now a proper use, forget about the last partial use.
274  PhysRegPartUse[Reg] = NULL;
275  PhysRegInfo[Reg] = MI;
276  PhysRegUsed[Reg] = true;
277
278  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
279       unsigned SubReg = *SubRegs; ++SubRegs) {
280    PhysRegInfo[SubReg] = MI;
281    PhysRegUsed[SubReg] = true;
282  }
283
284  for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
285       unsigned SuperReg = *SuperRegs; ++SuperRegs) {
286    // Remember the partial use of this superreg if it was previously defined.
287    bool HasPrevDef = PhysRegInfo[SuperReg] != NULL;
288    if (!HasPrevDef) {
289      for (const unsigned *SSRegs = RegInfo->getSuperRegisters(SuperReg);
290           unsigned SSReg = *SSRegs; ++SSRegs) {
291        if (PhysRegInfo[SSReg] != NULL) {
292          HasPrevDef = true;
293          break;
294        }
295      }
296    }
297    if (HasPrevDef) {
298      PhysRegInfo[SuperReg] = MI;
299      PhysRegPartUse[SuperReg] = MI;
300    }
301  }
302}
303
304bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
305                                      SmallSet<unsigned, 4> &SubKills) {
306  for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
307       unsigned SubReg = *SubRegs; ++SubRegs) {
308    MachineInstr *LastRef = PhysRegInfo[SubReg];
309    if (LastRef != RefMI)
310      SubKills.insert(SubReg);
311    else if (!HandlePhysRegKill(SubReg, RefMI, SubKills))
312      SubKills.insert(SubReg);
313  }
314
315  if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
316    // No sub-registers, just check if reg is killed by RefMI.
317    if (PhysRegInfo[Reg] == RefMI)
318      return true;
319  } else if (SubKills.empty())
320    // None of the sub-registers are killed elsewhere...
321    return true;
322  return false;
323}
324
325void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
326                                     SmallSet<unsigned, 4> &SubKills) {
327  if (SubKills.count(Reg) == 0)
328    addRegisterKilled(Reg, MI, true);
329  else {
330    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
331         unsigned SubReg = *SubRegs; ++SubRegs)
332      addRegisterKills(SubReg, MI, SubKills);
333  }
334}
335
336bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
337  SmallSet<unsigned, 4> SubKills;
338  if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
339    addRegisterKilled(Reg, RefMI);
340    return true;
341  } else {
342    // Some sub-registers are killed by another MI.
343    for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
344         unsigned SubReg = *SubRegs; ++SubRegs)
345      addRegisterKills(SubReg, RefMI, SubKills);
346    return false;
347  }
348}
349
350void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
351  // Does this kill a previous version of this register?
352  if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
353    if (PhysRegUsed[Reg]) {
354      if (!HandlePhysRegKill(Reg, LastRef)) {
355        if (PhysRegPartUse[Reg])
356          addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
357      }
358    } else if (PhysRegPartUse[Reg])
359      // Add implicit use / kill to last partial use.
360      addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
361    else
362      addRegisterDead(Reg, LastRef);
363  }
364
365  for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
366       unsigned SubReg = *SubRegs; ++SubRegs) {
367    if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
368      if (PhysRegUsed[SubReg]) {
369        if (!HandlePhysRegKill(SubReg, LastRef)) {
370          if (PhysRegPartUse[SubReg])
371            addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
372        }
373      } else if (PhysRegPartUse[SubReg])
374        // Add implicit use / kill to last use of a sub-register.
375        addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
376      else if (LastRef != MI)
377        // This must be a def of the subreg on the same MI.
378        addRegisterDead(SubReg, LastRef);
379    }
380  }
381
382  if (MI) {
383    for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
384         unsigned SuperReg = *SuperRegs; ++SuperRegs) {
385      if (PhysRegInfo[SuperReg] && PhysRegInfo[SuperReg] != MI) {
386        // The larger register is previously defined. Now a smaller part is
387        // being re-defined. Treat it as read/mod/write.
388        // EAX =
389        // AX  =        EAX<imp-use,kill>, EAX<imp-def>
390        MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
391        MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
392        PhysRegInfo[SuperReg] = MI;
393        PhysRegUsed[SuperReg] = false;
394        PhysRegPartUse[SuperReg] = NULL;
395      } else {
396        // Remember this partial def.
397        PhysRegPartDef[SuperReg].push_back(MI);
398      }
399    }
400
401    PhysRegInfo[Reg] = MI;
402    PhysRegUsed[Reg] = false;
403    PhysRegPartDef[Reg].clear();
404    PhysRegPartUse[Reg] = NULL;
405    for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
406         unsigned SubReg = *SubRegs; ++SubRegs) {
407      PhysRegInfo[SubReg] = MI;
408      PhysRegUsed[SubReg] = false;
409      PhysRegPartDef[SubReg].clear();
410      PhysRegPartUse[SubReg] = NULL;
411    }
412  }
413}
414
415bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
416  MF = &mf;
417  const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
418  RegInfo = MF->getTarget().getRegisterInfo();
419  assert(RegInfo && "Target doesn't have register information?");
420
421  ReservedRegisters = RegInfo->getReservedRegs(mf);
422
423  unsigned NumRegs = RegInfo->getNumRegs();
424  PhysRegInfo = new MachineInstr*[NumRegs];
425  PhysRegUsed = new bool[NumRegs];
426  PhysRegPartUse = new MachineInstr*[NumRegs];
427  PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
428  PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
429  std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
430  std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
431  std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
432
433  /// Get some space for a respectable number of registers...
434  VirtRegInfo.resize(64);
435
436  analyzePHINodes(mf);
437
438  // Calculate live variable information in depth first order on the CFG of the
439  // function.  This guarantees that we will see the definition of a virtual
440  // register before its uses due to dominance properties of SSA (except for PHI
441  // nodes, which are treated as a special case).
442  //
443  MachineBasicBlock *Entry = MF->begin();
444  SmallPtrSet<MachineBasicBlock*,16> Visited;
445  for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
446         DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
447       DFI != E; ++DFI) {
448    MachineBasicBlock *MBB = *DFI;
449
450    // Mark live-in registers as live-in.
451    for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
452           EE = MBB->livein_end(); II != EE; ++II) {
453      assert(MRegisterInfo::isPhysicalRegister(*II) &&
454             "Cannot have a live-in virtual register!");
455      HandlePhysRegDef(*II, 0);
456    }
457
458    // Loop over all of the instructions, processing them.
459    for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
460         I != E; ++I) {
461      MachineInstr *MI = I;
462
463      // Process all of the operands of the instruction...
464      unsigned NumOperandsToProcess = MI->getNumOperands();
465
466      // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
467      // of the uses.  They will be handled in other basic blocks.
468      if (MI->getOpcode() == TargetInstrInfo::PHI)
469        NumOperandsToProcess = 1;
470
471      // Process all uses...
472      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
473        MachineOperand &MO = MI->getOperand(i);
474        if (MO.isRegister() && MO.isUse() && MO.getReg()) {
475          if (MRegisterInfo::isVirtualRegister(MO.getReg())){
476            HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
477          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
478                     !ReservedRegisters[MO.getReg()]) {
479            HandlePhysRegUse(MO.getReg(), MI);
480          }
481        }
482      }
483
484      // Process all defs...
485      for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
486        MachineOperand &MO = MI->getOperand(i);
487        if (MO.isRegister() && MO.isDef() && MO.getReg()) {
488          if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
489            VarInfo &VRInfo = getVarInfo(MO.getReg());
490
491            assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
492            VRInfo.DefInst = MI;
493            // Defaults to dead
494            VRInfo.Kills.push_back(MI);
495          } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
496                     !ReservedRegisters[MO.getReg()]) {
497            HandlePhysRegDef(MO.getReg(), MI);
498          }
499        }
500      }
501    }
502
503    // Handle any virtual assignments from PHI nodes which might be at the
504    // bottom of this basic block.  We check all of our successor blocks to see
505    // if they have PHI nodes, and if so, we simulate an assignment at the end
506    // of the current block.
507    if (!PHIVarInfo[MBB->getNumber()].empty()) {
508      SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
509
510      for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
511             E = VarInfoVec.end(); I != E; ++I) {
512        VarInfo& VRInfo = getVarInfo(*I);
513        assert(VRInfo.DefInst && "Register use before def (or no def)!");
514
515        // Only mark it alive only in the block we are representing.
516        MarkVirtRegAliveInBlock(VRInfo, MBB);
517      }
518    }
519
520    // Finally, if the last instruction in the block is a return, make sure to mark
521    // it as using all of the live-out values in the function.
522    if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
523      MachineInstr *Ret = &MBB->back();
524      for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
525             E = MF->liveout_end(); I != E; ++I) {
526        assert(MRegisterInfo::isPhysicalRegister(*I) &&
527               "Cannot have a live-in virtual register!");
528        HandlePhysRegUse(*I, Ret);
529        // Add live-out registers as implicit uses.
530        if (Ret->findRegisterUseOperandIdx(*I) == -1)
531          Ret->addRegOperand(*I, false, true);
532      }
533    }
534
535    // Loop over PhysRegInfo, killing any registers that are available at the
536    // end of the basic block.  This also resets the PhysRegInfo map.
537    for (unsigned i = 0; i != NumRegs; ++i)
538      if (PhysRegInfo[i])
539        HandlePhysRegDef(i, 0);
540
541    // Clear some states between BB's. These are purely local information.
542    for (unsigned i = 0; i != NumRegs; ++i)
543      PhysRegPartDef[i].clear();
544    std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
545    std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
546    std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
547  }
548
549  // Convert and transfer the dead / killed information we have gathered into
550  // VirtRegInfo onto MI's.
551  //
552  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
553    for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
554      if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
555        addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
556                        VirtRegInfo[i].Kills[j]);
557      else
558        addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
559                          VirtRegInfo[i].Kills[j]);
560    }
561
562  // Check to make sure there are no unreachable blocks in the MC CFG for the
563  // function.  If so, it is due to a bug in the instruction selector or some
564  // other part of the code generator if this happens.
565#ifndef NDEBUG
566  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
567    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
568#endif
569
570  delete[] PhysRegInfo;
571  delete[] PhysRegUsed;
572  delete[] PhysRegPartUse;
573  delete[] PhysRegPartDef;
574  delete[] PHIVarInfo;
575
576  return false;
577}
578
579/// instructionChanged - When the address of an instruction changes, this
580/// method should be called so that live variables can update its internal
581/// data structures.  This removes the records for OldMI, transfering them to
582/// the records for NewMI.
583void LiveVariables::instructionChanged(MachineInstr *OldMI,
584                                       MachineInstr *NewMI) {
585  // If the instruction defines any virtual registers, update the VarInfo,
586  // kill and dead information for the instruction.
587  for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
588    MachineOperand &MO = OldMI->getOperand(i);
589    if (MO.isRegister() && MO.getReg() &&
590        MRegisterInfo::isVirtualRegister(MO.getReg())) {
591      unsigned Reg = MO.getReg();
592      VarInfo &VI = getVarInfo(Reg);
593      if (MO.isDef()) {
594        if (MO.isDead()) {
595          MO.unsetIsDead();
596          addVirtualRegisterDead(Reg, NewMI);
597        }
598        // Update the defining instruction.
599        if (VI.DefInst == OldMI)
600          VI.DefInst = NewMI;
601      }
602      if (MO.isKill()) {
603        MO.unsetIsKill();
604        addVirtualRegisterKilled(Reg, NewMI);
605      }
606      // If this is a kill of the value, update the VI kills list.
607      if (VI.removeKill(OldMI))
608        VI.Kills.push_back(NewMI);   // Yes, there was a kill of it
609    }
610  }
611}
612
613/// removeVirtualRegistersKilled - Remove all killed info for the specified
614/// instruction.
615void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
616  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
617    MachineOperand &MO = MI->getOperand(i);
618    if (MO.isReg() && MO.isKill()) {
619      MO.unsetIsKill();
620      unsigned Reg = MO.getReg();
621      if (MRegisterInfo::isVirtualRegister(Reg)) {
622        bool removed = getVarInfo(Reg).removeKill(MI);
623        assert(removed && "kill not in register's VarInfo?");
624      }
625    }
626  }
627}
628
629/// removeVirtualRegistersDead - Remove all of the dead registers for the
630/// specified instruction from the live variable information.
631void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
632  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
633    MachineOperand &MO = MI->getOperand(i);
634    if (MO.isReg() && MO.isDead()) {
635      MO.unsetIsDead();
636      unsigned Reg = MO.getReg();
637      if (MRegisterInfo::isVirtualRegister(Reg)) {
638        bool removed = getVarInfo(Reg).removeKill(MI);
639        assert(removed && "kill not in register's VarInfo?");
640      }
641    }
642  }
643}
644
645/// analyzePHINodes - Gather information about the PHI nodes in here. In
646/// particular, we want to map the variable information of a virtual
647/// register which is used in a PHI node. We map that to the BB the vreg is
648/// coming from.
649///
650void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
651  for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
652       I != E; ++I)
653    for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
654         BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
655      for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
656        PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
657          push_back(BBI->getOperand(i).getReg());
658}
659